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Ahbstract

We consider the move-to-position & linear search scheme where the sequence of record
requests is a Markov chain. Formulas are derived for the stationary distribution of the permu-
tation chain for k = 1.2, 0 — 1 and n, where n is the number of records. Certain identities for
the Perron complement are established in the process.
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1. Introduction

Consider a collection of i books (or records) arranged in a sequence. With the ith
book a weight wy is associated which indicates the probability of requesting the ith
book at any given time. We assume that each wy > 0 and that 7wy = 1. Let &
be afixed nteger, | £ & = n. In the move-to-position k scheme, at each unit of tme
the ith book s removed with probability w; and is put back in the kth position. This
zives a Markov chain on §; | the set of permutations of {1,2, ... s} If k=1, the
scheme 1s known as the move-to-front scheme or the Tsetlin library and has been
extensively studied in the hiterature, see [1.3,6-9].

A more general and perhaps a more realistic model than the one deseribed above
assumes that the sequence of requests follow a Markovian model. Thus let P be an
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n x n stochastic matnx. IF the ith book 1s requested at a given unit of tme, then
we assume that at the subsequent unit of time the jth book will be requested with
probability py;. The transiion matrix of the associated Markov chain on 5, under
the move-to-position £ scheme will be called the &th Tsetlin matrix of P and we
denote ithy F g { P). We denote 5 | (P) by &7 ( P) and refer to it as the Tsetlin matrix
of P.

Let A be an n = n nonnegative matrix with spectral radius p{ A). Recall that by
the Perron-Frobenius theorem, p{A) s an eigenvalue of A and if 4 s irreduocible,
then it admits positive right and left cigenvectors for ol A) which are unigque up o a
scalar multiple. We refer w these as Perron eigenvectors of AL

In this paper we consider the problem of finding an expression for a left Perron
cigenvector of g (P) when P is an n x n imeducible stochastic matrix. Note that
a normalized left Perron eigenvector of F(P) is just the stationary distribution of
the Markov chain on &, ansing from the move-to-position & scheme. Fork =1 a
formula for the stationary distribution has been given by Dobrow and Fill [1] using
probability arguments. We give 4 more compact formula employing the noton of
the Perron complement. Our proof wechnigue 15 elementary and permits us o handle
some other values of £ as well. More emarks along these lines are given later:

The paper 15 organized as follows. In Section 2, we review some basic propertics
of the Perron complement. We then prove some identities for the Perron complement
which are used in later sections, In Section 3, we obtain a formula for a left Perron
cigenvector of 57 (P), where P is an imeducible stochastic matrix. It is shown that
our formula is equivalent to the one given in [1] We also show that the formula
reduces to that given by Hendricks [3] when the requests are independent (this is the
case when P is of rank 1), Finally, in Section 4, we consider the move-to-position &
scheme for some special values of k.

As usual, let §, denote the set of permutations of 1, .., n. Let &k be fixed, 1 <
ksn Fori=1,..., n, ket ¢' € §, be the permutation represented by the cycle
(kk—1k—=2---i)if i =k and by the eyele (kk+1---0)if i = k. Let P be an
n = n matrix. The kth Tsetlin matrix & g P) associated with P is an n! = n! matnx
defined as follows. The rows and the columns of F (P) are indexed by §,. For
1,0 €8, ifoc =¢'orforsomeie{l,..., n}, then the (7 a)-entry of F g P) is
defined 1o be prgyry: otherwise it is defined to be 0. We set F(P) = F( P) and
call it the Tsetlin matnx of P.

