
Sankhy? : The Indian Journal of Statistics 

1992, Volume 54, Series A, Pt. 2, pp. 215-231. 

CES?RO UNIFORM INTEGRABILITY AND THE 
STRONG LAW OF LARGE NUMBERS 

By TAPAS K. CHANDRA and A. GOSWAMI 

Indian Statistical Institute 

SUMMARY. This paper studies some consequences of conditions like the uniform inte 

grability and Ces?ro uniform integrability (introduced by Chandra (1989)) in the context of 

strong laws of large numbers (SLLNs). Extending certain arguments of Etemadi (1981), 

Cs?rgo, Tandori and Totik (1983), we relax the condition of 'identical distribution and/or indepen 

dence' in Etemadi's extension of Kolmogorov's SLLN and in the classical SLLNs of Markov and 

Cantelli. We also extend the recent SLLN of Landers and Rogge (1986) and a result of Calder?n 

(1983) related to the classical SLLN of Marcinkiewicz and Zygmund. 

1. Introduction 

Although conditions like uniform integrability are well-known, these 

are not yet widely studied in the context of strong laws of large numbers" 

(SLLNs). This paper attempts to fill up this gap to some extent. Let 

{X?}n 5.1 be a sequence of integrable random variables defined on the same probabi 

lity space, and put S(n) 
? 

X?+.+Xn and Xn 
= n~x S(n) (n > 1). Ete 

madi (1981, 1983a) has shown in an elementary way that in the classical 

SLLN of Kolmogorov (see Theorem 5.4.2 of Chung (1974)), the condition 

'independent and identically distributed (i.i.d) random variables' can be 

relaxed to the condition 'pairwise independent and identically distributed 

random variables' ; he has also been able to prove other SLLNs, with nice 

applications, for nonnegative pairwise independent random variables satis 

fying certain moment conditions. Cs?rgo, Tandori and Totik (1983) proved, 

by a novel extension of arguments of Etemadi (1981), an analogue of the other 

SLLN of Kolmogorov (see page 125 of Chung (1974)) for pairwise independent 
random variables. On the other hand, Landers and Rogge (1986) have 

obtained the SLLN for a certain class of uniformly integrable random vari 

ables which are also pairwise independent ; they have also shown that the 

SLLN need not hold for independent random variables which are merely 

uniformly integrable. It may be noted that the SLLN of Landers and Rogge 

(1986) does not imply the Kolmogorov SLLN for iid random variables. 
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Chandra (1989) has attempted to give a simple and straightforward 

proof of the classical weak law of large numbers (WLLN) of Khinchin (see 

Theorem 5.2.2 of Chung (1974)) and has pointed out that it is better to prove 

the stronger fact that the i^-convergence of (Xn?E(Xn)) holds. The method 

of his proof leads naturally to a condition called ?Ces?ro uniform integrability 
of {XnY which is weaker than the usual uniform integrability of {Jj. 

In this paper we modify the ideas of the above papers to get new SLLNs 

for pairwise independent random variables which are not necessarily identi 

cally distributed and satisfy certain moment conditions. We are thus able 

to relax the condition of 'identical distribution and ?or independence' in EtemadVs 

extension of Kolmogorov's SLLN (see Theorem 2 below) and in the classical 

SLLNs of Markov and Cantelli as well (see Corollary 4 and Theorem 5 below). 
ii 

We have obtained an extension of SLLN of Cs?rgo, Tandori and Totik (1983) 

along the lines of Chung (1947). We also prove an extension of the SLLN 

of Landers and Bogge (1986) by replacing the uniform integrability by the 

Ces?ro uniform integrability ; this situation is quite natural, since the laws 

of large numbers are, after all, properties of the averages Xn. Finally, we 

establish in the Appendix an analogue of a classical result of La Vall?e Poussin 

(on the necessary and sufficient condition of the uniform integrability) for 

a sequence of Ces?ro uniformly integrable random variables. 

Definition. A sequence {Xn}M ̂  i of random variables is said to be Ces?ro 

uniformly integrable if 

lim suptra-1 S B(\X?\I(\X?\ >N))] = 0. 

