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Abstract

We introduce a generalized bootstrap technique for estimators obtained by minimizing func-
tions that are convex in the parameter. We establish the consistency of these schemes via repre-
sentation theorems. A number of classical resampling schemes, like the delete-d jackknife may
be treated as special cases of this generalized bootstrap; and new ways of resampling are also
introduced. Some of the schemes are computationally more efficient than classical techniques.
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1. Introduection

Let Zy.....7, be m mdependent and identically distributed (iid.) copies of a
Z-valved random vanable and let f{az) be a real measurmble function defined for
aef . d =1, 27" m = 1. Consider the function

Na)=Efla.Zy.....2,). (1.1}
Assume that there is a unique @, € R such that

Q(a,) = min Q(a), (1.2)
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@, 15 the unknown parameter o be estimated from the data. Suppose that Z,.. . 7, 1s
an pid. sample. Then we may consider a sample analogue of (1.1), namely,

=
n
Qﬂl{,ﬂ} — ( ) Z _:’I{_ﬂ:zﬂ :zj'p paea zjn} { 1.3)

m l= 0 < dpEn

and minimize (,(a). Let a, be such that
Q{'ﬂn] = mm gn{ﬂ}- (1.4)

The stanstic a,, which can be measurably but not necessanly uniguely selected, were
introduced by Huber (1964 ) who called them A, estimators. Since most enteria func-
tions in practice are convex in the parameter, we shall assume that fa.z) 15 convex
mn a.

This class of estimators includes a large number of well-known estimators in univar-
ate and multivariate data. The pnmary example s the maximum likelihood estimator
when the hikelihood is log-concave. Three other common examples are the mean (m=1,
d=1and fla.z)=(a—z)"—2°); the median (m=1,d=1and f{a.z)=|a—z|—|z|)
and the sample variance (m=2, d=2 and f(a. 2.2 )=(a— (2, =22 3217 —(z,—z F /4).
For a function gix,...,x,) which 1s symmetric in its arguments and a2, .2 ) =
(a —::j{:.,...._,:m}}" — iz, ez P, we obtain a, to be the U-statistics with kernel gq.
Other examples are: several one-dimensional extensions of the median, such as the
umvariate Hodges—Lehmann estmators of location, the U-quantiles (Choudhury and

Serfling, 1988), and the wnivariate location estimators of Mantz et al. (1977); mul-
tivariate extensions of the median, such as the multivanate U-quantiles (Helmers
and Huskova, 1994, the Oja median (Oja, 1983), the L) median, the geometnic quan-
tiles { Chaudhurt, 1996), the multivariate Hodges—Lehmann versions of the univariate
Hodges—Lehmann  estimators; a univariate robust scale estimator of Bickel and
Lehmann (1979), a regression coefficient estimator of Theil (see Hollander and
Wolfe, 1973) and the least absolute deviation regression estimator in the random
FEEressor case.

By exploiting properties of convex functions and some smoothness in expectations,
asymptotic properties of these estimators may be established. Recent references in this
direction include Habermann (1989, Niemwro (1992), and Bose (1998). For instance,
it is known that under the two assumptions f{@.z) 1s convex and @, is unique, the
estmator @, converges to g, almost surely as n — oo,

Let gia,z) be a measurable subgradient of f{a,z), that is

fla.z2) +(b—a)'gla.z) < f(b.2) (1.5)

holds for all a.b€RY, z€ Z*. Let D{a) and [F(a) be, respectively, the gradient and
the matrix of second derivatives of ((a) whenever they exist. Let H =DFla.). It may
be noted that the subgradient need not be wniquely defined unless one considers it as
a set=valued function. This non-uniqueness, however, does not affect the results of the
present paper. The following result has been established by Habermann (1989) and
MNiemiro (1992) for m =1, and Bose (1998) for general m.
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Theorem 1.1 (Habermann, 1989; Niemiro, 1992; Bose, 1998). Under gssumpiions
{ AL ALS) (described in Section 2)

n"*(a, —a)= —n""H™'S, + op(1), (1.6)
where S, =(3)"' ¥, IR . [ S L R 3 X

The asymptotic normality of M estimators follow immediately; in particular the
asymptotic normality of all the estimators listed above under suitable conditions on
the distribution of Z. The limiting dispersion matrix equals m°H ~'XH ™', where X is
the dispersion matrix of g(Z) = E[g(a.. Z... .. Z4)|Z1 ] The matrces H and X will
not, in general, be easily computable and will typically involve unknown parameters.