Wi give some examples. If Pis 2 x 2 then F(P) =P W Pis 3 x 3, then

123 132 213 231 312 321
23 fpy 0 pz 0 p3 O
13210 pn pz 0 pa 0O
23 e 0 pn O 0 pn
231 P21 0 0 P ] Pn
321 0 py 0 pm; opa 0O
21,0 py 0 px 0 pn

FIP)Y=F(P)=



R B Bapar / Linear Algebra and its Applications 363 (2N ) 3-16 5

while
123 132 213 231 312 321
123 fpp p3 pn 0O 0O 0
132 p1z paa 0O 0O py 0O
,
%{P}:“H px 0 ppopz 00

231 ( 1] Pfil P 0 Mz
N2y 0 px 00 py opi2
321 1] 1] 0 P pn P

Note that F ¢ (P) is g sparse matrix having al most ® nonzero entries in each row
and column. If P is stochastic, then so is 3 ¢ P). Futhermore, if P is positive, then
F (P is ireducible.

2. Perron complement

Let A bean noxn matrix, IF 8 and T are nonempty subsets of {1, ..., n}. then
A[5|T] will denote the submatrix of A formed by the rows indexed by § and the
columns indexed by T, If § and T are proper subsets of {1,..., n}, then A{(S|T)
will denote the submatrix of A formed by deleting the rows indexed by § and the
columns indexed by T. The submatrices A(S| T]and A[S | T) are defined similarly.

Let P be an n oxon ostochastic matrix and let § be a nonempty, proper subset of
ih.... nt I — P[5 5]is nonsingular, then the Perron complement of P[S] §]in
F 15 defined as (see [5])

PS = P(S|8)+P(S|SI(I — P[S|SD ' PLS| 8).

If § = ¢, then we define P¥ = P. We index the rows and the columns of P5 by the

complement of S in {1, ..., nlWS=1{ji, ..., k}. we often write P*/~% instead
of lPA[J'._,I'. e 4 | .

A probabilistic interpretation of P¥ is as follows. Let P be the transition matrix of
a Markov chamn with state space {1, ..., n}. Let 5 be a proper subsetof {1, ..., np If

we ignome the transitions that ocour between states within 5, then we get a “redoced”
Markov chain whose transition matrix is precisely P5.

Let Pbe an r = n stochastic matrix. By the Perron—Frobenius theorem there exists
arow vector T such that w7 Z 0 and 7 P = 7. Iff 7 1s nomalized to be a probability
vector so that Z:;l m; = 1, then we call 7 a normalized left Perron eigenvector
of P. Recall that if P is imedocible, then it has a unigque nomalized left Perron
eigenvector and 15 also known as the steady-state vector or the stationary distribution
of the associated Markov chain.

The following basic result will be used, see [5] for a proof.
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Lemma 1. Let P be an n = n irreducible, stochastic matrix and let § be a proper
subset of {1, ..., n}. Then P is well defined and is irveducible, stochastic. Fur-
thermore, if m ix a left Pervon eigenvector of P, then the subvector of m indeced by
i1, n}\§ is a left Perron eigenvector of PS.

The concept of the Perron complement is closely related to that of the Schur com-
plement (see [3] for details). The Schur complement enjoys a well-known bereditary
property, see [2]. A similar property holds for the Perron complement and 15 stated
next. We include a proof for completeness.

Lemma 2. Let P be an n = n irreducible, stochastic matrix and {et T C 8 be dis-
tinct, proper subsets of {1, ..., n}. Then the Perron complement of PT[S\T | §\T)
in PT equals P5.

Proof. We assume, without loss of generality, that T = {1, ..., £, 8=1{l,....%8),
where 1 =t = 5 = n. Let P be partinoned as

P P2 Pia
P=|Py Pon Pn
Py Pu Py

where Pipist = tand Po s s — 1) = (s — 1). Then

iz B+ [B]o-rrttne n

_ [t Pl Pl P <Pk Pnll —Py) P "
TP+ Pull =P Pz P+ Pl — Puy)Tl Py
and
=1
5o I—Py —F3 Pi3 y
P® = Py + [P P.u][ -y ‘,_PH] [FH]. (2)