(Here 1(A) denotes the indicator function of the set A). Note that the above 

notion depends only on the marginal distributions of the Xn. 

Definition. A sequence {??J of nonnegative reals is said to be Ces?ro 

bounded if the sequence {^~1(a1+.+?0} is bounded. 

For a better understanding of the significance of the Ces?ro uniform 

integrability, we state a result of Chandra (1989). 

Theorem. A sequence {Xn} of random variables is Ces?ro uniformly inte 

grable if and only if the following conditions are satisfied : 

(a) [E( | Xn | )} is Ces?ro bounded ; and 

(b) for each e > 0, there exists a S > 0 such that whenever {A^k^i is a 
n 

sequence of events satisfying the condition that sup [n~x S P(Aj?)] < S, we 
n fc-l 

have sup [nr1 S E( J X k 11(A))] < e. 
n Jfc-1 
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In this paper, C stands for a generic constant, not necessarily the same at 

each appearance. Also {f(n)} will stand for an increasing sequence such that 

f(n) > O for each n and f(n)?? oo. 

For the convenience of the reader and the sake of the readability of the 

paper, we have made it self-contained by repeating some of arguments of the 

above papers. 

2. Main results 

We begin with a very simple and useful lemma. Recall the definition 

of the 8(n). 
Lemma 1. Let {Xn}n ^ i be a sequence of random variables with finite 

E(Xl). Suppose that 

(i) there is a constant O 0 such that E(S(n))2 < G S E(X\), V n > 1 ; 
?=i 

and 

(ii) S n~2 E(X\) < oo. 
w=i 

Then for every subsequence [kJ- of positive integers such that Urn inf (kn?kn_-?) 
n?> ? 

> 1, one has S(kn)lkn-^ 0 almost surely (a.s) as n??oo. 

Proof. Let S > 0. The Chebyshev inequality, Condition (i) and a 

change of order of summation imply that 

8* SP(|?(fcB)| >kn?)<C ?E(X?) 2 (?g-2. ...(1) 

Since lim inf (kjkn^ > 1, there exist b > 1 and an integer n0 > 2 such 
n?> oo 

that kn> b kn__x for each n > n0. Put n(j)= min {n > 1 : kn > j}, j > 1. 

Then ?^(j) ? oo as j t ??> so that ^he set {j > 1 : n(j) < %} is finite, say 

{1, 2, ..., j0-l}. Let j > ?0 ; then n(j) > w0 and so kn > &*-*<*> ]cn{j) for each 

n > w(j) ; therefore 
OO 00 

S (fc,J-2 = 2 (fcj-2 > (fcri(i)))-2 S 6-2<?-n(?? 
n : fcn > j w=n(?) n=n(j) 

= 
(fcn(:f))-2 (l-6-2)-i < j-2 (l-6-2)-i 

(by definition of n(j)). Condition (ii) now implies 

S E(X)) S (?J-2<cx). 

00 
Next, note that for eachj > 1, the series S (fen)~2 < S Tir2 < oo. 
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Thus the left side of (1) is finite. By a standard result (see, e.g., Lo?ve, 

1977, page 18) we have the desired result. 

The next theorem and Corollary 1 can be obtained from the arguments 

of Cs?rgo et al. (1983). We therefore indicate only the main steps of the 

proofs. 

Theorem 1. Let {Xn}n^x be a sequence of nonnegative random variables 

with finite var(Xn). Assume that 

(i) sup [ S E(Xk)lf(n)} 
= A(say) < oo ; 

(ii) there is a double sequence {py} of non-negative reals such that 

n n 

var (Sn) < S S pyfor each n > 1 ; 
?=.i ;=i 

(iii) S 1 Pijl(f(i V j))2 < 'oo, i V j = max (i, j). 
*=i ;=i 

Then [S(n)?E(S(n))]lf(n)?> 0 almost surely as n?> oo. 

