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Abstract. This paper discusses the asymptotcs of bvo-stage least squares estimator of
the parameters of ARCH models. The estimator 15 easy to oblain since il involves solving
twe sels of linear equations. At the same time, the estimator has the same asymplotic
effickency as that of the widely used quasi-maximum likelhood estimator. Simulation
results show that, even for small sample size, the performance of our esomator compared
Lo the quasi-maximum likelihood estimator is better,
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1. INTRODUCTION

Recent wears have seen an exponential growth in the applications of
autoregressive conditional heteroscedastic (ARCH) models to economics and
finance. Introduced in his seminal paper by Engle (1982), ARCH models have
been applied to numerous economic and financial data to model the volatility; the
strong dependence of the instantaneous variability of a time series on its own past.
A survey of the already vast literature can be had from the survey papers of
Bollerslev et al. (1992), Bera and Higgins (1993), Bollerslev et al. (1994), Shephard
(1996) and the book by Gouriéroux (1997), among others.

Several different models in the ARCH literature are all known as ARCH
models. In this article, by an ARCH model, we mean the linear ARCH model of
order p (p=1) introduced by Engle (1982). Here one observes (X1 — p<isn}
satisfying



128 A BOSE AND K. MUKHERIEE
XJ'= J'—|I:.IH:|EJ' l=i=n {]'II

where fi' = [fy.f,,---f,] is the unknown parameter with fiy >0, ;20,1 <j<p:
ai1(f) = {fo+ B X7, + ---+ﬁl,Xf_F}|'a': {esl<i<n} are independent and
identically distributed {ii.d) with zero mean, unit variance and finite fourth
moment; and {¢:1=isn} are independent of {X;:1 — p=i0}.

In this paper, we are concerned with the problem of estimating . Here, § can
be thought as a parameter associated with variance. For another type of
autoregression model with ARCH errors, see Pantula (1988) where estimation of
the autoregressive parameters is considered.

Standard assumptions which facilitate the derivation of asymptotic properties
of estimators are the stationarity and ergodicity of the process. We also assume
that the process {X 1 — p=i} is stationary and ergodic. When p = 1, it follows
from Melson (1990) that a sufficient condition for the stationarity is
E{log(fi,e])} < 0. For general p, a sufficient condition for stationarity and
ergodicity of the process based on Lyapunov exponent is given by Bougerol and
Picard (1992, Thm 1.3).

One of the most commonly used estimation procedures for ARCH models is
the Gaussian likelihood approach. In this approach, the estimator is obtained as a
maximizer of the logarithm of a Gaussian likelihood function. The resulting
estimator is called the quasi-maximum likelihood estimator (QMLE). This yields
a consistent estimator even when the conditional error density is nonnormal. The
consistency and asymptotic normality of the QMLE was established by Weiss
(1986). It is also known to be asymptotically fully efficient when the error
distribution is Gaussian.

However, the QMLE does not admit a closed-form expression. It is also
not computationally easy to obtain. The likelihood tends to be flat unless » is
very large. A discussion of this problem can be found in Shephard (1996). As
is the case with any estimator defined through an optimization problem, one
needs to specify a definite rule to choose the estimator in case of multiple
solutions.

The purpose of this note is to propose an estimator of the ARCH parameter
which has a closed-form expression, which is computationally easy and which,
at the same time, compares favourably with the QMLE. The computations
involve solving two sets of linear equations and there is no nonlinear
optimization to be performed. This estimator turns out to have the same
limiting dispersion as the QMLE and hence is also fully efficient when the error
distribution is Gaussian. This is not so surprising since the standard theory
would suggest that one step of a quasi-Newton method from a consistent
estimator would deliver the same result. Interestingly, simulation results show
that our estimator performs better than the QMLE even for small sample size
such as n = 30 when the errors are standard normal. This is even true when the
error distribution is normalized (to have zero mean unit variance) double
exponential or (~distribution although the simulation resulis are exhibited only
for standard normal error.
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2. THE ESTIMATOR AND ITS ASYMPTOTIC DISTRIBUTION

To motivate the estimator, ket ¥; =X, 1 — p<i=n,

7y =Ry Yl = Bkt ]
and " =f_]“.‘ —1,1=i=n. Then
o (B) = Z_\p 2)
and squaring (1) and using the form of af_, () in (2), gives
Vi=ZiB+a (B 1<i<n Q)

where

E{oi (Fn} = E{eL (BIEM) =0 l<isn
Equation (3) is similar to a standard linear autoregressive model with centred
errors, except that there is a multiplicative random scaling involved in the errors.

