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Abstract
Characterization of nonnegative matrices A which satisfy the equation
I
(ANT= Y A,
i=l

where p < m| < m3 < - - = m; are positive integers and a; = O for all § is given as a direct
sum of matrices of special types. Applications to stochastic and [0,1] matrices are derived,
thus generalizing a number of earlier results.

Kewvards: Nomnegative matrices: Gmoup inverse: Dmzin pseudoinverse: Stochastic matrices: {01}
matrices

1. Introduction

A matrix A 15 nonnegative, denoted A = 0, if each entry of the matrix is nonneg-
ative. A nonnegative matrix s stochastic if each row sum of the matrix 15 one. The
transpose of the matrix A will be denoted by AT. A matrix A is doubly stochastic if
both A and AT are stochastic.
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Sinkhorn [10] charcterieed stochastic matrices A which satisly the condition
AT = AP where p > 1 is a positive integer. Such matrices were called power
symmetric in [10]. In [1] a square matrix A was defined to be generalized power
symmetric if (A”)T = A™_ where p < m are positive integers. The main result in
[1] obtained a characterzaton of genemlized power symmetric stochastic matnees,
thereby generulizing carlier results,

Call a square matrix A generalieed polynomial symmetric if

I
(AP)' =) " aa™, (1.1)

=l
where p < m) < mz < --- < my; are positive integers and o = O for all i. In the
present paper we first obtain a characterization of nonnegative generalized polyno-
mial symmetric matnees of index one. The decomposition obtained in the general
case 15 then speciahzed to matniees of index one which are {(0,1} matrices or are
stochastic. The case of matnces of higher index s settled wsing the core-nilpotent
decomposition. The technigues in the present paper rely heavily on the machinery
of generalized inverses. Our methods considerably simplify the proofs given carlier
in [1]. In particular, we take advantage of the properties of A-monotone matnces.
Monotonicity of generalized inverses has been studied by many authors (see for
example [4,5,9.11,12]). We remark that since {A”}U represents the probability of an
event to change from the state § to the state § in n units of tme, for a stochastic

matrix A, the condition (1.1) can be given a probabilistic interpretation.

Furthermore, if A 15 a (0.1 } matnx that represents the adjacency matnx of a graph,
then (1.1) gives the family of gruphs where the number of paths from § — i of length
£ 15 equal o the total number of paths from i — § of length m . ma, ..., my (cf.
Example 4.1).

The paper is organized as follows. In Section 2 we first introduce some definitions
and prove certain preliminary results. We then obtain our main result of the paper
that gives a decomposition of nonnegative matrices of index one sansfying Eq. (1.1)
(Theorem 3.1 in Section 3). The special cases of {(0,1} and stochastic matrices are
carmed out in Section 4. Finally, we give a decomposition of nonnegative matrices
of arbitrary index sausfying Eq. (1.1).

2. Delinitions, notation, and preliminary results

If Aisanm = n matrix, then an n = m matnx & is called a generalized inverse
of Aif AGA = A IT A is a square matnx, then & s called the group inverse of A
if AGA =A,GAG = G and AG = GA. We refer to [2] for the background con-
cerning generalized inverses. It is well known that A admits group inverse if and
only if mnk{d) = FH.I.'!II!'.{AI}, in which case the group inverse, denoted by AT s
umigue.
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If Aisann = n matnx, then the mdex of A, denoted by index A, 15 the least
positive integer k such that rank{A*) = rank(A**!). Thus A has group inverse if
and only if index A = 1.

If Aisann = n matnx of index &, then an n o p matrix 15 called the Dmzin
inverse of A ifit satisfies GAG = G, AG = GA and A" G = A% Itis well known
that the Drazin inverse exists and 15 unigque. We denote the Drazin inverse of 4 by
A Note that if index A = 1, then A = A%,

The reader is referred o [2] for additional definitions and results on generalized
INverses.

Lemma2.1. [fA = 0and(AP)T = ZL'&;A"‘“, where p < M| < M3 < -+ < My
are positive integers and oy = 0 for all i, then index A £ p.

Proof. (AP)T =% ;4™ = (A7) = AP (X)) where X = ¥i_ oy A™—IPFD)
and because p <= m |, the powers of A in X are all nonnegative.