The aim of this paper is to study a class of “weighted bootstrap™ for approximating
the distribution of @,. For every n = 1, and every f.da, ... 0 distinet, ;€ {1.2,....n};
F=1L....m let {wy;n_ } be realvalued non-negative andom wvariables independent
of 1Z:}. These are our “bootstrap weights”. We discuss conditions on these weights
later on. The bootstrap equivalent of g, will be obtained by minimizing

—1
n
;_)Ju‘!'{_ﬂ ':I = ( ) Z w.llu'|_|'3..._|'n- _!I{ﬂ: zj’| :zf_'- ae e :zj'.‘- ::l '[ ]- -_'|| ]

i

| =0 <2 At
Let {auw ] be chosen in a measurable way satisfying
;_)JI.H{,HJIH::I = min Q.ll.ﬂ'{ﬂ I (1.8}

The above scheme mcludes suitable generalizations of different known resampling
techniques like the classical bootstrap of Efron (1979), the Bayesian bootstrap of Rubin
{ 1981), the & out of » bootstrap and the different delete-d jackknives.

For example, if m = 1, Efron’s classical bootstrap is obtained by using weights
(Wt ca Wy ) =~ Multinomial(m; 1/n,.. .. 1/n). Now suppose m = 1, and consider boot-
strapping the U-statistics U, = () )7 Zliéﬂ{---i‘-i:'u (2 Ey,. ... % ). Efron™s classical
bootstrap of U, is given by

—1
n
U,F() T e

| 0] <2 ol 5ol

where Z7 are 1.1.d. from the empirical distribution of the 2, 7, ... Z,. In this scheme,
sample values may be repeated and so kernel values like g(X,X),...) may appear in
the bootstrap estimate. As a consequence, this bootstrap need not be consistent when
the kemel is il behaved at points gix,...x). On the other hand, defining w5 =
l_[':;l Wi, where (wp. ..oy ) ~ Multinomialin, 1/n,. .., 1/n), the bootstapped U,
according to defimtion (1.7) is

—1
n
L'Iuﬂ' = ( ) Z Wi ey, ._q{_zq & zu'p s 1:21'“. }

m = .
(] -
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MNow only the values of g which appear in the onginal U-statistics appear in the
bootstrap version, thus avoiding the previous problem. This can also be termed as a
“multinomial bootstrap™ but is different from Efron’s multinomial bootstrap.

It 15 also mteresting to note that with 11',”-,____,;‘_-—1_[';'_ | Wi, » dnd appropriate selection of
{ Wil e e o s Wiy ), W obtain the delete-d jackknives for U-statistics. For m =2, Huskova
and Janssen (1993a, b) proposed generalized bootstrap for U-statistics of degree 2,
which 15 also part of our framework.

Our focus is to establish the theoretical consistency of a large class of resampling
schemes, In Section 2, we present our main result showing that conditional on the
data, a representation similar to (1.6) holds for the generalized bootstrap estimator,
with the leading term being a weighted sum of exchangeable random varwables, The
distributional consistency can follow by applying a suitable central hmit theorem for
such sums, Our general consistency result immediately establishes consistency of many
bootstrap procedures for a large class of estimators.

We should mention that bootstrap in some special cases of mmimum contrast estma-
tors with m =1 have been treated earlier. Arcones and Gine (1992) proved consistency
of the multinomial bootstrap using empirical processes for some minimum  contrast
estimators, where they did not use convexity. Rao and Zhao (1992) have also estab-
lished consistency of some genermbzed bootstrap estimators for M-estimators in linear
regression, where the bootstrap weights are Lid. random variables.