Let X = (1 — .F"||}|_l and ket ¥ =1 — Paz — Py X P2, By a well-known formula
for the inverse of a partitioned matrix we have

-1
I— Py — P2 _ X o —X P2 R r
[ P f—F'zz] _[{} (}]+[ - ]y [ Pn X lr]- (3)

Substituting (3) into (2) we get
P¥ = Py + PuXPi3 + (PaX P2+ Pa2) Y™ (PuXPi3 + Pn),
and from (1) we see that this expression equals the Perron complement of P7[$4T |

S\TlinPT. O

We now prove certain identities mvolving Perron complement. These will be used
in subsequent sections and may also be of independent interest.
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Lemma 3. Let P be ann x n ireducible, stochastic matvix, let § < {1, ..., n} and
feti. j. k be distinct integers in {1,.. ., nih§. Then
UL Sy
5 Py 5 g Pij
p:'_,l' ST + PR_,I' o (1 = p_.l'_.l') SOl (4)
1 — Pii 1 — p-”

Proof. By Lemma | P¥ isirreducible, stochastic. By Lemma 2 we may replace P¥
by P and hence it is sufficient o prove the following assertion:
i ;
Pii Pij
Mt Py == )L )
— P Py

Pij
Thus we must prove that

pipl (1 - i) + ey (1= pf) (1 —=pl) =iy 0= pis) (1= p1) -

(6)
MNote that
i PP ] Piipi
Pu=Pat——— Pp=pPpts——- (7
ki c 1 — pjj ] A 1 — pii
and
Pij P i i Pii i
Py = pii + Poj=Pgt_— ()
ii ii 1 — Pis kj 1] 1 — pii

It follows, using (7) and (8), that

i
p 3
- p:'li
_ Pijlpull — pjid+ peipji) + pei (1 — piid{l — pjid — pijpji)
(1 — il — pjj)— pijpji
_ (I =pji)pijpu + Prj — PrjPii)
(1 = pid{1 —pji) = pijpji
PL‘

i .t
1—pj

= (1= pjj)
and the proof is complete. [

Lemmad. Let w be a positive probability vector of ovder | < n, let ¢ beann = 1
vectaor of all 1'sand let P = ew. Thenfor3 < k<n —1,

Pre—1 W1 ©)
e _;;J'zz_"l'é:% l—wy — oo — gy
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Prool. Suppose Pis partitioned as

| Pu A2
P = [PII P:z] i (1

where Py isr =l £ r < n. We first derive an expression for the Perron comple-
ment P27 Tothis end, let gy, ei4— ) be column vectors of all 1's of orderr, n —r,
respectively, and let

wiy = [wy, ..., we] and  wy = [weeg oo wy ]

Then (10) can be expressed as

Epy W &y Wiy —p
P = L e w1 —r) . {11}
Elp—rIWiry  En—rIWin—r)
It fodlows from (11) that
12...r -1 4
F = Eln—r)Win—r)+ fur—r]wu']{f i ‘-'[r]”*‘l;r]} EpWin—r)- (12)
Itis easily venfied that

Eppy
[ Y
4 — 7

—1
{f —L'[r]l.l'.i‘[r]} =1 s {13}
1 — e iy
Substituting (13} into (12) and simplifying, we gel
pl2er _ Elp—ry Win—yp) (14)
1 — wrpyeie
It follows from (14) that
12 k=2 12k —2 Wy |
- - ‘ (15
Py Pro1p—1 =7 T I )

Clearly (9) follows from (13) and the proof is complete. [
In what follows, we will denote the (i, §)-entry of the matrix A by A7, j) as well.