Ignoring the randomness of a7, (f#) and also the presence of f in it, one can obtain
a (preliminary) least squares estimator of i as

Bu=(Z2)'ZY (4)
where Z is the matrix of order n x (1 4+ p) with ith row equal to Z;_, and Y is the
vector with ith entry ¥, 1 =i<n. Note that this estimator does not take into
account the heterogeneity in the errors and, hence, serves only as a preliminary

estimate. The asympiotic distribution of the estimator can be easily derived by

using an appropriate central limit theorem and, as expected, its efliciency is
smaller than that of the QMLE.

Mext we use ,E‘I,, defined in (4) to construct an improved estimator ,B of § as
follows. Note that dividing (3) by & (), we obtain

T {rrz.u'ff:l}ﬁ 7

In this expression, if we replace o> () by uf_|{ﬁ'l,r]|, we obtain

YJ' ZJ’—| '
S : +1;.
a1 (Bor) {rﬁ_.{ﬁ,,.:l}ﬂ .

If we again ignore the randomness present in r.rf_|{ﬁp,]|. then this can now
be visualized as a standard linear autoregression model with homoscedastic
errors. Thus, we estimate f§ by the least squares method, yielding the

estimator
—
. - - zi—l Z:— | - zi’—l }’I
JB |:; {Hf—l{ﬁprj}‘l |:§ {H}I— I{Bprj}:| -
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Recall that we have assumed that the process is stationary and ergodic. First,
we shall state a Lemma which deals with ﬁl,r ziven in (4). Here we assume the
moment conditions: for all 1 <7 k[ . m=p,

L{ }’_.'.}.--'::}’ll}’ﬂl} < o0. {S:I

Note that (5) ensures that E(ZyZ}) and E{{ﬁ'a,fiaza} are all finite. When the
errors are standard normal, sufficient condition for the existence of higher
moments of ¥sin terms of the parameter f§ is given by Engle (1982, Thms 1 and 2).

Lemsa.  fn addition to the avsumptions of model (1), assume that (5) holds. Then

n'(By — B) — N[0, Var (G ){E(ZoZ4)} 'E{(B(Zo)' ZZyHE(ZoZ}) Y| (6)

in distribution.

The following theorem gives the asympiotic distribution a_l‘ﬁ which is the main
result of the paper. Here, we assume only this property of fi:

n' (B — B) = Op(1) (7)
and this moment property of {X;:1 —p<i=0}: forall 1</, k. /=p,
Y_; ¥ _,Y_
E{—L b <o (8)
(FZo)

Mote that the conditions of the above Lemma implies (7). Also note that in the
asymptotics of the QMLE, Weiss (1980) assumes that for all 1<j &<p,
E{¥_;¥_4/(B'Z¢)*} < o0. When B; =0V 1<j<p, (8) is automatically satisfied
since the functions y — v/, + ) are bounded. The proofs for the Lemma and
the Theorem are given in Section 4.

Tueorem.  fn addition to the assumptions of model (1), suppose that (7 ) and (8 )
hold. Then, i diviribution,

n2(B— B) — N[0, Var(e) { E{ZoZy(F Zo)*}} '] ®

3. PERFORMANCE COMPARISON ON SIMULATED DATA

Table I presents some simulation results for the ARCH model in (1) of order
p =1 with standard normal error. Here, for each of the tth trial {1=¢<10). a
particular pair of (f,.#,) is randomly selected from »* distribution and fixed
throughout that trial. Then, at the k&th iteration where 1<k=1000,
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TABLE 1
VALUES OF 8o, &1 Sop AND Sip WITH STANDARD NoRMAL ErroRs

Trial Ba s Sa :;'u_'.{_,a Y :;'L{,a
| 0.35463 011346 001159 001649 0489 0.1 3894
2 0.69867 0.38751 007856 008463 004429 007058
1 182138 0L4ETY 028108 0,366 002815 007021
4 0.7225% 0.25672 006668 006757 003894 007285
5 L. 10568 0.27014 014951 0.17849 003318 008187
f 0.894 37 041837 0.10735 011150 0.05529 011589
7 118623 0.40427 030077 0.31742 005844 010209
£ (1.6 1056 01.25444 04714 006219 0.03584 004743
9 (.84292 002405 006183 0.07347 003721 0.12475

10 1LEMM (1. 29898 043420 060428 004377 0.09289

{Xi0=i<n =30} are observed and, based on them, estimators of ([, ) are
caleulated wsing both linear equation method and QML method. Let

o= % (ﬁl%{i}m_)

i=l

and

1000 ( ) — By ;
S =Z'(_Tﬁm—)

k=l

where the estimators f,, and f,, are obtained through the linear equation
method at the kth iteration. Similarly, Sgp and §)p are defined when the
estimators are obtamned through the QML method. As seen from Table 1, even
with a sample of size as small as 30 and standard normal errors, for each trial
with randomly chosen parameter, Sy < Sop and 5 < Sip. Thus, the linear
equation method performs better even for small sample size. The entire program
is written in Splus.

4. THE PROOFS
In this section we give complete proofs of the Lemma and the Theorem.

Proor o Lemma,  From (3) and (4),
=

nl'llz'[ﬁnr 3 ﬁ:' = "_I Z Z. |Z:_| "_”2 Z Z: Ig‘_?" ':ﬂ:”i'; 2 {lﬂj
i=l =l
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By the stationarity and ergodicity, n=' 50 Z; | Z! | converges almost surely to
E(Z4Z},) which is finite by (5).

To conclude that the sum 51, n'/2Z,_ & | (f)n; converges to a normal vector
with mean zero and dispersion Var(n JE{a(#1Z,Z; }. it is enough to show that
Yie RF— {0},

w120 f e — N[O Vst B 20 B2 ()

To show this, we verify that the conditions of the Martingale CLT (Hall and
Heyde, 1980, Cor. 3.1) are satisfied.

Consider the increasing sequence of sigma-fields {Fi= o< Zy,.... Z; »;i=0}.
Then {Z;_ ||:.rf_ B, Friz 1] is a martingale difference sequence.

MNow we verify the conditional Lindeberg condition only since the other
conditions can be verified easily. Let £ denote the conditional expectation with
respect to

FI—| =ﬂ'{zﬂ ----- ZI—|} izl
We show that ¥e = 0,

L(e) =n"' Y {12 \pLy Y E i H(Ind 2o\ fZis| > ') (133
i=1 L

= ap(l).
MNote that

Lu(e)

ﬂn_l Z{FEI—|ﬁlzf—|}:E'—|['?E{f{|'?a'| > ”IHE:I +f|:|'|”24'—|ﬁ(zi—|| = HIHE:IH

i=l

="' D U Zia B2} B (| > n'Ve))

E(n})n _IZ‘”’Z: BLZPIIZ B 2| > n'e)
=5|+E{n|j.53_ say.
Since

H—l le{le-_lﬁ'zj_l }J o E{f!zﬂﬂ:zﬂ}l +GF|:1:|

and Exj < oo, we get S| = a,(1). Observe that 520 with
ES: = E{l"Zyf 24} Iq'f"zﬂﬁ'Zd > n' j}- =o(l]
by (5). Hence (12) is satisfied and (11) is established.
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Proor oF THeoreM.  As mn (10),

-1
i) i J—Z =142 - Z,-_ﬂf {JH:I i
oo = | SR g O,

i I"-T. |':Jﬁpr:|

MNext we show that

—1 1 B 1 P |
’ i= {ﬁf—l{ﬁprj ”f-|{ﬂ:'}zu_lz'._l pl1) (13)

and

Then it will follow that
—1
W 2B )= |t S B Zi ||y 2o (B
P l 2, rrf-_.{m] l 2 )

and hence, again by the Martingale CLT, (9) will follow similar to (6).
To prove (13) and (14), we use

(i) the mean value theorem where for v = 0,
1 1 —2u—1v)

e, aiiii SSUR 15
Wl ;{3 (13)
with y satisfying 0 < 1/y<(1/v){1 + (v/u) };
(i) the two-step Taylor's formula where for w, v = 0,
1 1 2u—-0) 3u-—uv)’ .
PR o + ,3:4 (16)
with £ satisfying 0 < 1 /&< (1/v){1 +{v/u) }; and
(ii) if U = [m,..., ug|’, V =[v,..., r:J;E|I and W are vectors with all entries
nonnegative and & =1 is an integer then (by induction on k)
W'y vy
W S 1+—+---+a (17

where we define v;fu; =0 if w; =0 = v,

In particular, when (15) and (16) are used with v = ,B;,,z,-_| and v = #'Z;_, then,
by (17), the intermediate points y, or &, satisfy
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X 1 Zi_\f
Kin = Z; B o z;—lﬁpr‘l
1 ﬂﬂ ﬁp
L PSS 3 (18)
Zj— I ﬁ { Jﬁcrpr JBFI"r }]

where Bﬂ,, is the jth entry nfﬁl,r,ﬂﬂjﬂp and by assumption (7),

1+ {1 +ﬂ++ﬁ—”H = 0,(1).
ﬁ(}pr Jﬁn:r
Write B, = [fu

_____ bp)’ = 0" — B) = O,(1). For proving (13), note that
by (15)

! 1 7 7
Z{ Z_ B, (Z Hﬁf} S
a3 _EH—R.’EZ I-l(_ﬁpr_ﬂj i |ZJ—|Z

i=l] r"ra A
L L . S Y SV
_ -3 i e e RO 32 o it i
i R Do e DI R D
i=] "I::'.JI _I|'= | =1 xl'.ﬂl
= —2T| o ‘_’Tg,.“s&}'.

Since from (18),

1 3
5 ﬂﬂu'

S

k]
1+{1+_J"-‘_ﬂ+.__+_1"i_nH
Bop B

which is free from 7" and is O,(1) and the {Z; ] are stationary, T) = o,(1).
For Ta, note that by (18), a typical (/. k)th entry inside the summation with

respect to 7" is
3
Z }'-,'__l.' }-J';& ¥ < Z }’J'—_,l"}:l'—‘: Y;’—n’ 1 oF ZI-]'_ |_,|H
; Lin z,-_ |ﬁ|3r
i
oh. SO
.ﬁﬂpl .ﬁp[!ll’

i=1 i=l {ZI—Iﬂ:I.
—3/2 ¥ Y—.E}r
MBSy —— =oll
! {Z. (Z_p) } #l

M

Z ¥l - ¥iax¥i

i=] {z;—lﬁ)]

Since

we get Ta = a,(l).
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For proving (14) note that by (16),

J.‘!_||.13 . H_':' 1_ - ! Zon
? “":m{{z:..ﬁp.f {Zi_.ﬁf} o

_ -1 Z”:— W 2B B - m;w

2 zl‘— ”?J'
Tl

L

#3072y a2 (B)n' (B~ B) 21}

=1 in

= —2T; + 3T, say.

Since E(n ) =0, using techniques similar to the proof of T, =wo,(1) and
Tz = an(1), we get Ty = ap(l).

Write T, = T + T2 where Ty, is the sum over all those f and & such that at
least one of jand & equals zero and

=1 k= =1 Qm

Similar to the proof of T = a,(1), we get Tay = a,(1).
To handle Tia, note that by (18), the absolute value of a typical /th entry
involving the sum with respect to 7 of the vector Tya 15 bounded above by

sy cy g
Op(1) x n~?2§ " 2 0 :In.l

=1 {(Zi_\B)
and

_mz {Fa ¥ -'l'?:l}
J'—|ﬁ:|

— E(|y, [n~E ﬁ}
(Im 1) { T
=o(l)

by (8). Hence Taa = au(1).
This completes the proof of the Theorem.
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