In case one or more of assumption (Al)—(A6) are violated, the M, estimators may
have a non-normal limiting distribution. For m= 1 asymptotics for such problems have
been considered n Knight (19984, b) and elsewhere; and bootstrap mesults have been
reported in Bose and Chatterjee (2001).

A natural question s 1f higher order asymptotic results can be established. Such
results are expected to offer theoretical companson between the different consistent
schemes, As 15 known, the multinomial bootstrap 18 second-order comrect for the mean
but not for the median, thereby indicating that the question is not easy o answer in
general.

While it s not the goal of this article to study which of these schemes would be
preferable from the computational point of view, we like to mention a few words
about this. The general form of our resampling weights allows us to explore some new
approaches towards resamplng. Instead of the more traditional choice of the weights
(a) wypq 4 = H':':l Wy, we may consider, for example, weights of the form (b)
Wiy, =M ' 30 Wy, Vanation (b) can lead to significant computational efficiency.
Note that in practice the bootstrap distribution 1s approximated to any degree of aceu-
racy by B Monte Carlo steps. A small caleulation shows that for 8 bootstrap Monte
Carlo steps for a U-statistics, both the time and space complexities for method (b) is
O(n(B + 1) +#") compared to O(r"(8+ 1)) for method (a). Thus using (b) leads to
cconomies m both computer time and memory requirements. This 15 not necessarily
at the cost of any significant sacrifice i efficiency. We camied out a few simulation
studies (see Bose and Chatterjee, 2000) with resampling the £ median and the Oja
median m multidimensions, which show that the technigues suggested m this paper are
computationally efficient compared to classical resampling techniques, but still produce
very similar end results. A more comprehensive study on this aspect 1s underway.



A. Base, & Chatterjoe ! Jowrnal of Statistical Planning and Inference 117 (2003 ) 225230 219
2. Bootstrap asympiotic representation

All our theorems are obtained under the following set of conditions:

{Al) flaz) 15 convex with respect to a for each fixed =

{A2) The expectation in (1.1) exists and is finite for all a.

{A3) a, satisfying (1.2) exists and is unigue.

(Ad) Elgla. Z.....Zy)]7 < oo for all @ in a neighborhood of a,.

{AS) (Na) is twice differentiable at @, and H 15 positive definite.

{A6) For every a. Eﬁﬂf{y{ﬂh +ea, By s ) — s L oo iy }}g" —las g — 0.

These conditions are quite mild. The second assumption may hold only for some subset
of RY. Then all the results discussed here are valid for points in the interior of that
subset. With appropriate assumptions on the distibution of Z, all the examples cited
i Section 1 satisfy these conditions.

We first consider the case of m=1. Let {w,o. i=L....n. n=1.2,...} be a triangular
sequence of non-negative, row-wise exchangeable random variables, independent of
1210002, We use the notations Py, Eg, Fa to, respectively, denote probabilities,
expectations and variances with respect to the distribution of the weights, conditional
on the given data {Z,.....2,}. We henceforth dop the ficst suffix in the weights wy
and denote it by w;. Let aﬁ =Vgw;, Wi=a_ Yw; —1). The notations & and & will be
used to denote generie constants. The following conditions on the weights are assumed:

Egw =1, (2.1)
0<h <da =on), (22)
oy = com{ww,) =0(n" 53 (23)

Remark 2.1. It may be noted that whenever 37 wy=C, for some sequence of constants
1, } condition (2.3) 15 automatically satisfied. Thus, this condition will be automati-
cally satisficd for the multinomial or the delete-d jackknife weights,

Theorem 2.1. Suppose (Al)—(AS) hold and the row-wise exchangeable weights

satisfy (2.1)423). Assume also that a>/n decreases to zero as n — 0. Then
HJI_ IHI -E{HJIH — dy ::I = _H_I:EH_ I-s.llﬂ' + Fug. {2.‘4]

where S0 =% Wigla..Z;) and Pgl|r.s| = &] =op(1) for any &> 0.
The proof of Theorem 2.1 s given in the appendix.
Remark 2.2. The above theorem continues to hold if assumption ¢2/n | 0 as n — o0