Lemma 5. Let Pheann = nireducible, stochastic matriv and et 2 << v=n—1.
SerS=1{1,2,..., v — 1}. Then

B 5
A Poslw
Y Posri( — PISU (o} SUQI) G v) = —ELe (16)
"=I l_F.LILI
Pmoof. Let T =1 — P[5 | 5]. Then
Plv

Pt'?_-[_t.:Fr.'—l.t' + [Pog1,1:-c-s F't'-e-l.r.'—llT_I -
Po—1v
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‘ —Plv ‘
_——— o 5 {1?}
7| ‘ —pu_|.t-‘
|~ P11l o0 —Pesle—| —Pu+lu|
Also
Ple
E— pr'_?r.'zl = Pov — [Pu1s -+, Py v—1 IT_I .
Po—1p
| |
- ‘ T :
I7 —Pu—1v
|_pr.'l A TR T | 1 — Py |
I—PSU{v}ISUp
_ M= PISU o} S Ul .
7]
From (17) and {18) we have
I —Ple
‘ T X
. ‘ —Po—1p
Purlw = Petlt ot —Pudle—l —Puile (19)
B I — P[SU{u}|SU (o}l '

Expand the determinant in the numerator in (19) in terms of 1ts last row. Then it can
be seen that the nght-hand side of (19) equals the keft-hand side of (16) and the result
is proved. [

3. Move-to-front scheme

We introduce some notation. For2=Sr <n, let 'i:r denote the set of r-permutations
of T2,y n. Thus |§) | =n!/(n —r)! and 5 = §,. Let P be an n % n imedue-
ible, stochastic matrix and let & be the normalized left Perron eigenvector of P, For
t=t(l)---z(r) € §,, define

r Fr[l]r[l]---r[k—‘l]
. Mritiril) rikirik—1)
@) = ey [l e (20)
Priyr() ¢ 31— pro’yre—1

It may be remarked that since P is irredocible, any Perron complement in P s rre-
ducible and does not have a diagonal entry equal to 1. Thus fir) is well defined.
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Let f be the row vector of order n!/(n — r)! indexed by §; with the element
corresponding to T € 8§ given by fit). With this notation we have the following:

Lemma 6. For2 < r < n, f" is a probability vector

Proof. We prove the result by induction on r. First, let r = 2. If i is a 2-permuta-
tonsof 1, ..., n, then

f‘h‘j}:;;lf‘;"_ (21)

Since
i
ZJTJ'PJ'I =T,
i=l
then
ZJTJPJI = {1 — pij)m;. (22)
e

It follows from (21) and (22) that
M 13
2. 2 T0p= 2 xi=1,
i=1 j#i =l
and the result is proved forr = 2.
Assume the result to be roue for r — 1 and proceed by induction. Let Tt € 5:;_1
andlet T = {z(1),..., ti{r— 1)}. Then

r rilir2y-rik-2

: : ; Priziril) Prigirik-11
Z‘HI“}-“IU - l}f}z l_[ rilr(2)---r(k=2)

L= pririny = 1l—p

1ET rik—=1rik—1)
FT[l]TLI]---T[J'—I]
iTir)
[ 7l
* Z i r[|]r|"1]...r[_|-_|_]-'TJ K {_3}
igr Privirin
By Lemma 1,
rilr2y-rir—1) DA lr =11
Z Pirir) T+ Privicir) Trie) = Trirs
1gT

and hence
rihr2)-rir—1)

pir[r]
Z | — prr@ag—n 1 = T (24)
igT TIrITir)
Substituting (24 into (23) we see that
Y fx (1) xr)i) = f(x). (25)

igT
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It follows from (25) and the induction hypothesis that

Yoo= X FE=n

T
TESS res;-!

and the result is proved. O

In the pext result we give an explicit formula for the nomalized left Perron ei-
genvector of F(P) in terms of the corresponding vector of P

Theorem 7. Let F be an n » n irveducible, stochastic matrix, n 2= 3, with the nor-
malized left Pervon eigenvector m. Fort € 8§, let

-1 prlllr[I]---Tu—I]
g PriXicil) r(irij—1)
FT) = e -1y EEE— l_[ | — T =g (26)
j=3+ Fr[_.l'—llr[_.l'—ll

Then the mwow vector | = ( f(T))res, i the normalized left Pervon eigenvector of the
Tsetlin matrix & (P).