This implies rank((A”)7) = rnk(A”) < rank(APT),

But we always have rank{A”) = rank(A”"Y) = rank(A®) = mnk(A"*!) =
index A < p. O

The lemma which follows 1s the key lemma.

Lemma2.2. [fA = 0and(AP)T =Y \_ @A™ wherep <m) <mz < --- < m,
are positive integers and o; = 0 for all i then A'Y = 0.

Proofl
I I
(AP)T = " A™  implies that AP =) "a;(A™)7
=1 =l
and so,
I
AP = Y ai(APYT(A™ )T
i=l
yielding
I I
AP — Zu-'. (Za‘_ﬂm,.) {Am_,—p}T_
J=l1 i=l

Next, we multiply the above by A"~ 12 and we writem; + (n — l)p = m;n + nj
whereQ == n; £ n — 1. Since m; +(n — 1)p = np, we have lhutm} = p.Thus, we
get the eguation

I I
=l

i=l1
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Now, suppose index A = n. Let B = A", then index B = 1 and B exists.
Therefore,

i i
B Zﬂ.." (Za‘.Bm: A"’) {Am_,—p}T_
J=I =l
We multiply by (B*)? and get
i I
{B#}FBF — Zﬂj (Zﬂj{ﬂ#}lpﬂm-'fl”") {A"‘-'_F}T_
J=I =l

Furthermore, B*B =B and B*B = BB* implics (B¥)?BP = B*B and
(B¥)PB™ = (B*)PBF B™ P = B"BB™ P = B*, where k =m| — p. Thus,

I I
BB =) o (Zﬂa‘ﬂ"ﬂ”’) (A™PT > 0.

J=I =l
Therefore, we have that B*R = 0.
Hence
B* =(B*)’B
=B"(B"B)

I I
=B o (Za;ﬂ’*a‘“) (am—PT
i=l

I I
ZEEJ (ZEIB#B"A"‘.’) {Am_,—p}T
J=1 =1
=0
since BB = 0.
Thus BF = (A")® = 0. Itis known thatif index A = n, then (A = A There-
fore, A 0. O

We remark that in addition to the hypotheses of Lemma | if we assume that
index A = 1. then it follows that A® =1

3. Decompaosition theorem

The following 15 the main result of this section which gives a decomposition of a
matnix of index one satisfying (1.1).
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Theorem 3.1. Let A be a nonnegative n x n matvix with index A = 1_[f

(AP)" =) wy A™ 3.1)

with p<m| <--- <m; positive integers and op =0 then there exists a
permutation matrix P such that PAPY is a direct sum of matrices of the following
types:

{(I): Bxy", x, ¥ positive unit vectors of the same size with y'x = 1 and # is the
unique positive root of 1 = 3, _ o f™ P

(II): d = d block partiioned matrices of the form

o Braxxt 0 0 .
0 0 fraxax] :
i 0
0 e Paiixa -1'}
_.I‘J’,,r|.r,,r.r?- (} 0

where the x; s are positive unit vectors, not necessarily the same size, fii; = 0, and
mi+p=m;+ p=0modd ¥i, j < 1. such that the following hold:

Case (i): d | p. Then f1282--- A0 I the uniqgue root of E=|a;r‘”_‘f =T,
where m; =dg; +rand p =dg’+ .

Case (ii): dtp. Let {(d.r'y= 4. Then fijs1 = Bivy joproy and if ko is the prod-
wct af the distinct 8; ;3175 i.e x = B2 --- By proy, then x is the unigue positive
root gf 1 = ¥ i_ 0;x"™ —PVE_In particular, if (d,r') = 1 then iy = fa = --- =
Ba1 = B. say, and B is the unigue positive root of | =¥ j_ja;x"™ P,

(111} : Zevo blocks of appropriate size.

The converse also holds.