is replaced by (A6). In most examples, (A6) 1s satisfied, and also rlf:_.-'n |0 1s satisfied
by all common resampling schemes,
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We now state our bootstrap representation result for the case m = 1. For convenience,
let us fix the notation §= {{(i|,....,i,):1 i <@ <---<i, = n}, and a typical ele-
ment of 8 is s=(iy,.. .8, ). We use the notwtion |7 =4 to denote two typical subsets
§={fdn} and t = {fi. . fu} of size m from {L ....n}, which have exactly &
elements in common. We often use the same notation s for both s =(fj.....i,)ES
and 5 = {f,....0u} C {l.....n}. Also, let ¥ =(]) Let Z, =(Z;.....Z ) when
§ = 1{i,....in)ES. The notation Zl_ﬂ”:}. denotes sum over all s and ¢ for which
|s M| = j holds. The bootstrap weights w, are non-negative random variables. We
assume that for all s 8, the distribution of w, v the same. In most applications the
mean of w, s approximately one. Keeping this in mind, define

&3 = Ep(w, — 1)
and let
W, =E7 (wy — 1)

Assume that EgW, W, is a function of [s ¢ only, and let ¢ = EgW,. W, whenever
lsrifl =4, for j=0,1,....m
We assume that the following conditions are satisfied:

O<hk <& =ofn) (2.5)
c=0(n""), (2.6)
e;=01), j=1l...m—1 (2.7)

Define gi{a.. 2 =E[gla..Zy.....Z)|Z4 ] and fi=( "_ll ¥ ¥ s Wi, where the sum

ar—

runs over all s = (fy,...,iy) €8 such that J € {iy,. . iy}

Theorem 2.2, Suppose (AL)—(AS) hold Assume that the resampling weights savisfy
(2.5H2.7). Also assume that E/n decreases to zero as n — 0o. Then

é.u_ I ”I:‘z{ﬂalﬂ' — iy } = —H I:IzH - Ils.u.ﬂ' + Ful {ZE”

=—mn'* 3" fiH 7 g1(a. Z) + Rus, (29)

where Syp = (| | Yoes Wiglaw Zo). Ppl|rus| > e] =op(1) and Pg[|R,s| > &] = op(1)
Jor every & = 0.

The proof of Theorem 2.2 is given in the appendix.

Remark 2.3. The theorem remams true if A6 replaces the bootstrap weight condition
g3y
(ol LS

Remark 2.4, It s convenient to start with some wy,. ... w,, and define w, as a function
of wy,...,w; . Two such functions can be casily defined, (a) w, = l_[':'zl Wy, and (b)

We=m""3 Wy,
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With either definition ((a) or (b)) of w,, we still need o verify the conditions on
the weights. In case of (a), this is casy when m is small but becomes nereasingly
cumbersome as m increases. The weights defined through (b) are easier to tackle.
Interestingly, with the usual bootstrap and jackknife random varables as weights and
definition (b}, we have aliernative forms of the usual bootstrap and jackknife schemes
in case of U-functionals that have not been studied before.

To establish consistency of the generalized bootstrap distnbution estimator, a boot-
strap CLT 15 needed. In the present framework, there are several ways of estab-
lishing such a theorem, or indeed of the above asymptotic representation theorems
{Theorems 1.1, 2.1 and 22). One way is that of the present paper, where lineanza-
tion results are along the lines of Habermann (1989, Niemiro (1992), Bose ( 1998)
and bootstrap central limit theorems are derived using arguments similar to that of
Mason and Newton (1992, Pracstgaard and Wellner (1993 ) and Arenal-Gutierrez and
Matran (1996). A detailed review of this approach may be found in Bose and
Chatterjee (2000). A different approach to treating stochastic convex functions is il-
lustrated in Knight (19984, b), Geyer (1996), Hjort and Pollard (1993). See Bose
and Chatterjee (2001} for use of similar arguments in bootstrap context. A further
interesting approach s present o van der Vaart and Wellner (1996, Chapters 3.2 and
3.6). The approach we use in this paper is convenient in the present context, other
approaches have ther own advantages too.