Proof. We remark that we always set the product over an empty set (for example,
whenn = 3in (26))tobe 1. If t € §,. then we associate with it the unique 7 € 57!
given by T = t(l)---ti{n — 1). Then f(r) equals f(7) defined in (20). It follows
from Lemma 4 that fis a probability vector,

Wie now must show that f3(P) = f Letid € §, be the identity permutation. We
will show that the inner product of fwith the column of 57 (P) indexed by id equals
SFid). The case of any other column is similar

The column of F ( P) indexed by id has pp| in the row comresponding to id, pa
in the rows corresponding to the permutations

213, 2314 -1, ..., 23...nl
and (s elsewhere. Thus we must show that

4+l

P12 -n) 4+ p2) Z_f{z}--f —11i---m) = F(12:--n). (27

i=3

We sel up the following auxiliary assertion:

» 5 23..0=-2
| Jr; v o) T R e Rty i e
= L=Po s t—pmiu g
n—2 !'1---_1'—|
xl—[% i<s<n—1.  (28)
i=x il

We will prove (28) by backward induction on 5. For s =n — 1, we have, using
the definiion of f,
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F(23---n—11nr)+ f(23.--nl)

P (.lr— I pl‘;..." _2
i 32 l—[ ii—1 )
RE O _EEs 23d—
L=pn by Pi_y

i=4 -1
232 13..n-2
Pia—1 p;.lr—l
% (1 oz 2 1 Top_z ] - (29)
Pr_tn-1 T
By Lemma 1,
232 n—2 23 —2
Pip—1 71+ p.;.lr— “Hp t Py ip—1 -1 = Tu—1,
and hence
=2 23..-n-2 232
pl:r— T+ Pp—t T = ( Py 1n-1 )JT"_ . (307

Substituting (300 into (29) we see that (28) s proved fors =n — 1.
MNow assume that (28) holds for some s, 3 < 5 < n — 1 and we will prove il for
5 — 1. Using the induction hy pothesis,

3 F(23-ili+1.em)
i=5—1

=f'{23---s—lla----:a}+Zf{23---f15+1..."}.

i—1 F}..i=2 n=2 12:d=1

73z p“—l Pisl
= Mp_]
] I_F'"” l_[ 1—-”2“‘4 ‘l_! 1 — p‘I‘? i1

23.g—1
1 1..5—2 Pyl 11....,-_1)
M | T e e 7 ) (31
TFor—1 Is—1 235—1 si—1
L= 4 ( 1—py
By Lemma 3,
T apes] pl2i
2352 5l 2.5 =2 ¥...9—2 ii—1
Pre—i 35—1 + Peri = (1 TP 15 ) 12.5—1° (32)
iy =P 200

Substituting (32) into (31) we see that (28) is proved for s — 1. This completes the
proof of (28) for 3 = 5 < n — 1. Setting s = 3, Eq. (28) reduces w

" w=2 Flz...j_l
N 124
Y @3l L) = o e [ (33)
ot I—prz 21— p-
— =3 i
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Hence

13
f213- )+ ) f23-ili+1-em)
=3

= T r3
= Ra-i7 o= E! e F‘!‘;.._‘-_l (p 127 F'TT| = f?.u) . (34)
By Lemma 3,
2 1
P12 flrl??l + Pz = (1= pn)s f’ih. (35)

Substituting (35) nto (34) and rearranging the terms we see that (275 1s proved. That
completes the proof. [

Dobrow and Fill [1, Theorem 4.1] have obtained an expression for a normalized
left Perron eigenvector of # (P) using probabilistic arguments. Their formula for
Fir)is given by

n—1 |' v . = '|
JTrur]l_[{Zf?rw—llru']{f—-p[h{13" ..... @} (T, ...,z @) (26, r{u}}}.