Proof. By the given hypothesis on A we may apply Lemma 2.2, and hence, A = 0.
Therefore, by Corollary 4.3 of [6], we have that there exists a permutation matnx P
such that

J JD 0 0
0 0 a0
cr CJD 0 0
0 0 o 0

PAPT =

where some of the rows may be absent, C, D are nonnegative matrices of suitable
siees, diagonal blocks are square matrices, and J s a direet sum of matrices of the
following types,

(r'): ﬂr_vT,ﬂ = (), x, ¥ are positive unit vectors of the same stee and _vT.r = 1.
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{1):

0 fraxiyy 0 - 0 ]

0 0 frxayd e 0

: : : g 0

0 Ba1.axa—15)
| Fa1xa f-‘lT 0 rlex e 0 _

with fi;; = 0, x;, % are positive umil vectors, x;, vy are of the same size, x;, v,
i %= jare not necessarily the same size and _v;r_r,- = 1.
Mow, A satisfies (3.1) and so PA PT satisfies (3.1). Also, notice that
J 9 b 0 0

T F 0 0 0 0

(PAP'Y =lcsfr ciip 0 0

0 0 0 0

Therefore, (3.1) gives us that

I L R S 0 : g JUD 00
JPD 0 CcJtD 0 _ Z ; 0 0 0 0
0 0 0 0 4 “ilegm crmp o 0
0 0 0 0 =l 0 0 0 0

This implies that J™ D = 0 and CJ™ ={. But then, J = 0 implies D =0 and

C = 0; 50 in fact, we have PAPT = [;‘; E]
MNow J satisfies (3.1) implies that each Type (1) and Type (117) satisfies (3.1).
Consider Type (I'): Recall that x and y are unit vectors, andsoxTx = yTy = 1,
such that vTx = 1. Using these facts we obtain the following:
From the equation ((fxy")")7 = E::=|ﬂ'1' (BryTy™, we get

H
ﬁp},x’f i Z o ﬁm".r_'b‘T

i=1

I
= ﬁh_”,'l' IH_T L Z o .I‘J'""'-TFT.I’_FT

I
— ﬁ'”_r.rT —= Z o ﬁm“.r_vT

i=1

I
= ﬁFIITI:ZﬂJﬁm"IFTI-
i=1]
The above equationimplies #°x = 3 [_, o™ x, and so, 7 = 3, a; ™, yield-

ing 1 = E::I ﬂ!;ﬂ"‘-"p_

Thus, f is the unique positive soluion of 1 = 377 a;x™ P,
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Now consider a Type (I1) summand § of size d. We have (57)7 = Zf=|u:."“5
which in tum yields (§7)($")7T = Y = @i S But (573(57)7 is a block diagonal
matrix, s0 each 57" must be diagonal also. But for Type (II') summands, one
gets diagonal matrices when one raises the matnx to a multiple of . So we have
mi+p=m;+ p=0modd and consequently, m; = m;modd. Let g;, r be such
that m; = dg; +r.

Mow, notice that

nyl 0 0
0 xyT 0
5" = Prapor--- B *
0 0
0 1 S
Let o = fzfaz- - - fay and let
$i5p B e 0
F_| 0 xy 0
0 e T o
0 S I

Then §¢ = wk, 54— _u:E, and s0 on, Also note that ES = §.
S0,

I I
(5" 7T= Zﬂis""’ - Zﬂ" gelgi+r

r !
= Zﬂ!a’{s‘ﬂl S = Zﬂ!iﬂm 5"

i=l i=l
o (Za,-;f‘" ) 5.
i=1

Thus we have (§7)T = AS" where A = 3 et

Then ($7)T = A8 implies §7(5")T = 457", and (57)(57)7 being diagonal
tells us that 7% isdiagonal, hencer + p = Omodd. Now, A5PF" = . §lp+n/did —
AP Eogs e have that 5P(SMT = aplrrrid g

Let g, ' be such that p = dg’ + r'. We next simplify (SP)(57)T.

:(;_{‘IIES"I) (u‘fJES"'J)T — (_u‘fl.'i’}) (jiffJSJ'I)T

() () ()
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(B xx] 0 0 “
i 0 2 B 7E LI 0
- ( 4 ) _ h -}_ F2%3
: . . 0
0 v 0 (Balxaxg,

where f1 = fuzfin---fo v B2 =0 By pio o Ba=Ba - By
and all indices are taken modulo d from here on. So, we have that $7(5M)T = L5+
simplifies to the following:

(1) xx] 0 e 0
s 0 (B el 0 il
- B 21Xy i [t fd
(;_.[ ) : : - = A E.
: & By 0
L 0 0 {JIEL.T}'IIJLIJLJ

Also, because both sides are symmetric E is symmetne, thus x = a; 3 for some
ai £ B, BuL_vJ-T.x; = | implies }"-Tﬂ,-_w = 1, which yields thata; = 1 and hence x; =
vi forall i.