Proof. Let a > 1, e > 0 and put L = 
[Aje], the integer part of Aje, 

and Z(w) = 
[S(n)?E(S(n))]lf(n). For each integer w > 1, there exist inte 

gers m(n) and s(w) such that m(n)?> oo, 0 < s(w) < L, am{n) < /(w) < aw(w)+1 

and s(w) e < E(S(n))\f(n) < (s(n) + l) e. Let iPn be the set of all integers 
k > 1 suchthat <*?<?> </(fc) < a^^>+x ands(^) e< E(S(k))tf(k) < (s(n)+l) e ; 
let &+ = 

sup Tn and fc~ = inf Tn. Then ?~-> 00 and {m(n)} is increasing. 
Note that 

S (/(?^var^?^K S (f(k?))-* S S py 
n=i n=i i=i ;=i 

00 ? 00 00 00 00 

< E Z /ty S a-2 <?> < S S pv S or2 
i=i ?=i w=3? ?=i j=i m=m(p) 

where # =* inf {n > 1 : aw(w)+1 > /(i V i)}. Thus the last sum is 

< C S Spy a"2 <2? <CS S pw (/(i V j))"2 < 00. 
i=i ;=i *=i j=i 

Hence Z(A?)-> 0 almost surely as n??00. Following now the arguments 

of Cs?rgo et al. (1983), we get ?e?(a? I) A /a < lim inf 2(w) < Km supZ(w) 

^ (a?1) J.+e. Letting e~> 0-f and a?> 1+ along sequences, we get the 

desired result. Q 
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Remark 1. In Theorem 1, the condition 'the Xn are non-negative and 

{E(Xn)} satisfies Condition (i) above' ca?n be replaced by the condition 'Xn 
> cw V ^ > 1 and {E(Xn?cn)} satisfies Condition (i) above'. This observa 

tion is occasionally useful. Finally, Conditions (ii) and (iii) will usually be 

satisfied uith the particular choice : py 
? 

G max (cov (Xt, Xj), 0) ; it is not 

known whether this is the 'optimal' choice. 

Tfe denote by X+ and X~ the positive and negative parts respectively of a 

random variable X. 

Corollary 1. Let {X^^i be a sequence of pairwise independent random 

variables with finite var(Xn). Assume that 

(i) sup \ S E(\Xk-E(Xk)\)lf(n)]<oo; n>l L w-1 J 

and 

(ii) 2 (f(n))~* var(Xn) < oo, 

Then [S(n)?E(S(n))]lf(n)-*0 almost surely as w-?oo. 

Proof. Put Yn 
= 

(Xn-E(Xn)Y and Zn 
= 

(Xn-E{Xn))- (n > 1). It 

suffices to show that as n-> oo, 

(fin))'1 ? (Yi-E(Yi))-+0z.s.,(f(n))-1 ? (Zr?(Zi))->0a.B., ... (2) 

since (f(n))-* ? E(Yi)-(f(n))~i ? E(Z%) = (/(n))"1 S E(Xi-E(Xt)) = 0. 
?=i i=i *~i 

Since var (Yn) < JS?(72) < var (Xn) and JB(7n) < E(\Xn-E(Xn))\(n > 1), 
it follows from Theorem 1 that the first part of (2) holds ; replacing Xn by 

?Xn, one gets the second part of (2). 

Corollary 2. Let {Xn}n^i be a sequence of pairwise independent integrable 

random variables such that there is a sequence {Bn} of Borel subsets of R1 satis 

fying the following conditions (a)?(d) : 

(a) !p(Zne?S)<oo; 

(b) 2 E(XiI(X,eB?) = o(f(n)); 
?=i 

(c) 2 (/(n)-? var (XJ(Xn e BJ) < co ; 
n=i 
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and 

(d) sup\ ? E(\Xk\I(XkeBn))lf(n)]< ; 
n^l 

< 
fr=l 

here jB? is ?Ae complement of Bn. Then (/(w))_1 [?(w)?1?(/S(w))]--? 0 almost 

surely 
as n-? oo. 

Proof. Let 7? = XnI(Xn e Bn), n> I. By (c) and (d), Corollary 1 
n 

applied to {7J yields (/(w))-1 S (r???7(7*))-? 0 almost surely as n-> oo. 
n ~ 1 

n 

By (b), we get (/(^))~1 2 (7<?JS/(Z?))-> 0 almost surely as w-> oo. By (a) 
i - 1 

and the first Borel-Cantelli lemma, the desired result follows. 

The next theorem, our first main result, is an extension of the classical 

Kolmogorov SLLN for independent and identically distributed random vari 

ables (see Stout (1974) and Etemadi (1981)). Our intention is to replace the 

condition of 'identical distribution9 by suitable weaker conditions of simple 
nature. It is known that the SLLN need not hold for uniformly integrable 

sequence of independent random variables. We show instead that the SLLN 

holds under the stronger assumption of 'domination in distribution by an inte 

grable random variable''. or, the assumption of cLp-boundedness of Xn for some 

p > T (see, in this connection, page 32 of Billingsley (1968)). 

Theorem 2. Let {Xn}w55l be a sequence of pairwise independent random 

variables and put G(x) = sup P(\Xn\ > x) for x > 0. // 

Jo(x)dx<oo, 
... (3) 

0 
n 

then n"1 S c%(Xi?E(Xi))-+ 0 almost surely as n-> oo for each bounded 
<-i 

sequence {cn}. 

Proof. First note that sup E(\Xn\ )< oo. It suffices to prove the 
n ?s 1 

result for cn = 1. To this end, we use Corollary 2 with Bn 
= 

[?n, n\ for 

n > 1 (it is also possible to apply Corollary 2 of Theorem 1 of Etemadi 

(1983a)). Condition (a) follows since 2 P(\Xn\ > n) < ? G(n) < oo. To 
n=?l n=l 

verify Condition (b), note that for any nonnegative random variable Z 

and a > 0, 

E(ZI(Z > a)) = aP(Z > a)+ f P(Z > x)dx ; a 
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see, e.g., Equation (3), page 223 of Billingsley (1968). Hence 

E(\Xn\I(\Xn\ >n))<nP(\Xn\ > n)+ J G(x)dx-> 0, 
n 

so that Condition (b) holds. Obviously Condition (d) holds, Thus it remains 

to verify Condition (c). Observe that for a nonnegative random variable Z 

and cc > 0, 

E(ZI(Z < a)) = ] P(ZI(Z < a) > x)dx o 

-?P(x<Z< a)dx < J P(Z > a)dfe. 
o o 

Hence 

Vn-2E(XlI(\Xn\ < n)) < S^2 J P(\Xn\ > x^2)dx 

< 2Y>n~2 J yff(y)^ = 22^2 S J 2/?(2/)# 
o ?=1 j-l 

= 22 / 2/0(2/)% 2 n~* < 4 2 j-1 / */?(</)# 

on ? 

<4 S J G(y)dy< . 

Bemark 2. Our Condition (3), though stronger than uniform integra 

bility, is by no means any stronger than the conditions imposed by Landers 

and Rogge (1986). 

The next theorem, our second main result, is an analogue of the SLLN 

of Chung (1947) ; for other related results, the interesting paper of Chung 

(1947) may be consulted. 

Theorem 3. Let {X?} be pairwise independent and 

sup\ S E(\Xk\I(\Xk\ <ak))lf(n)}< 
. 

Let gn : (0, oo)?> (0, oo) be increasing in x for each n > 1, gn(0) being defined 

arbitrarily. Assume that 

a (x\ 
xldn(x) and ^h?^ decrease in x9 ... (4) x 

2 #(</?(|XJ ))/</>?) <<x> and {ajf(n)} bounded ; then tfWrWW-EWn))] 
-? 0 almost surely as n?t oo. 
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Proof. We use Corollary 2 with Bn 
= 

[?an, an]. To verify Condition 

(a), note that 

SP(|XJ > an) < Y>P(gn(\Xn\) > gn(an)) < oo. 