Our bootstrap CLT below 1s a special case of Lemma 4.6 of Pracstgaard and Wellner
{1993 ), which s itself a variation of Theorem 4.1 of Hajek (1961).

Tllmremz 3 Let {c,,, J=Ll....n nz=1} be a wiangular array of constants, and

let {Uyi J= L. 1} be a triangular arvay of row-exchangeable random

variahles ﬁuf.’: !J':.:H as n— o0.

i a7y ppma(l), (2.10)
i=1

i 'y g =T >0, (2.11)
j=I

iii § max -c i — 0 (2.12)
J=1_

v EL',,,-='[], J=Lo.n nzl, (2.13)

W EL';., =1, jF=luany izl (2.14)

viooon! ZU”-’,.L], (2.15)

Vil Ilm Ilm 5up|_£f.-",”f{|,:,m|}”] A (2.16)

Then

Ll

n~12Y " ey Uy = N(0, 7). (2.17)

=
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Pracstgaard and Wellner (1993) and Bose and Chatterjee (2000) have discussed
sufficient conditions for the above result to hold. The variation due to Arenal-Guticrrez
and Matran (1996 is also discussed m Bose and Chattegee (20007,

We now use Theorem 2.3 to establish the consistency of the generalized bootstrap
technigues in the framework of the present paper. First consider the case m=1. Define

Fux)=P[n'*(a,—a.,)=x] and Fgi(x) = Pslo; 'n"*(a.s — a,) < x].

where Py is the probability conditional on the data. We have the following result:
Theorem 2.4. Suppose m = 1 and asswme the conditions of Theorem 2.1, Further
assume that conditions of Theorem 23 hold with U,; = W, Then

sup |[Fglx) — Fyx)| =op(l) as n— oo,

=k

Let us now consider the m = | set-up. Denote the variance of f; by r’{u: ). This will,
in general, be a function of m. Then the appropriate standardized bootstrap statistic is
'Yy \a.e —a,). For any e€ R? with |¢| = 1, let

F,(x) = Prob[n' Lo —~as) =x] and

Fa(x) =Pg[n'2 & v (aum — an) < x).

Theorem 2.5. Assione the conditions of Theorem 2.2, Assume that 75 are exchange-
able and sarisfy (213)H{2.16). Further assume that E f; =o(1). Then

sup |[Fgix) — Fix) =op(l) as n— oo
xRk

We omit the details of the proof of Theorem 2.5,
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Appendix A. Proofs of theorems

In order w prove Theorem 2.1 we use Lemma 4 of Niemiro (1992) quoted below.
In the sequel, |a] stands for the Euclidean nomn of a vector a.

A set BC R is called a 8-triangulation of A, if every a€A is equal to a convex
combination ¥ A6y of points b; £ B, such that |b; —a| < 4.

Lemma A.l (Niemiro, 1992). Let A © Ay be comvex subsets of BY such that
la — b = 28 whenever ac A and b & Ay, Assume that B iy a d-triangulation of Ay,
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Suppose that h and K, are fimetions such that h satisfies the Lipschitz condition
[hia) —hib)| < Lla — b for a,be 4y, and k' is convex on A, If

sup [h(b)— h(b)| <=
hef

then

sup [hia) — A'(a) < 5L4 4+ 3=
acd

Proof of Theorem 2.1. Assume that a, =0 and (Na.)=0. The general case when this
15 not necessarily true, can be reduced to this case by working with () defined by
ia)=Na+a.) — HNa.).

Now define X,{a) = [f(n " ea.Z) — f(0.Z)] — n"26,a"g(0, Z) and X,a(a)
=wy X,da). Then we have EgX,pia)=X,{a) for every a and 3 X,gla)=n.s(n"" 2
aut) — nQu(0) —n~ 2 a,a’ S, where S,p = Y waeg(0,Z;). For the sake of brevity we
sometimes write X,y for X(a).

Let & =3z'.;i|“3{H]|, where Ayp(H ) i1s the least eigenvalue of H. Fix a dy =10
sufficiently small such that «?8y < 1. Let M = 0 be a sufficiently large constant to
be specified later on n (A.6). Let o be the set where both

M rl
-2 O: T :
& &, Xogila) — —a Hal| < &y, Al
IuILEn' ; il 5 L
I e H T S| < M- 1 (A2)

hold. We will show that
1 — P[] = op(1). (A3)

On the set .o/, we first show that the convex function ¥(a)=nQuwi(n~ " a.a)—nQs(0)
assumes at the point by=—n~"2a,'H~'8, a value less than its values on the sphere
la — byl = h'r.i:,z.

Observe that ¥(a)=nQ,us(n~'?a,a)—nQ,s(0)=31_  Xum(a)+n""%a,a" 5, Also,
since from (A2) we have [y =M — 1, by {a:|al = M} and hence (A1) applies
with @ = by. Using (A.1) with a= by, we get ¥(by) < — 270~ 'ST H 'S, + doo.

Now since x28y < 1, all a such that |a— by =x5{|,,'2 also belong to {a:|a| = M}, and
hence (A.1) is applicable for such a. Write a=by+0; 'g, and it is simple algebra to see
that for a =y + o 'y satisfying |gl =x5f|,;:2 7y, we have Pia) = —2"'n"'ST H'8,p —
82 +27'g"Hy. By our choice of x, we now have that W(h,) < ¥(a) for |a —hy| =
xéf',"lz. This now ensures that the global minmmizer of the convex function ¥{a) must
lic within the sphere |a — byl = xdfl,,".z.

Note that the global minmmizer of () is n_'-"zr.r"_ lg, 5. henee we have

n'Pg g =—n""Pe T HT S + g, (AA)

L
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Sinee dy s arbitrary, and because of (A3) we have Pgl|rg| = 8] = op(1) for any
g =0

Mow divide (1.6) by g, and subtract it from (A4) to get (2.4). This step agam uses
the lower bound condition of (2.2).

Thus, the proof 1s complete once (A3) 1s established. For this, we show that

For any M = (), Py

sup o2 |ZX,.BJ{&} _ a2a" Hay 2| > aﬂ} —op(l), (AS)
Ja] == M

M > 0 such that Pgl|o; 'n'PHT'S,0| = M] =o0p(1). (A6)

Proof of (A.5). Fix an M = 0. For fixed dp =0, get d =0 and &£ =0 such that
My =M + 25 and 8y = SM Ayl M5 + 32, where A (H ) is the maximum eigen-
value of H. Consider the set 4 = {a:|al = M} and let B={h,... . by} be a finite
d-trangulation uf.d. Note that with 4= {a: |a| =M} L= ;Hw,m_“{H} hia)=a"Ha/2
and h'(a) = a2 Y wXu(a), all the conditions of Lemma A.l are satisfied Now

Py | sup o7 |ZX,.BJ{¢:}— "”Hn,.-'2| i
Je] = Af
o o sup I'I_z |ZX,LH,{:1}— @, ﬂTHﬂ 2| = 5Ld +3e
|ar| = M
= Py |sup rI“_z |Z Nowl(a) — H:’:HTHEI."2| = z] {(AT)
=

<3

-2
) rI.lI
i=l

T
=
= Z [ |Z W Xm{.lrl }| = B + ZI cr,," ¥ Kl by -2 .":- Hiy 2] =02
4=l

Jlﬂj{_":!.l'} LE hIHh j|

ey

T

[AE)
_’ Z"{ Z .lu'[.'lrJ )+ Zf{ar_ ¥ Kl by p—a? ."rr.l'.l'.":. 2| =2} {Ag}
=l}|={1]. {A-I{H

In the above caleulations, (A7) follows from Lemmas Al (A9) follows from (A7)
by the followmg argument:

I:r.u—l Z H’ﬂmu{b;}i = 4‘.'..".2‘|

e oy
= de zc.r“ “Eg

Z HIJ'XJH{"’J_,I' }
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i#k

=de a7t [Z X2b)+ e Y Kby WX (by)

2
=4¢%a;” [{1 —en) Y Xadh;)+ ey (Zﬂn.,{b_,-h) ]

= 44‘1_20;-’ [{1 e C'||}ZXJ_I:-{J’J_I.'}+HE'|| (ZX“EJ-[!JJ})]
<SCY Xuby).

To obtain (A.10) from ( A.9) observe that the number of terms in the sum over § s
finite. We first show that cach term m the sum 1s op( 1),
In order to prove a,> %, X2h) = op(l), we will show that o, Y EX(h) =

na; 2EX2(b) =o(1). Note that for every a, we have

oy Ef(n Pa.a,2)) — £(0,2)) — n%0,a" 9(0,2)))
< Ela"(g(n™ *aa,Z1) - 9(0.21))
from (4.4) of Nicmiro (1992). By usmg (A6), this converges to 0.
In place of (A6), if we had assumed that n—"2a, | 0, then the above again follows
by wusing arguments of Niemmro (1992, p. 1322).

This establishes that for fixed b, ,7 ¥ X3(h) =op(1).
For the proof of a,°[ 3 Ah) — a2bTHb/2] = op(1), we write

—2
o,

N Xalb)— r:beHb..-"E]

o,
=y

N Xdb)—EY Xu(b)+EY X,{b) — a3b"Hb/2| .

Note that £ X, (b)) =nQ{n~" g, b), for which we have the Taylor series expansion
(a) = a"Ha/2 + of|al*) for @ near 0, since by owr choice the value of ((-) and its
derivative at 0 are 0. This shows that ne 2 Q(n~"%a,b) — B'Hb/2 =o(1).

In order to prove o, [ Y, Xu(h) —E ¥, X,i(b)] = op( 1) we have

3 Xu(B)—EY " Xu(b)

-4
g, &

2

fou -2
= o oo

Y Xu(b)—EY X.Ab)
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2

=k2a;2E [ (Xul(b) — EX,AB))
=k 262 E Y (Xa(b) — EX,( )

< nk; 2o, E(X (b))
=0l
This proves (A.5). O
Proof of (A.6). Let 4 be the minimum eigenvalue of H. Then

Palla; ' n7 2118, | = M)

< Pyllo; 'n ™" 25| = Mi]

a
1 n =
g - F, wigl 0, Z;
72 M2 na? i ; o0 2:)
n 2 a :
2 3
R Lo K W0, £; 0. %
:zl‘wznﬂi ] g 'ﬂ{ ) o g{ )
2 L 2
< :—143-- Z ExW, W;9(0.Z) 9(0.Z;) + g > 9(0.2)
1t ij=1 i=1
5 " n
< i (e LIA0Z) en 3 9(0.2)'9(0.2)
i=l L=l

xp‘lrf’-ﬂ. Zq{{}Z}

2

Ll

> al0.2)

i=l1

2 L 2
2 —=——I{l—¢ g2 + ¢
f.‘TMzn ( II}ZL!{ )l 1

i=l

wﬂ. Zf;{uz}
ey

i=1

2

M

Z.ff(fl,z’.-}

i=]

K , K
Win ZI:HJHLZ-H + 3

=Ly say.
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Mow fix any two constants 8y, d: = 0. By choosmg M large enough, we have
Prob{Py[a; |n="2H ~'S,w| < M] = 6]
= PF{]hI_rj| = 'L!'I_llfl

= . (ALL)

This proves (A6). O

Proof of Theorem 2.2. Let us establish (2.8) first. This proof is smmilar to that of
Theorem 2,1, Define X, a) = f(n "2 &a.Z) — f(0.Z) — n~ " 2E,a"g(0,Z,), and let
A:lﬂ\{.ﬂ} = W ft:l.\'{ﬂ }: S.ll]'l' =i N_I Z.'\. w.'-'ﬂ{.{}vz.\'}- We have HQJI-B{H_ 2 ";h-llﬂ} - ngﬂlﬂ'{.{}} =
HIIE':MHTSMH' +nhr—l leﬂ.\'{ﬂ}-

By carclully followmg the arguments for Theorem 2.1, we only have to show that

For any M = 0;Pg | sup .:,,_2 |nN_I Z-’ﬂ.m{ﬂ} = éiﬂ Hﬂ2| = dy
|a| < M

=op( 1), (A12)

M > 0 such that Pg[|& ' n'2H ' S| = M]=o0p(1) (A.13)

for a sufficiently small constant dy = 0. The proof of these are similar to that of (AS5)
and (A.6).

Using the facts n'/ 2N~ 3,0, Z) = Op(1) and iV =2 30, 1a00,.Z,)| = Op(1), after
some algebra (A 13) s established, the algebra being similar to the corresponding
calculation in Theorem 2.1.

For (A.12), again by some algebra similar to Theorem 2.1, the result is established
once the following two are proved for any fixed a with |a| < M and any & = (O:

Py

EANT Y WX,(a)

&

}a] = op( 1), (A.l4)

L =2 -1 T X )= 20T Hay 2] =) = OPLL). (A.15)

The proof of { A.15) follows from considening the two parts { & 2aN | Yo X(a)—
ESY X (a)| =&} and {E7aN"'EY X, (a) — E2a" Ha/2| = &} separately, and using
Chebyshev's mequality for the fist pat and a Taylor series expansion for the second

part.

For (A.14), we have
Py
S N T S 2
< e N ER | Wiu(a)

g-n— 1 N 1

&

> WXu(a)
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= ;_JL:_ " a"'clr_’ Z{" Z Xll.‘."{ll.‘

=0 {s0:|oru|=i}

ar—1

_ ‘___ F_32 \th,_:l Z){m +chl Z XX

J=0  {sn|snul=i}
MNote that smee g 15 the suhgradicm function, we have

0= "{ll.‘-{,ﬂ" sn '-Jlﬂ '[':f{_n ':Jlﬂ:z.\j = ._f.lﬁ:_{]: z:-. 1

By arguments similar to those of Theorem 2.1, we have & 2n* N2 e [X P = op(1).
We also need to show .E;Enzf‘v'_zc'_,- E{:-J:I:-'“ﬂl:;‘} X Xy=op(l) for j=0,... . m—1. From
the above argument it follows that this is established if ¢;nN 2 Z{” ruj=3 1 ="0(1)
for j=0,....,m— 1. Note that Z{H |stu|= ”’1 .[‘; i Rur—;b}{z‘;r__f}} = O(n?*™~iY), The
result now f{}lkmq from the conditions assumed on ¢;'s.

In order to get the representation (2.9), we have to show

NN O Wg(0.2)=mn 'Y £ig1(0.Z) + Rum,

where for any 4 = 0, we have Pg [|Ruiri | = 8] =op(1).

Let A0, Z,) = g(0, 2, ) — ;—l (0.7 ). This is a kernel of a fisst-order degener-
ate U-statistics. Using this we now have Wog(0,2,) = W, Z_.u':l gl 02 )+ Wohi(0, 2.
Also note that % Zj;l W (0,2, ) = {;';'I}E.;l Fign (0,25, Finally, note that
E(NT'Sh0.Z))7* = O(n~?). Now using this result and (2.7), afer some
algebra we obtain Pyl |n' 2N ! STWA0.Z)| = 8] =op(1), and this yields (2.9}, [

Proof of Theorem 2.4. First assume that the parameter space is one dimensional. The
first term in the right-hand side of the bootstrap representation (2.4) can be identified
in the framework of Theorem 2.3 with ¢,; = H ™ 'g(a.. Z;). Note that since a, s the
minimizer, we have E{g(a,.Z ))=0. Thus &, converges to zero almost surely. Standard
arguments show that assumptions (2.11) and (2.12) are satisfied almost surely under
{Ad). Thus by applymg the above result, the asymptotic (conditional) nommality of
oy 'n'*(a.5 —a,) follows since the weights Uyi=W,=a, (w,;— 1) satisfy conditions
(2.13)+2.16). It is also easy to see that the limiting variance is ©° = H ¥ (g(a..Z)))
which is exactly equal to the limiting variance of n''*(a, — a. ). This establishes the
consistency of the generalized bootstrap if the parameter space 1s one dimensional,

Then {cy, b are vector valued, but using the standard Cramer—Wold device the above
argument can be casily repeated. [
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