Ifd | pthenr’ = Oandd | m. Thus we get (9 )> E = Au9 E which gives us that
p? =i, We know l:Ef=|am‘*, and so pd = E=|a;u‘f’. Because p < m; we
must have that g° < g;. Dividing both sides by 9 givesus 1 = Yot ~4' Sowe
have that = f12- - - fy) must be the unique positive solution to 3], a;x% i G &

Mow, suppose dfp. We get the following system of equations by comparing cor-
responding entries of (§°7)(57)T = A§° .

(1): {‘uq.}zilﬁu .- -ﬂJ".r’—l}'z = .i'-.;..[[p'”‘]"'"r

@ @) (Bn... Brirrs2) = AulPHfe

(@) : (1 Bz .. frsr ) = ap P,

We get from (1) and (2) that (Bi2fz - fr rs1)” = (B - frarre2)” and
thus, 12 = fr+1 prs2. From (2) and (3) we get 2 = 32 043, ... Finally, from
(d) and (1} we get Ay = B, ooy Now, i (d. r') = | then we have fij; = iy =

- = fa. say A Sowe have

0 cmxy B s D
T
g| © 0 xx 0 |_g
0 B sy

xgaxk 0 om0
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which implies, using the equation (X?)T = ¥_,0; X", that B# = ¥|_ 0:p"™.
Divide both sides of the equation by 87, and obtain 1 = 3 {_,a; 8™ ~P. Therefore,
if (d. r') = 1 then f is the unique positive solution of 1 = ¥ _ ax™ P,

Now, if {d, r') = § # 1, then taking all indices modulod we get i1z = 140240

= f| 230 322, = - -+, until F2 appears again and this will happen after d /8 times;
Br = foep 340 = sz 3sap =+, il faz appears  agan,  fp 4 =
Brisr pster = Brsae pyreze = -+, until B oy appears again. So we have 4

sets of f; ;4| repeated d /8 times. Now, we solve the equation (XP)T =3[ ja; X™
using 54 = pE along with the fact that g = W where x = iz B prs-

, ’ o T
Also, note that 8" = " /38", So, on the left side we have (57)7 = (S"r‘f _") =

T ; T T
(5dq’5r’) _ ({H_[g.'fa]b—}tr H_r’jas:) i (H_[J.Jé]q’—[r’msr) — (/g + '8 {5'}T )
On the right side we harl:'u Yo S = Z‘:Ela;ﬂ"':“” =% L SRS
LR T — v N TR ]
Sy (<) 8 (5)T = S @90 ()T, ,
And therefore, we have from the above equation x@/39+0/8 (§7)° —
E=Iﬂ.jruf.’§]q:-tr!§] (SI}T a1 i L ZLIa‘.xu-'.’éhn—'[w'é]_ Then

I I
]z Z”‘f sl Y =8 Za,-x“"*‘m-"i_

The converse is clear. This completes the proof. [

4. [0,1} matrices and stochastic matrices

As g first application of Theorem 3.1, we give the following charactenzation of
(0.1} matrices of index one satisfying Eqg. (1.1).

Theorem 4.1. §f A is a |00, 1} matrix with index A = 1 and (A")" = ¥ e AT,
with p < my < mz < --- < m; and o; = 0 then there exisis a permutation matrix P
such that PAPT is a direct sum of matrices of the following rypes:

(1"): S the m xm marrix, all of whose entries are 1, where m is the wot of
L= 3 i

("y:
[ 0 FKjap 0 0
: 1 iy ;
0
0 P Fhp sty
[ Jraxh 0 e 0

where Jj ., i the l; x 1; matrix, all of whose entries are 1.
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Furthermaore, if d | p then 112 -- -1y is the solution of 1 = Z:= m,—x‘”“‘f where
m; =dg +r,p=dg". If dip then we write p=dg"+r' and (d, r') = &, then
Liis1=ligp jspsrandc = (T T) (VEVG) - {ﬁv’m is the unigue pos-
itive root af 1 = 3 _ o x™—PVA,

In particwlar, if (d, r’") = 1, then the only possible Blocks in the above wpresen-
tation are Sy and Jpp . Moreover, JH J.E is the wnigue positive root of 1 =
E=Ia‘.r’";—ﬂ_

(11} Zero blocks aof appropriate size.