p=l | i=1
(36)

We indicate that the formulas in (26) and (36) are equivalent. Using Lemma 5 we
may rewnle (36) as
" rilyr(2)--r(j-2)
Pri2irl) Prijirij-1) (37)
2y j-1"
rij—lirii—1}

Flz) = mrpm 1—
Pryry 5 3 1—p

W claim that
riliri2)--rin-2)
rimirin—1)
Trin) = Hrip—1)- {38)

rilir(2)-rin—2
T Frin=lirin—1)

Observe that PTTRITH=2) 4o 4 2 % 2 stochastic matrix and by Lemma 1 it has
[Trin—13. Troml as a left Perron eigenvector. Therefore,

Tiliri2)--rin=2 (DT rin—2)
Trin=1rin—lirin—1) +"TT[”]F1'[Jr]rur—I] = rin—1)-

which yields (38). The equivalence of (26) and (36) now follows from (37) and (38).

The proof in [ 1] 1s based on nontrvial results such as the strong Markov property
and the bounded convergence theorem while our proof s elementary. Furthermore,
our proof can be easily adapted to give a left Perron eigenvector of #( P) when
P is just assumed to be orreducible, nonnegative but not necessarily swochaste. The
corresponding expression 15 just an obvious modificaton of (26). The formula in
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(26} 15 more compact than the one i (36). Finally, our proof techngue can handle
some other related schemes as discussed in Section 4.

Wi would like to mention at least in passing that 57 ( P) has a remarkable spectral
structure. For example, the eigenvalues of F(P) are precisely the eigenvalues of
principal submatrices of P, with certain multiplicities (sce [6] for details). A de-
seription of the principal idempotents of F (P) is given in [1].

When the requests for the books do not depend upon the previous requests we gel
a sitwation where the stochastic matrix has identical rows. In this event Theorem 7
reduces to a well-known result of Hendncks [3] as we show next.

Theorem 8. Let w be a positive probabilite vecior of ovder | x n, let e beann = 1

vector of all ones and let P = ew. For v € &, let

n—1
Wil Wrik—11

(1) = wrp-1y :
l —wrn i l —wpiy — - — Wrig—13

Then the vector (g(T))res, it the normalized left Perron eigenvecior af F(P).

Proof. The result follows from Theorem 7, Lemma 4 and the observation that w 1s
the normalized left Perron eigenvector of P [

4. Move-to-position k scheme

Besides the move-to-front scheme, a host of other schemes have been considered
in the literature. OF particular imterest w us will be the move-lo-position £ scheme,
desenbed in Section 1, which 1 a generalizatnon of the move-to-front scheme.

In the move-w-posiion & scheme, by inspecting the current order of the books
we can infer that the book chosen by the previous user must have been the book
in position k. In addition, when & = 1, we can also conclude that the penaltimate
distinet book chosen must have been the book in position 2 and so on. This feature
of the move-to-front scheme has been crucially used in devising the probabilistic
proofs given in [ 1] For move-to-position k scheme with b = 1 itis no longer possible
to specily the distinet book chosen before the book in position & and therefore the
arguments of [1] are not suited to handle move-to-position £ scheme for k = 1.

In the next result, we give a formula for the normalized left Pemron eigenvector of
F2( P), where P is an irreducible, stochastic matrix.

Theorem V. Let P be an n % n irveducible, stochastic matrix, n = 3, with the nor-
malized left Perron eigenvector m. Fort € 8§, let

n—1 pr[l]r[l]---r[k—l]
; rik)rik=1)
f@ = o0 [ = ver~as (39)
k=3 * ~ Prik-Drik-1)
Then the row vector | = (ﬁf{l’}l) Ev ix the normalized left Pervon eigenvector
TEx

of the Tsetlin matrix 5 1(P).
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The proof of Theorem 9 is similar to that of Theorem 7 and is omitted. The fact
that (ir‘i”f f{r}) 15 4 probability vector can be proved as in Lemma 6.
A an example, whenn = 3and £ = 2, we conclude by Theorem 9 that the vector

1

= [Irg, m3, A, T3, TY, ..Tq_]

is the normalized left Perron eigenvector of 57 2( P), where 7 is the normalized left
Perron eigenvector of P. This fact can be verified directly using the expression for
F3(P) given in Section 1.