Next note that 

S(f(n))-* ?( | ZJ /( | XJ > an) < S^igrJ | Zn | )l(f(n)gn(an)) < oo 

so that Condition (b) follows by the Kronecker lemma. Finally, Condition 

(c) follows, since 

?(/(?))-* E(Xl I(\Xn\ < aj) < Xa*E(gn( \Xn\ ))/(<7nK)(/(W)*)) < oo. D 

Theorem 4. Lei {-3Tn}> {#rJ eic- ^e a,s *n Theorem 3, e cejoi ??ai Condition 

(4) is replaced by xfgn(x) is increasing in x and E(Xn) 
== 0. Then the conclusion 

of Theorem 4 holds. 

Proof. The proof of Theorem 4 goes through except that we have to 

verify Condition (b) of Corollary 2. To this end, we use the fact that E(Xn) 
== 0 and 

E(f (n))-* E( | X J I( | X J < aj)< San2?(grn( | Zn | ))l(f(n)gn(an)) < oo. D 

Corollary 3. Lei {Xn} be as in Theorem 3, and assume that E(Xn) 
= 0 

*/ ? < Vn < ! J/ ? < 3>n < 2 /w each n>l and Xn** E(\Xn\*n) < oo, 
then n*1 [S(n)?E(S(n))]?> 0 almost surely as n->co. 

Remark 3. It may be noted that the last condition with pn 
= 1 implies 

that '{i?( | Xn |)} is Ces?ro bounded'. Clearly, Corollary 3 generalises the 
SLLN of Cs?rgo et al. (1983). 

Corollary 4. Let {Xn}n ^ i be a sequence of pairwise independent ra?idom 

variables with E(Xn) 
== 0. Assume that sup E(\Xn\v) < oo for somep > 1. 

Then n^Sfa)?? 0 almost surely as n->oo. 

Following an argument of Chandra (1991), we now strengthen 

Corollary 4. 

Theorem 5. Let {Xn} be pairwise independent, {E(\Xn\)} Cesaro 

bounded, E(\Xn\*) < oo for some 1 < # < 2 and E(Xn) = 0. With 

n 
bn 

= n'1^ E(\Xk\v), assume that 
fc-i 

Iibnn~P < oo and bn 
= 

o^-1). 

Then n"1 S(n)-> 0 almost surely as n?> oo. 
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Proof. We use the formula of summation by parts (see page 194 of 

Ap?stol (1974)). Note that if N > 2 

S n-PE(\Xn\P)= S n'P (nbn^(n-l)bn^) 
n=i n=i 

= NbN?NP+ f nbn(n-P-(n+l)-P) 
n=i 

<NbNINP+p S nbJnP+1 

so that Corollary 3 applies. 

Remark 4. Corollary 4 generalizes Markov's SLLN to the case of pair 

wise independent sequences of random variables ; see pages 125-126 of Chung 

(1974). It also generalizes GantelWs SLLN to the case of pairwise indepen 

dent sequences of random variables which need not be identically distributed^ 
see pages 106-107 of Chung (1974) and page 436 of R?nyi (1970) (see a?so 

page 377 of Shiryaev (1983)). 

We next generalize the SLLN of Landers and Bogge (1986). The reader 

should note the naturality of Ces?ro uniform integrability in the context of 

laws of large numbers. 

Theorem 6. Let {Xn}n^j be a sequence of pairwise independent random 

variables. Assume that there is a function <j> : (0, oo)?> (0, oo) such that 

(i) t*1 (?>(t) is increasing to oo as t f oo ; 

(ii) sup In'1 S E((?>( IX J )) 1 = c (nay) < oo ; 
n l i=i J 

and 

(iii) S (?(n))-1 < oo. 

Then n"1 [S(n)?E(S(n))]-> 0 almost surely as w-> oo. 

Proof. We use Corollary 2 with Bn 
= 

[?n, n] for n ^ 1. Also we 

use the following lemma which can be proved usin^ the formula of summation 

by parts. 

Lemma 2. If S bn < oo and bn is decreasing, then for any bounded {ocn} 
such that {nan} is increasing, H[nan?(n? 1) an_J bn < oo: 

Put ocn = n-1 S E(<fi(\Xi\))foTn> 1. We first verify Condition (a) (of 
*?i 

the above-mentioned corollary) ; 

2 P( | Xn | > ?)< 2 P(0( | X? | ) > 0(n)) 
< 2 JP0(|XJ))#(?) = 2[na?-(n-l)a?_1]M(?) < 00 

A 2-12 
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(by (iii). To prove Condition (b), let e < 0. There is an integer Nx > 1 

such that for each n > 1, 

n-??jB(|Z,| /(lZi^^Xe/2;. 

this is possible since {Zw} is Ces?ro uniformly integrable (see Remark 5 

below). Next there is an integer N > Nx such that for each n ^ N9 

n~l S E(\Xi\ )< 6/2. Then for n > iV, 

? ?(|Zi|j(|Zi| >?)) 

< sjff(|Zi|)+ s jb(|Zi| >jy1))<n6. 

To prove Condition (c), it suffices to show that 

&r? E(X2 I(An))< oo ... (5) 

where An 
= 

[?i1/4 < |Zn| < w], w ̂  1. For each n > 1, there is a zw in the 

interval [nv*9 n] such that 

SH*J/4 < 2 inf {?H*)/z2 : rc1/4 < x < 71} ; 

note that the right side of the above inequality is positive. Then for xe[nlf*9 n]9 

we have 

a2 < 2nzn <j>(x)l<?)(zn) (as zn < w) 

< 2n2 <j>(x)?tn (by (i) and as zn > ^4) 

where tn 
= w3/4 0(w1/4) f or w > 1. Observe that 

S ir? 2? I(?J) < 2 2 iff ty( I Xw I ))?tn 
= 

2S[nan~(n~l)an]/?w. 

So (5) will follow if we show that S ljtn<oo (use Lemma 2). For this 

purpose, we use Lemma 15 of Petrov (1975, 277-278) with an.= w1/4? 

(n?l)1/? for ti > 1, \?r(x) 
= 

<?>(\x\)?\%\ ; here we are following the notation of 

Petrov (1975) and using Assumptions (i) and (iii). As an > l/(4n3/4) for 

each n and tn 
= n ty(nv*), we get 2 l/?w < 00. 

We finally prove Condition (d). There is a tQ > 0 such that $(t) > t 

for each ? > ?0, and so |#| < ?o+0(M) which implies that for each n > 1, 

n-1 SJBdZilXio+c. D 
<-i 
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Bemark 5. The existence of a function 0 with the properties (i) and 

(ii) of Theorem 4 is equivalent to the Ces?ro uniform integrability of {Xn}. 
The proof is given in Appendix. 

We next state and prove a result that arises in connection with the 

following interesting question. Now that Kolmogorov's SLLN is known 

to hold under more relaxed conditions, it is natural to ask whether the 

classical SLLN of Marcinkiewicz and Zygmund (see Theorem 2, page 

122, of Chow and Teicher (1978)) also holds under such relaxed conditions. 

We come up with the following partial answer. Incidentally, our result 

strengthens considerably a result of Calder?n (1983) along similar lines. 

Theorem 7. Let {X^n^xbe 
a sequence of pairwise independent random 

variables such that E(Xn) 
= 0, and there is a random variable Y with E(Yp) 

< oo for some 1 < p < 2 and satisfying the condition that 

sup P(\Xn\ > a)< CP(Y > a) Y a > 0. 

(Here C is a constant). Then 

(a) 2 P(|Xn|*>ft)<oo; 
n=i 

(b) n~vP S |EYi\ -> Oasn->oo; 
?=1 

and 

(c) for every subsequence {k?} of positive integers such thai 

lim inf (knjkn^ > 1, one has 

kn 
(kn)-VP 2 (Yi-EYi)->0 completely 

in the sense of Hsu and Bobbins (1947) (see also page 225 of Stout (1974)), where 

Yn 
= XJ(\Xn\P < n) for each n > 1. 

Proof, (a) X P(\Xn\P>n)^C ? P(YP>n)<CE(YP)<oo. 
?=i n=i 

(b) By Kronecker's lemma, it suffices to show that 

I n~VP\EYn\ <oo. 
n=i 

But the last series is 

< ln~vpE(\Xn\I(\Xn\P>n)) 

< ?S n-1*E(YI(YP > n)). 
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Now put An = [nlfP < 7 < (n+l)lfP] for each n > 1, and note that 

2 i-vp < f x-Vp dx < d j<2>-D/3> 
3?=1 l 

for a suitable constant d. Hence 

2 n-1fPE(YI(YP >n))= 2 ?-1/* 1 ^(7/(7 6^)) 

= 2 E(YI(Y e As)) 2 ft-1'* < d 2 #(7/(7 e Aj))y<P-?'P 

<d 2 #(7*/(7e.?,)Xd#(7*>)<oo, 

since on ̂ , we have j-ip-wp Y < 7*>. 

(c) We proceed as in the proof of Lemma 1, and define b > 1, the n(j) 
and j0 as before. Let 8 > 0. Now note that 

2 52P (I 2 (Tj-EtA > kl'* a) w=i v I ?=1 ' ' 

< 2 (kn)-2'P ?E(X2jI(\Xj\P<j)) 
n=i ;=i 

oo hi fllP 
< 2 (kn)-2fP 2 / P(|X,|2>*)cte 

w=i *=i o 

<C 2 (JfcJ-8^ 2 J P(72>tf)<fo 
?=i /=i o 

<C 2 (kn)-2'P 2* [E(Y*I(YP<j))+jVPP(YP>j))]. 

Next observe that 

h 

s (knrm s i27? w > i) = ?. ̂ (r* > mVp s (?y-*/* 
?=1 i=l ?=l ?'?n^i 

= S P(r* > j)j2/?> S (?J-2/* < (l-6-v?)-i S P(F* > ?) < oo. 
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Finally, with the set An defined in the proof of (6), 

2 (kn)~VP 2 E(YH(Yp < j)) = 2 E(Y2I(Yp < j)) 2 (kn)~*iP 
?=i j=i j=i n=n(j) 

< (l_6-2/p)-i ? j~2/PE(YI(YP <j)) 

= 
(1-6-a/p)-! 2 j-2/P 2 ?/(72/(7e^*)) 

= (l_6-2/2,)-i 2 #(72/(7e^A;)) 2 j-2,p 
*=o j=k+i 

< d 2 (ifc+i)(i-2)/^(r2/(re4)) < d 2 #(727*>-2/(7e.4*)) (asi>< 2) 

<dE(YP)<oo9 

where d is a suitable constant. D 

Modifying the proof of Theorem 2 of Etemadi (1981) along the line of 

arguments used to prove Theorem 2, one can establish the following result. 

Theorem 8. Let {Xmtn}m ^ 1} n ̂  i be a double sequence of pairwise indepen 
dent random variables such that there exist a random variable Y and a constant 

G > 0 satisfying the conditions 

P(\Xm,n\ > *) > CP(Y > a) V a > 0, ^m9n 

and E(Ylog+ 7) < oo. 
m n 

Then (mn)'1 (Sm w)-> 0 almost surely as (m9 n)-? oo where Sm n = 2 2 X{ j. 

Cs?rg? et al. (1983) prove Corollary 1 with/(w) = n ; we shall now show 
that a general SLLN like Corollary 1 automatically yields a corresponding 
SLLN for weighted converges (see in this connection Etemadi (1983b) who 

used separate arguments for such an extension) ; to this end, one needs only 
n 

replace X and f(n) by respectively w% X% and 2 wt where {w^} stands for the 

weights. We are thus able to strengthen Theorem 1 and Corollary 2 of 

Etemadi (1983b) ; as observed in Etemadi (1983b). Theorems 2-4 of Jamison 

et al. (1965) remain true for pairwise independent random variables. 
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Appendix 

Consider the statement (A) below for a sequence {Zn}n ^ i of integrable 
random variables : 

(A) there is a measurable function <f> : (0, oo)-?(0, oo) such that <j>(t)lt 

n~2 2 E(<j>(\XiI))I = c (say) < oo. If (A) holds, then 
?=i J 

{Xn} is Ces?ro uniformly integrable. For if e > 0, there is an integer N > 1 

such that (?>(t) > t(c+l)/e for t > N, and so for each n > 1, 

? E(\Xi\I(\Xt\ >N)) 

<e2 E(<j>(\Xi\)I(\Xt\ >N))]l(c+l)<ne. 
<=i 

The converse implication is more interesting, and is analogous to a classical 

result of La Vall?e Poussin (see, e.g., page 19 of Meyer (1966)) on uniform 

integrability. 

Theorem. Let {Xw}n>1 be Ces?ro uniformly integrable. Then (A) holds ; 
moreover, <j> can be chosen so that ^>(t)jt is increasing and <J> is convex. 

Proof. Io. For any sequence {un}n ^ i of nonnegative reals with un f oo 

as n f oo, if we put 

<?>(t) = S 9(*)dx, (t>0) o 

(0(0) 
= 

0), where g : (0, oo)-> (0, oo) is defined as 

g(x) = un if n?l < x < n (n > 1), 

then <p(t)/t f oo as t t oo ; such a function <?> is convex (see, e.g., Theorem A, 

page 9, of Roberts and Varberg (1973)). 

Since ?(t) : = <fi(t)/t is continuous on (0, oo) and is differentiable in each 
interval (n?l, n), w > 1, to see that ?(t) is increasing, it suffices to prove 
that ?'(t) > 0 for te (n?l, n) for each n > 1. Fix an n > 1 and a 

te(n?l,n). Note that <?>(t)= 2 Ui+(t-n+l)un (u0 = 0) so that t2?'(t) t = 0 
n 

= 2 (wn?t?i) > 0. Now that /? is shown to be increasing, to show that 

/?(?)-> oo as t-> oo, it suffices to show that ?(ri)-> oo as n-> oo. But ?(n)= 
n 

w*-1 2 w<-> oo as n-> oo, since un-> 
oo as w-> oo. 
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2?. It remains to show that such a sequence {^}rt^i can be chosen so 

as to also satisfy 

supf n-1 2 ̂ (|Zi|))l<l. ... (Al) n L (=i J 

where <?> is defined through {wn} as in Io. 

To this end, we first use the Ces?ro uniform integrability of {Xw} to get 

hold of a sequence {Nj}^ x of positive integers such that for each j > 1, 

sup {rr1 
2 E(\Xi\I(\Xt\ > N$))\ < 2~>, 

and ^~> oo as j-? oo. We now put for each n > 1, 

^w = card {j > 1 : Nj < n}. 

(Note that since Nj?> oo as j-? oo, the set {j > 1 : Nj < w} is finite for each 
w > 1.) Clearly, {un} is increasing. Finally, for any M > 1, there is an 

integer w0 > 1 such that ^ < n0 for each j 
= 1, ... 9 M which implies that 

wn > M for each w > n0 ; thus t^n-> oo as n-> oo. 

We now establish (Al). Note that 

<?(t) < 2 m for ? e (n?l9 n]9 n > 1. ... (A2) 

Next note that for any fc > 1, 

#(?H|X*|))<4 S /(n-l< |-aC*| <n) 2 u(] (by (A2)) 
L n=i i=i J 

= 
JE? 2 *,( 2 I(n-1< \Xk\ <n))l 

= 2 mP(|X*| > ?-1). 

So for any n > 1, 

n ?. oo 

2 ̂ (|X*|))<2 2( 2 l)P(\Xk\ > m-1) 
*=1 *=1 l?=l j ; 2V?<W 

= 2 2 2 P(|X*|>m)<2 2 E(\Xk\I(\Xk\ > #,)) 

Here we have used the result of 3? below. 
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3?. For any integrable random variable X and any integer N >'. 1 

2 P(\X\ >m)<?(|Z|J(|Z| >N)). 
m=N 

For,ifj>l, 
N+j N+j 
2 E(\X\I(m< \X\ <m+l))> 2 m P(m < |X| < m+l) 

m=N m=N 

N+j N+j 
= 2 mP(\X\ >m)- 2 mP(\X\ > m+l) 

m=N m^N 

N+j+i 

> 2 P(\X\ >m)-(N+j+l)P(\X\ >N+j+l) 
m=N 

Letting J-> oo, we get the desired inequality. Q 
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