Proof. We have by Theorem 3.1 that there is a penmutation matrix P such that
PAPT is adireet sum of Types (), (IT), (II1).
Consider first the Type (1) ﬁ.r_vT,ﬂ = 0, x, v positive unil vectors of the same

length and yTx = 1. Letx = [.1'| b .rJ]T and y = [_1r‘| sei _1.‘:]T. Then
X1V e XN
pryT = p _
XYL ... XINI
Because fry’ = Oand Aisa {01} matrix, fxy =1 = 2= = fix .
This gives yp = y2 = --- = .
Furthermore, Sy =1= oy =---=fxp.andsox; = = --- = xp.
Mow v 18 a unit vector, and so0 v = [ﬂ i ﬂ]T . with la? =1 and similarly

F=F= [ﬂ - n]T and x 1 vector. So J|‘:|'.r_1.‘T = 1 gives # = [. From Theorem
3.1, f is the unique root of 1 =3 j_, @;™ ~P. Then the Type (I) summands are
those fxyT for which g satisfies 1 = 3™ P and xis the fx 1 vector
[ﬁ :Irﬁ':]-r. This implies then that B yT = Juxm.
Consider now Type (I1) summands. Each ﬁ'.l‘—l-"a‘-rf_q must have all entries equal
to 1 as above. For convenience, call f = f;;. ). xr = x;, ¥y = x4

So again x, v are unit vectors with all terms equal, therefore x is the [ = 1 vector
with all entries equal to 1/4/F and v is the § % 1 vector with all entries equal to
1/v1.Then B(1/FUYVD =1 = f = /FVI

S0 in general if x; 15 an [; = 1 vector we have that & ;5 = .\,-'{EJ]': and x; 1%
the {; = 1 vector with all entnies equal to ll.-’y"ﬂ. But then, ﬁ,-.‘-_|.r,-.r;-r_| = Juxlig-

Ifd| pthen fiz-- fAn =TTz JTasT =11 % -+ % 1y must be the posi-
tive solution of the equation 1 = 3| _, ;x4

Ifdtpand (d.r') = 1 then i1z = iz = - = Bar = +/ 11 /T2. Then the only pos-
sible blocks are gy and Jy .

If (d, r') =& £ | then we have § sets of 8; ;5 repeated 4§ times. Therefore,
fiz = Tivlz = Prsp 2y = - asinTheorem 3.1. fin = VI/B = Pryy 340 =

--- a%in Theorem 3.1,
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And, as in Theorem 3.1 af we let & = 12823 --- A oo then k15 the unigue
positive root of 1 = ¥75_, a; x!9/3Na -4 )+ =8

This completes the proof. O

Clearly, the matnices satisfying these enteria are indeed very specialized and we
make no claim that this can be applied to all cases, and so we present one set of data
for which the enteria do apply and we now illustrate Theorem 4.1 with an example.

Example 4.1. Consider the flight map shown in Fig. 1. The matrix

[0 0 1 1 0 0]
o 0 1 1 0 0
A= o 0 0 0 1 1
00 0 0 101
1 1 0 0 0 0
|11 00 0 0

would be the adjacency matrix of the directed graph representing these flights with
the rows representing Seattle, Columbus, Chicago, Los Angeles, Washington DC
and Dallas respectively. This is a {0,1} matrix that satisfies the equation 1847 =
AT+ A7, Naotice that A is a Type ([I”) matrix. We can see that 4 = 3, hence dfp
and {d, r')=1, and g = \.-"(4 =2. 50 by Theorem 4.1, we get the equation | =
II_E (2) + ﬁ (2)*. Notice that as expected, we have that m; and m3 are congruent
modulo . So we consider the equation 1847 = A% + A We have for example the
number of direct flights from Seattle to Chicago multiplied by 18 is the same as the
total number of flights from Chicago to Seattle with 1 stop plus the number of flights
from Chicago to Seattle with four stops. We also remark that becaonse d = 3, it 15

possible to leave any city and come back it with a total of three flights, making a
total of two stops.

— T Washington D.C.
— _‘

1 “ / "-.-mltl.ls P

§ M L ; o

|II ---_______.-II-Ir {{_----"'_--

! LT o

\ o il 7 /

L

e ™, { 7
Los Angslas S “\ [

Daias

Fig. 1.
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Another application of Theorem 3.1 gives us the following charactenzation of
stochastic matrices of index one.

Theorem 4.2. If A = 0is a stochastic matrix with index A = | such that {A“}T =
Y@ A™ withp < my < mz < - - < m; positive integers and a; > 0, then there
exists a permutation matrix P such that PAPT is a direct sum of matrices of the
Jollowing tvpes:

(U": (1 Ddyxrand 1 = Y i_ 0

i 0 Ji‘ig ‘flr: IR 1] s 0 i
% Jli‘_’ =3
J:’r] ..... nd = "
ﬂ - Ji‘ll:. I';:"i'.-..l [ ELL]
_éhﬂr.\:mr] (1] 0 i

where Jy i is the nj x n; matrix, all of whose entries are 1.

Ifd | p (equivalently, d | m;), then Y j_ja; = 1. If dtp, write m; = dg; +r.
p=dg +r', and (d,.r'y =58 Then we have ljj1) = lj1p jape). Moreover,
k= (I vT2) (VB - - '[\""?J_’Vf‘:} iv the unigue positive oot of 1=
E=la;.r“"“_m""5. In particular, if (d, r’) = 1, then each Block is (1/n) )y, oy, and
n| is the unique positive root of 1| = ¥ 1_ ja;x™ 0,

Proof. By Theorem 3.1, we get that there is a permutation matrix P such that PAPT
15 i direct sum of matrices of Types (1), (11), (IIT). But because A is stochastic we have
no Type (1) zero blocks.

So, consider Type (I) blocks fxyT, § = 0, x, v positive unit vectors, y'x = 1.
Now, because Sxy! is stochastic, we have fxyTe = e, where e is the vector all
of whose entries are one. This yields gy xyTe = yTe, and so, fyTe = yTe. Thus
f# =1, because y = 0.

Now, xy! satisfies ((xy")")T = E=|a;{_r_v7}"‘*. But xy" being idempotent,
yxl = (3 i_jo)xy’. Thus, yxTe = (3 [_oi)xyTe. This implies that yxTe =
(31_ i )e. which in turn yields the equation xTyxTe = (Y1_ | ai)x"e, implying
xTe = (3 j_,a;)xTe. Finally, we obtain 3 {_,e; = 1, because x # 0.

So yx' =xy" is doubly stochastic. It is well known that a positive rank one
doubly stochastic matnx 1s of the form (170 ..

MNowy, consider Type (1) summands. Each block ,|‘L-_;_;|.r,-.r;r_| of Type (11 must be

T

: e " T
stochaste.  Consider f:h;.rl.r]-. Then if .rl=[.r|| .rm] and 1=

[IZI -T_Tm]T we have
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l=F8{x)1x3 +x11x22 +- - -+ xpx3) = Bxyplxa + -+ x)

l=8{x 201 + XX + 0+ X 2oy, = Px, (X2 + -0 + x3)

Sowechaverpy=xpp=--- =x1. Thus x| = [.m fee ﬂ|]T, ann| ¥ 1 vector.
Then considenng fax z.rg- wie get the similar form for xa, e x = [ﬂ1 .o ﬂl]T N
annz ® 1 vector. Repeating this gives us that cach x; is, say, [ﬂ" v ﬂ"]T Annj x
1 vector. But also, each x; is a unit vector. Therefore, 1 = {ll.-’...,-'ﬁ} [1 —_— l]T

an n; x 1 vector.
Thus ﬁ,-_;_-|.r,-.r}r_.| being stochastic tells us that 8 ;o (1m0 o0 D weny
is stochastic. But the row sum of Jy e, is nizr. So fiia (1 /mid(1 /i)
nisy = 1, yieling fi; ; oy = (,/n; /ni1) /mjs . Therefore, f; il = i1/nis1)
| f ; s 1, i+1 i
-r.lr,.mr,. e

MNow if d | p then

Brzfn---fa =

N TN T . NCENGE) B NLTNO _1
"1

ni n

)

must be a solution of the equation 1 = ZL'&_,-I‘”_“". This implies 1 = 3}

=1
fdfpand(d,r) =1 then f12 = i3 = --- = fiy. This gives
Sy WJmymy o gy
na  n3 - - ny
and so,.n] =nx=--- =ny.

If (d, ') = & # | then we have B ;11 = iy jsyrss 80K = Brafiay = By s
is the unique positive oot of 1 =377 |a,-.r“'r'“'5]{‘ff s it L
That completes the proof. O

We offer some remarks regarding the stochastic case.
LIt 15 known (see ¢.g. Theorem 4 in [7]. and Corollary 4 in [8]) that if a row

stochastic matrix A satisfies A 2 (1 as in our case AF = 10) then A =AY for
SOIME POSIvVE inleger .

I

. In [1], Theorem 1, stochastic matrices with index one satisfying (47)T = A™
are characterized. A small verification reveals that the general resull given in
Theorem 4.2 includes the main result obtained in [1].

5. Decomposition of matrices of higher index

Wi finally consider the case of matrices of arbitrary index. If A isann x n matrix,
then recall that A can be expressed as A = Cq + Ny where C 4, the core part of 4
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15 of index one, N4 15 nilpotent and Ca Ny = NaCq = 0. This is refered to as the
core-nilpotent decomposition of A, see [3].

Lemma 5.1. [findex A = n, (A")T = E=|a;ﬂ.‘"“, o= p=m <=m =<
my; integers and A = C a4 + Na is the core-nilpotent decomposition, then Cq 2 (0.

Proof. We have index A < p= AP = Eﬁ and since index Cy = 1, we can wnte
Ca= CﬂX for some matrix X.
Then
AP(APY Ca=aP (AP Chx = AP(AP Y APX
=APX =Ci{X = Cu.
Therefore
AP(APYFA=AP(APY (O + Na) = Ca + AP(APYN,
=Ca+(APFCINL =Ca.

Now since (AM)F = 0, we have C,a=0 0

Theorem 5.2. Let A be ad = d nonnegative matrix. Then

I
(AR =8 e,
i=l
wherea; = Qand p < m| < m2 < --- < m,; are positive inte gers ifand only if there
exists a permutation matrix P such that PAPT is a direct sum of matrices Cij +
Nii. 1 =1 < k, where
(1): Each Cjj is nonnegative of index 1, Nij are nilpotent matrices aof index < p,
and Cy Ny = Nj; Ci; =0
(2): Each Cy; is a divect sum of matrices of Tvpe (1), (I1), and (111} described in
Theorem 3.1,

Proof. Because (A7) = ¥ i @A™ we have

I
((Ca+ NPT =Za,-{£'__1 + Na™  and hence

i=1
I

(€= wmtP.
i=1

Mow we have mdex C4 =1 and C4 = 0. These observations and (1.1) imply that
{Cd}# 2 (). S0 by Theorem 3.1, the exists a permutation matnx P such that PCy PT
15 & direct sum of matrices of Types (1), (1), (I as described in the statement
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of that theorem. So, let PAPT = [4;], PCaPT =[(Ca)ij). PNAPT =[(Na)ij]
be compatible partitions. Also (Ca)ij =0if i % j. Since A;; = (Ca)ij + (Nadi;
wie gel (Naly = 0for i £ j. But CaNy =0 implies that (Ca)i(Naliy =0, i £
j. Now by the fact that, for some positive integer 5, (Ca)j; has positive diag-
onal entries, (Ca)iiiNa)i; =0 and (Na)i; =0 for i = j, we obtain (Nadij=0.
S0 A;; =0, i &£ j. By setting Ciy = {Caii. Nig = (Nal; for all i, the proof 15
completed. O
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