We emark that for £ =n and £ =n — 1, a formula similar o that in Theorems 7
and 9 holds. We state it next. Again the proof is omitted since it s similar to that of
Theorem 7.

Theorem W. Let P be an n = n irreducible, stochastic matrix, n = 3, with the
normalized left Pervon eigenvector w0 Fort € 8§, let

=1 T+ 1Tik+2)-1in)
Prin—lirin Pric—1iriky 40)
rik+ ik +2)rin) " (
TikITIE)

Flr) = mey
I = primrin =3l —p

Then the mow vectar | = (f(t))1es, @8 the normalized left Pervon eigenvector of the

Tsetlin matrix F 4 P).

Theorem 11. et P be an n = n irreducible, stochastic matrix, n = 3, with the
normalized left Pervon eigenvector m. Fort € 8§, let

n—1 Fr[l—l (k42T
3 rik—1lirik)
flz)=mn I—[ s Tk DTk Tin) (41
k=3 kT (k)
Then the row vector | = (ﬁ JF'{T}) by the el Tk P clgsaveston
TES:

of the Tsetlin matrix 5 ,_{P).

The problem of finding an expression for a left Perron eigenvector of 5 g (P) for
all &, 3 = & < n — 2,15 posed as an open problem. When the reguests are indepen-
dent (that is, when P ois of rank 1) an expression for a left Perron eigenvector of
F ¢ (P) has been given by Hendricks [4].

Acknowledgements

Adter the present paper was accepted, Professor 1AL Fill has pointed oul to the
author that he can give probabilistuce arguments for certain results in the paper as well
as answer the open problem posed at the end. The author sincerely thanks Professor
Fill for pointing out several minor ermors.



16 RE. Bapar/ Linear Algebra and its Applicarions 363 (2003) 3-16

Relerences

[1] R.F Dobrow, LA Fill, The move-o-front rule for self-organizing lists with Markoy dependent ne-
quests, in: [ Aldous, B Diaconis, 1. Spencer, 1.M. Steele (Eds.), Discrete Prohability and Algorithms,
IMA Volumes in Mathematics and ts Applications, vol. 72, Springer, Berlin, 1995, pp. 57-8(.

[2] D.E Cmbtree, E.V. Haynsworh, Anidentity for the Schur complement of a matrix, Proc. Amer. Math.
Soc. 22 (1969) 364360

[3] W.). Hendricks, The stationary distribution of an interesting Markov chain, 1. Appl. Probab, 9(1972)
231-233%,

[4] W.I. Hendricks, An extension of a theorem conceming an interesting Markoy chain, 1. Appl. Probab.
LO(1973) BRE-E90.

[5] C.00. Meyer, Uncoupling the Permon ei genvector problem, Linear Algebra Appl. TT41 15 (1989) 69—
a4

[6] R.M. Phatarfod, On the matriz occuming in a linear seach problem, 1. Appl. Probah. 28 (1991)
3o-Ma.

[7] R.M. Phatarfod, AL Pryde, D, Dyte, On the move-to-from scheme with Markov dependent requests,
1. Appl. Probab. 34 { 19971 T90-794.

[8] &) Pryde, R.M. Phatarfod, Multiplicities of eigenvalues of some linear search schemes, Linear
Algebm Appl. 291 (19997 115-124.

[9] H.L. Tsetlin, Finite automata and models of simple forms of behaviowr, Russian Math. Surveys 18
{1963) 1-27.



	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg

