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Abstract

In the competing risks problem an important role is played by the cumulative incidence function
(CIF), whose value at time t is the probability of failure by time t for a particular type of failure
in the presence of other risks. Its estimation and asymptotic distribution theory have been
studied by many. In some cases there are reasons to believe that the CIF’s due to two types of
failure are order restricted. Several procedures have appeared in the literature for testing for
such orders. In this paper we initiate the study of estimation of two CIF’s subject to a type of
stochastic ordering, both when there are just two causes of failure and when there are more than
two causes of failure, treating those other than the two of interest as a censoring mechanism.
We do not assume independence of the two types of failure of interest, however, these are
assumed to be independent of the other causes in the censored case. Weak convergence results
for the estimators have been derived. It is shown that when the order restriction is strict, the
asymptotic distributions are the same as those for the empirical estimators without the order
restriction. Thus we get the restricted estimators “free of charge”, at least in the asymptotic
sense. When the two CIF’s are equal, the asymptotic MSE is reduced by using the order
restriction. For finite sample sizes simulations seem to indicate that the restricted estimators
have uniformly smaller MSE’s than the unrestricted ones in all cases.

Key Words: Cumulative incidence functions; Competing risks; Order restriction; Estimation;
Weak convergence.
AMS 2000 Subject Classifications. Primary, 62G05; secondary, 60F17, 62G30.

1



1 Introduction

In the competing risks model a unit or subject is exposed to several risks at the same time,
but the actual failure or death is caused by exactly one of these. Let T denote the lifetime,
that we assume to be continuous, with distribution function (DF) F and survival function (SF)
S, and let δ denote the cause of death, i.e., {δ = j} is the event that the cause of death is j.
An important biometric function of interest is the cumulative incidence function (CIF) due to
cause j, a sub-distribution function (SDF), defined by

Fj(t) = P [T ≤ t, δ = j], j = 1, 2, . . . , (1.1)

with F (t) =
∑

j Fj(t). The cause specific hazard rate due to cause j is defined by

λj(t) = lim
∆t→0

1
∆t

P[t ≤ T < t+ ∆t, δ = j | T ≥ t], j = 1, 2, . . . ;

the overall hazard rate is λ(t) =
∑

j λj(t). The CIF, Fj(t), may be written as

Fj(t) =
∫ t

0
λj(u)S(u) du. (1.2)

In some cases experience and empirical evidence indicate an ordering of two CIF’s. Hu and
Tsai (1999) consider the two causes of death of HIV positive non-Hodgkin’s lymphoma (NHL)
patients,- opportunistic infection (OI) and NHL. They show strong evidence for λNHL(t) ≥
λOI(t) at all t, which implies that FOI(t) ≤ FNHL(t), but not vice versa. For inference purposes,
use of the latter assumption generalizes the former the same way that the increasing failure
rate average (IFRA) assumption generalizes the increasing failure rate (IFR) assumption. For
an HIV vaccine efficacy trial in a region, McKeague, Gilbert and Kanki (2001) compare the
risks due to two types of HIV, HIV-1 and HIV-2, so that the genotypes of the HIV antigens
in a vaccine matches those of the type with the higher risk. This comparison of risks could
be done in several ways, comparison of the CIF’s perhaps makes the weakest assumptions. In
an example to be analyzed later, there are two causes of death of mice irradiated in infancy,-
cancer and other causes. Mice are highly susceptible to thymic lymphoma when irradiated
(Kamisaku, et al. (1997)). Thus, it is reasonable to assume that the two corresponding CIF’s
are ordered.

A test for this ordering of SDF’s, that may be called stochastic ordering of SDF’s, has
been developed by Aly, Kochar and McKeague (1994). Dykstra, Kochar and Robertson (1995)
tested for ordering of the cause specific hazard rates. Our aim in this paper is the estimation
of two CIF’s, F1 and F2, F1 + F2 = F , under the restriction F1 ≤ F2. We do not assume
that the two risks are independent. In Section 2 we describe our estimators, prove their
strong consistency, and derive the weak convergence of the estimators. It is shown that when
the order restriction is strict, the asymptotic distributions are Gaussian, the same as those
for the unrestricted case. Thus we get the restricted estimators “free of charge”, at least
in the asymptotic sense. For finite samples our estimators do obey the order restriction, and
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simulations seem to indicate that they have uniformly smaller mean square errors (MSE’s) than
the unrestricted estimators. When F1 = F2 the asymptotic distribution is non-Gaussian. Weak
convergence over the entire range may fail in other cases. For F1 = F2, and even for small
violations of the ordering along some contiguous alternatives, we show that the asymptotic
MSE is reduced by using the restricted estimators. We also derive a test for H0 : F1 = F2

vs H1 − H0, where H1 : F1 ≤ F2, and give formulas for asymptotic confidence bands of our
estimators. In Section 3 we consider the case when there are risks other than the two of interest,
serving as a censoring mechanism. We obtain the estimators in this censored case under the
order restriction, prove their strong consistency, derive their weak convergence results, and
perform the same test as in the uncesored case. Gray (1988), Pepe and Mori (1993) and Lin
(1997) have compared the CIF of one competing risk in different groups. Of these, Lin’s work
on estimation of the CIF of interest is similar to ours, although his interest was in comparing
the single CIF in two groups in the presence of another competing risk, and under censoring.
Our problem is comparing two CIF’s in the same group in the presence of censoring. As in
the uncensored case when the order restriction is strict, our asymptotic results coincide with
those of Lin (1997), when generalized to the estimation problem of both CIF’s. In Section 4
we provide some simulation results. In Section 5 we consider some examples. In Section 6 we
provide a discussion of our results.

2 Uncensored case

Suppose that we have n items exposed to two risks. We observe (Ti, δi), the time and cause
of failure of the ith item, 1 ≤ i ≤ n. We make no assumptions about the independence of the
two risk factors. We wish to estimate the CIF’s, F1 and F2, defined by (1.1) or (1.2), subject
to F1 ≤ F2.

2.1 The estimators

The nonparametric maximum likelihood estimator (NPMLE) in the unrestricted case is given
by (see Peterson, 1977)

F̂j(t) =
1
n

n∑
i=1

I(Ti ≤ t, δi = j), j = 1, 2. (2.1)

Our estimators simply average F̂1(t) and F̂2(t) when the restriction is violated. Since F̂1 + F̂2 =
F̂ , we can define our estimators by

F ∗1 = F̂1 ∧ F̂ /2 and F ∗2 = F̂2 ∨ F̂ /2, where F̂ (t) =
1
n

n∑
i=1

I(Ti ≤ t). (2.2)

This type of simple estimator was studied by Rojo and Ma (1996) and Rojo (1995) for estimat-
ing two stochastically ordered distributions based on independent samples. They have simple

3



asymptotic distributions, and, simulations showed that in terms of MSE they are typically su-
perior to the NPMLE’s that were first derived by Brunk et al. (1966), and whose (complicated)
asymptotic distributions were found only recently by Praestgaard and Huang (1996).

2.2 Consistency

Let || · || denote the sup-norm. For any real functions, f1, f2, g1, g2, it is easy to check that

||m{f1, f2} −m{g1, g2}|| ≤ ||f1 − g1|| ∨ ||f2 − g2||,

where “m” can stand for either minimum or maximum. Since F1 = F1∧F/2 and F2 = F2∨F/2,
strong consistency of our estimators follows from those of F̂1, F̂2, and F̂ , as stated in the
following theorem.

Theorem 2.1 For the estimators given in (2.2),

P [||F ∗1 − F1|| → 0, ||F ∗2 − F2|| → 0] = 1.

2.3 Weak convergence

The weak convergence of the unrestricted estimators, F̂1 and F̂2, follows from Breslow and
Crowley (1974) (see also Gill (1983) for a minor correction and some extensions); those for our
restricted estimators are derivable from these. Let

Zn =
√
n[F̂ − F ], Zjn =

√
n[F̂j − Fj ] and Z∗jn =

√
n[F ∗j − Fj ], j = 1, 2. (2.3)

We consider the weak convergence of the bivariate process (Z∗1n, Z
∗
2n).

Let b < ∞ be any constant such that F (b) < 1. Breslow and Crowley (1974) have shown
that, on D[0, b]×D[0, b], the bivariate process (Zn, Z1n) converges weakly to (Z,Z1), a bivariate
Gaussian process with mean 0 and a covariance structure given by

Cov(Z(s), Z(t)) = F (s)(1− F (t)),

Cov(Z1(s), Z1(t)) = F1(s)(1− F1(t)),

Cov(Z(s), Z1(t)) = F1(s)− F1(t)F (s),

Cov(Z1(s), Z(t)) = F1(s)(1− F (t)), (2.4)

where s ≤ t. Since Z1n + Z2n = Zn, by the continuous mapping theorem (Billingsley, 1968),
the trivariate process (Zn, Z1n, Z2n) converges weakly to the mean-zero Gaussian process,
(Z,Z1, Z2) on D[0, b]×D[0, b]×D[0, b] with

Cov(Zi(s), Zj(t)) = Fi(s)(δij − Fj(t)), i, j ∈ {1, 2}, s ≤ t, (2.5)

where δij = I(i = j), the Kronecker delta function; the other covariances can be obtained from
(2.4). Marginally, (Z1n, Z2n) w=⇒ (Z1, Z2) with the covariance structure given by (2.5). Let
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TF = inf{x : F (x) = 1} denote the right end point of the support of F , TF may be ∞. By
Stone (1963) and Lindvall (1973), weak convergence on [0, b] for all b < TF is equivalent to
weak convergence on [0, TF ). Thus [0, b] may be substituted by [0, TF ) above.

Now

Z∗1n = Z1n + 0 ∧ [Zn/2− Z1n +
√
n(F/2− F1)]

= Z1n + 0 ∧ [(Z2n − Z1n)/2 +
√
n(F/2− F1)], (2.6)

Z∗2n = Z2n + 0 ∨ [(Z1n − Z2n)/2 +
√
n(F/2− F2)]. (2.7)

Note that, if F1 < F/2 (implying
√
n(F/2− F1)→∞) on (0, b], then (Z∗1n, Z

∗
2n) w=⇒ (Z1, Z2),

and, if F1 = F/2 on [0, b], then

(Z∗1n, Z
∗
2n) = (Z1n + 0 ∧ [Zn/2− Z1n], Z2n + 0 ∨ [Zn/2− Z2n])

.

Theorem 2.2 For (Z∗1n, Z
∗
2n) defined by (2.3), we have the following results.

(1) If F1 < F/2 on (0, b], then
(Z∗1n, Z

∗
2n) w=⇒ (Z1, Z2).

(2) If F1 = F/2 on [0, b], then

(Z∗1n, Z
∗
2n) w=⇒ (W1,W2),

where

W1 = Z1 + 0 ∧ (Z2 − Z1)/2 and W2 = Z2 − 0 ∧ (Z2 − Z1)/2.

(3) If F1(t0) = F (t0)/2 for some t0 ∈ (0, b) and, for some γ > 0, F1 < F/2 on (t0, t0 + γ] with
t0 + γ < b, then (Z∗1n, Z

∗
2n) does not converge weakly.

(4) If F1 < F/2 on (0, t0) for some t0 < b and F1 = F2 on [t0, b], then (Z∗1n, Z
∗
2n) does converge

weakly, but has paths that are discontinuous at t0 with positive probability.

Proof. The proofs of parts (1) and (2) follow from the arguments given before the theorem
and the continuous mapping theorem.

The proof of part (3) follows from an argument establishing lack of tightness. WLOG
assume that F1 < F2 on (t0, t0 + γ], γ > 0. Note that

Z∗1n(t0) = Z1n(t0) + 0 ∧ (Z2n(t0)− Z1n(t0))/2 ≡ Z1n(t0) + 0 ∧ Un(t0),

where

Un(t0) = (Z2n(t0)− Z1n(t0))/2 d−→ N(0, F ((t0)/4).
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Since F1 is continuous, Z1 has continuous paths a.s. Since Z1n
w=⇒ Z1 on [0, b], {Z1n} is

tight on [0, b]. Let ε > 0, η > 0 be arbitrary. Then, for every 0 < ρ < γ, there exists 0 < δ < ρ

such that

P [ sup
t0≤s≤t0+δ

|Z1n(t0)− Z1n(s)| ≤ ε] ≥ 1− η

for all n large enough. If Z∗1n is tight on [0, b] then, for all n large enough we must have

P [ sup
t1≤s≤t<t2

|Z∗1n(t)− Z∗1n(s)| ≤ ε] ≥ 1− η

for some t1 ≤ t0 < t2 (Billingsley (1968)). Now, from (2.6), if F1(t) < F2(t), then, for all n
large enough,

P [Z∗1n(t) = Z1n(t)] > 1− η.

Assume that {Z∗1n} is tight. Then there exists 0 < δ′ < δ such that, for all n large enough, we
have

P [ sup
t0≤s≤t0+δ′

|Z∗1n(t0)− Z∗1n(s)| ≤ ε] ≥ 1− η.

Now fix t0 < t < t0 + δ′. Then, for all n large enough

P [ sup
t0≤s≤t0+δ′

|Z∗1n(t0)− Z∗1n(s)| ≤ ε] ≤ P [|Z∗1n(t0)− Z∗1n(t)| ≤ ε]

≤ P [|Z∗1n(t0)− Z1n(t)| ≤ ε] + η

≤ P [|0 ∧ Un(t0)| ≤ 2ε] + 2η

→ 1− Φ(−4ε/
√
F (t0)) + 2η,

where Φ is the standard normal DF. This is a contradiction to our assumption that {Z∗1n} is
tight. Note that the paths fail to be continuous at t0 when Z1(t0) > Z2(t0), which occurs with
probability 1/2, which is also the limiting value of the last expression in the display above as
ε, η → 0.

A crucial feature in the proof of part (3) is that every interval of the form [t1, t2) containing
t0 must also contain (t0, t2) where F1 < F2. Under the condition in part (4), this problem is
avoided by choosing intervals of the form

[0 = t0, t1), · · · , [ti−1, ti = t0), [ti = t0, ti+1), · · · ,

and using the tightness of (Z1n, Z2n). However, modifying the proof of part (3) to the interval
[t0− γ, t0] shows that the paths of the limiting distribution of Z∗1n are discontnuous at t0 when
Z1(t0) > Z2(t0), which occurs with probability 1/2 since F1(t0) = F2(t0).

Remark. The lack of tightness of Z∗1n in case (3) of Theorem 2.2 stems from the fact that
Z∗1n(t0) = Z1n(t0) + Un(t0), where Un(t0) is asymptotically N(0, F (t0)/4) in distribution,
whereas Z∗1n(t) = Z1n(t) with arbitrarily high probability for all t in some right neigborhood
of t0 if n is large enough.
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2.4 A stochastic ordering result

From Theorem 2.2, Wj and Zj have the same distribution for j = 1, 2, if F1 < F2 on (0, b).
The following theorem shows that |Wj(t)| is stochastically smaller than |Zj(t)| when Fj(t) =
F (t)/2, j = 1, 2, and 0 < F (t) < 1. However, it contains an even more general result. We show
that this stochastic ordering still holds when the order restriction is violated by a small amount
along some contiguous alternatives. To this end we assume that the CIF’s are changing with
the sample size, given by

F1n = F/2 + ∆n(F )/
√
n and F2n = F/2−∆n(F )/

√
n, (2.8)

where ||∆n −∆|| → 0 as n → ∞ for some nonnegative measurable functions, ∆n and ∆. Let
F̂1, F̂2, F

∗
1 , F

∗
2 and Zn be defined as before, but define

Z̃jn =
√
n[F̂j − Fjn] and Z̃∗jn =

√
n[F ∗j − Fjn], j = 1, 2.

By Theorem 3.2.1 in Shorack and Wellner (1986),

(Zn, Z̃1n, Z̃2n) w=⇒ (Z,Z1, Z2),

where (Z,Z1, Z2) is the same Gaussian process as when ∆ ≡ 0.
From the definition of F ∗j in (2.2), we have

Z̃∗1n =
√
n[F ∗1 − F1n]

=
√
n[F̂1 − F1n] + 0 ∧

√
n[F̂2 − F̂1]/2

= Z̃1n + 0 ∧
√
n[(F̂2 − F2n)− (F̂1 − F1n) + (F2n − F1n)]/2

= Z̃1n + 0 ∧ [Z̃2n − Z̃1n − 2∆(F )]/2.

Similarly,
Z̃∗2n = Z̃2n − 0 ∧ [Z̃2n − Z̃1n − 2∆(F )]/2.

By the continuous mapping theorem,

(Z̃∗1n, Z̃
∗
2n) w=⇒ (Z∗1 , Z

∗
2 ),

where

Z∗1 = Z1 + 0 ∧ [Y −∆(F )] and Z∗2 = Z2 − 0 ∧ [Y −∆(F )], with Y = (Z2 − Z1)/2.

Theorem 2.3 Suppose that the contiguous alternatives, (2.8), hold. Let σ2(t) = F (t)[1 −
F (t)]/4 and let t > 0 be arbitrary with 0 < F (t) < 1. Then,

P (|Z∗j (t)| ≤ u) > P (|Zj(t)| ≤ u), j = 1, 2, for all u > 0,

if ∆(F (t)) ≤ r0 σ(t) for some r0 > 0 that does not depend on t.
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Proof. We prove only the case when j = 1. Fix t such that 0 < F (t) < 1. We have

σ2
1(t) ≡ V ar(Z1(t)) =

F (t)
2

[
1− F (t)

2

]
, σ2

2(t) ≡ V ar(Y (t)) =
F (t)

4
,

σ12(t) ≡ Cov(Z1(t), Y (t)) = −F (t)
4

, and

ρ(t) ≡ Corr(Z1(t), Y (t)) =
σ12(t)

σ1(t)σ2(t)
= −σ2(t)

σ1(t)
= − 1√

2− F (t)
.

Since (Z1(t), Y (t)) has a bivariate normal distribution, the conditional distribution of Z1(t)
given Y (t) = y is

N(−y, σ2(t)), where σ2(t) = σ2
1(t)(1− ρ2(t)) = [F (t)][1− F (t)]/4.

Since 0 < σ(t) < ∞, we can write ∆(F (t)) = r(t)σ(t) for some r(t) ≥ 0, and replace the
line with the probability inequality in the theorem to read

P (|Z∗j (t)| ≤ uσ(t)) > P (|Zj(t)| ≤ uσ(t)), j = 1, 2, for all u > 0,

which simplifies the expressions below. For further simplification, we suppress the t-dependence
in the remainder of the proof. For u > 0,

P (|Z∗1 | ≤ uσ) = P (|Z1| ≤ uσ, Y ≥ rσ) + P (|Z1 + Y − rσ| ≤ uσ, Y < rσ).

Thus, it is sufficient to show that

P (|Z1 + Y − rσ| ≤ uσ, Y < rσ) > P (|Z1| ≤ uσ, Y < rσ) for all u > 0.

Let n(µ,V ) dentote the density of a N(µ, V ) random variable. Noting that the conditional
distribution of Z1 + y given Y = y is N(0, σ2), we have

P (|Z1 + Y − rσ| ≤ uσ, Y < rσ)

=
∫ rσ

−∞
P (|Z1 + y − rσ| ≤ uσ|Y = y)n(0,σ2

2)(y)dy

=
∫ rσ

−∞

∫ σ(r+u)

σ(r−u)
n(0,σ2)(x)n(0,σ2

2)(y) dx dy

=
∫ rσ/σ2

−∞
[Φ(r + u)− Φ(r − u)]φ(z) dz

= [Φ(r + u)− Φ(r − u)]Φ(rα), (2.9)

where α = σ/σ2, Φ is the standard normal DF, and φ is its density. Now,

P (|Z1| ≤ uσ, Y < rσ)

=
∫ rσ

−∞
P (|Z1| ≤ uσ|Y = y)n(0,σ2

2)(y) dy
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=
∫ rσ

−∞

[
Φ
(
y + uσ

σ

)
− Φ

(
y − uσ
σ

)]
n(0,σ2

2)(y) dy

=
∫ rσ/σ2

−∞

[
Φ
(
σ2x+ uσ

σ

)
− Φ

(
σ2x− uσ

σ

)]
φ(x) dx

=
σ

σ2

∫ r

−∞
[Φ(z + u)− Φ(z − u)]φ(zσ/σ2) dz

= [Φ(r + u)− Φ(r − u)]Φ(rα)

−
∫ r

−∞
[φ(z + u)− φ(z − u)]Φ(zα) dz,

where we have used integration by parts in the last step. Note that

α = σ/σ2 =
√

1− F (t), and hence, 0 ≤ α ≤ 1.

Denote the integral above by q(α, r, u). Comparing the last term above with (2.9), it is
sufficient to show that q(α, r, u) > 0 for all u > 0 and 0 < α < 1, if r > 0 is sufficiently small.
Since [φ(z + u) − φ(z − u)] > (<) 0 for z < (>) 0 for all u > 0, and Φ(zα) > (<) Φ(z) for all
z < (>) 0, it is sufficient to show that

q∗(r, u) ≡
∫ r

−∞
[φ(z + u)− φ(z − u)]Φ(z) dz > 0 for all u > 0,

if r > 0 is sufficiently small. Now, using integration by parts,

q∗(0, u) =
∫ 0

−∞
[φ(z + u)− φ(z − u)]Φ(z) dz

= [Φ(u)− Φ(−u)]/2−
∫ 0

−∞
[Φ(z + u)− Φ(z − u)]φ(z) dz.

If (X,Z) is a standard bivariate normal then (X,Z) d= (−X,−Z). Thus, the integral in the
expression above may be written as

P (|X − Z| ≤ u, Z ≤ 0) = P (| −X + Z| ≤ u, Z ≥ 0) = P (|X − Z| ≤ u)/2

= [Φ(u/
√

2)− Φ(−u/
√

2]/2.

Hence,

q∗(0, u) = Φ(u)− Φ
(
u√
2

)
=
∫ u

u/
√

2
φ(z) dz > uφ(u)

(
1− 1√

2

)
∀u > 0.

Now, ∂rq∗(r, u) = [φ(r + u)− φ(r − u)]Φ(r). Thus,

∂rq
∗(0, u) ≡ 0 and ∂2

r q
∗(0, u) = [φ′(u)− φ′(−u)]/2 = φ′(u) = −uφ(u).

Using Taylor’s theorem, there exists r0 > 0, such that

q∗(r, u) > uφ(u)
(

1− 1√
2
− r2

2

)
> 0 for all 0 ≤ r ≤ r0 and u > 0.
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An estimate of 0.77 is obtained for r0 by ignoring any remainder term in Taylor’s theorem;
extensive numerical computations of q∗(r, u) seem to indicate that r0 is slightly over 0.70.

Theorem 2.3 tells us that, if F1n = F/2 + ∆n(F ), supt |∆n(F (t)) − ∆(F (t))| → 0, and
∆(F (t)) ≤ r0σ(t), then P (|Z∗j (t)| ≤ u) > P (|Zj(t)| ≤ u) for all u > 0, and for all t such
that 0 < F (t) < 1. Note that σ(t) =

√
F (t)[1− F (t)]/2 turns out to be the natural unit for

measuring the limiting allowable perturbations of F1(t) above F (t)/2 (in units of 1/
√
n) for

this result to hold.

2.5 Asymptotic bias and MSE

We continue using the notation and results of Section 2.4, and write δ(t) for ∆(F (t)). From
Theorem 2.2, the restricted and the empirical estimators have the same asymptotic distribution
when F1(t) < F2(t). We can compute the asymptotic bias of the restricted estimators and
compare their MSE’s when F1(t) = F2(t), or under the contiguous alternatives, (2.8). It is well
known that for any DF or SDF,H, and its empirical estimator, Hn, E[

√
n supt |Hn(t)−H(t)|]r is

a bounded sequence for all r > 0. By Theorem 2.3, this is also true for |F ∗j (t)−Fjn(t)|, j = 1, 2,
if δ(t) ≥ 0 is small enough. Hence, E[

√
n[F ∗j (t)−Fjn(t)]r] converges to E[Z∗j (t)]r, j = 1, 2, for

all r > 0.

2.5.1 Asymptotic bias

Utilizing the fact that Y (t) − δ(t) ∼ N(−δ(t), σ2
2(t)), where σ2

2(t) = V ar(Y (t)) = F (t)/4, the
asymptotic bias of F ∗1 (t) is given by

E[Z∗j (t)]
√
n

=
E[Z1 + 0 ∧ [Y (t)− δ(t)]]√

n
= − σ2(t)√

2πn
e−δ(t)

2/2σ2
2(t) − δ(t)√

n
Φ
(
δ(t)
σ2(t)

)
;

the asymptotic bias of F ∗2 (t) is the negative of this. When δ(t) = 0, the asymptotic bias of
F ∗1 (t) is −σ2(t)/

√
2πn = −

√
F (t)/8πn.

2.5.2 Asymptotic MSE

From the stochastic ordering result given by Theorem 2.3, the asymptotic MSE (AMSE) of
F ∗j (t) is less than that of F̂j(t), j = 1, 2, if 0 ≤ ∆(F (t)) ≤ r0σ(t) and 0 < F (t) < 1. The
following theorem establishes more precise results.

Theorem 2.4 Let t > 0 be fixed such that 0 < F (t) < 1. Let s0 be the unique solution of∫ s
0 uΦ(u) du = 1/4. Under the contiguous alternatives, (2.8),

AMSE(F ∗j (t)) < AMSE(F̂j(t)) = σ2
j (t), j = 1, 2, if ∆(F (t)) < s0σ2(t).

Proof. We prove only the case when j = 1. Let ∆(F (t)) = s(t)σ2(t) for some s(t) ≥ 0. Let
U denote a N(0, σ2(t)) random variable, which is the distribution of Z1 + y given Y = y, and

10



recall that

σ2(t) = σ2
2(t)[1− F (t)], σ2

2(t) =
σ2

1(t)
2− F (t)

, and σ2
1(t) =

F (t)[2− F (t)]
4

.

We suppress the t-dependence in the remainder of the proof except for F (t). Now,

E[Z∗1 ]2 = E[Z1 + 0 ∧ (Y − sσ2))]2 = E[Z1 + Y − Y ∨ sσ2]2

=
∫ ∞
−∞

E[U − y ∨ sσ2]2n(0,σ2
2(t))(y) dy =

∫ ∞
−∞

[σ2 + (σ2u ∨ sσ2)2]φ(u) du

= σ2 +
∫ ∞
−∞

[s2σ2
2I(u ≤ s) + σ2

2u
2I(u > s))]φ(u) du

= σ2 + s2σ2
2Φ(s) +

σ2
2

2
− σ2

2

∫ s

0
u2φ(u) du

= σ2
2[1− F (t)] + s2σ2

2Φ(s) +
σ2

2

2
− σ2

2

∫ s

0
u2φ(u) du

= σ2
2

[
1− F (t) + s2Φ(s) +

1
2
−
∫ s

0
u2φ(u) du

]
=

σ2
1

2− F (t)

{
3
2
− F (t) + s2Φ(s)−

[
s2Φ(s)−

∫ s

0
2uΦ(u) du

]}
= σ2

1

{
1− 1

2− F (t)

[
1
2
−
∫ s

0
2uΦ(u) du

]}
,

where we have used integration by parts to obtain the second from the last equality. Note that
the last expression is a strictly increasing function of s; it is less than σ2

1 when s = 0 and equals
σ2

1 when s = s0, where s0 is the unique solution of
∫ s

0 uΦ(u) du = 1/4. Evaluating numerically,
we get s0 = 0.84. This corresponds to

∆(F (t)) = s0σ2 = σ1
s0√

2− F (t)
= s0

√
F (t)/2 = 0.42

√
F (t).

Thus, if 0 ≤ F1n(t)− F2n(t) < 0.84
√
F (t)/

√
n, and F1n and F2n are CIF’s, then the restricted

estimators reduce the AMSE if 0 < F (t) < 1.
We note that σ2(t) =

√
F (t)/2 turns out to be the natural unit for measuring ∆(F (t))

for reduction of AMSE’s for all t such that 0 < F (t) < 1; the natural unit was σ(t) =√
F (t)[1− F (t)]/2, which is less than σ2(t) ∀t > 0, for the stochastic ordering result in Theorem

2.3. A possible explanation for this is that the probability inequality in Theorem 2.3 seems to
hold for larger pertubations, but only for larger u’s, as evidenced by numerical computations
of q∗(r, u).

2.6 A hypothesis test

Let

H0 : F1 = F2 and H1 : F1 ≤ F2, (2.10)
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and consider testing H0 against H1 − H0. It is natural to reject H0 for large values of
√
n supt [F ∗2 (t)−F ∗1 (t)], which is equal to supt [Z∗2n(t)−Z∗1n(t)] when F1 = F2. Assume that the

null hypothesis is true. For an asymptotic test we use the limiting distribution of Z∗2n−Z∗1n un-
der H0. Using part (2) of Theorem 2.2, and the covariance formula (2.5) with F1 = F2 = F/2,
we see that Z∗2n − Z∗1n

w=⇒ W2 −W1 = (Z2 − Z1) ∨ 0, where Z2 − Z1 is a mean-zero Gaussian
process with

Cov(Z2(s)− Z1(s), Z2(t)− Z1(t)) = F (s) for s ≤ t.

Thus Z∗2n(t) − Z∗1n(t) has asymptotically the same distribution as B(F (t)) ∨ 0, where B is a
standard Brownian motion. Now, for y ≥ 0,

P

[
sup

0≤t≤1
B(t) ∨ 0 > y

]
= 2(1− Φ(y)), (2.11)

where Φ is the DF of a standard normal variable, and we get a distribution-free test. Aly,
Kochar and McKeague (1994) derived the same asymptotic test using the fact that T and δ

are independent when F1 = F2 (Kochar and Proschan, 1991), and a martingale formulation.

2.7 Confidence bands

It may be of interest to find (1−α)-coefficient simultaneous confidence bands for F1 and F2 on
[0, b] for some b < TF . We consider the Kolmogorov-Smirnov bands (cf. equation (2.11)) and
use the Bonferroni procedure. Using the stochastic ordering result in Theorem 2.3, we could
use the bands [L1, U1] and [L2, U2], respectively, where

Lj(·)(Uj(·)) = F ∗j (·)− (+)zα/4
√
F̂j(·)[1− F̂j(·)]/n, j = 1, 2, (2.12)

with zβ = Φ−1(1 − β), which provide more conservative bands than in the unrestricted case
obtained by replacing F ∗j by F̂j in (2.12). Note that a simultaneous confidence region of the
form [L1, U1]× [L2, U2] could be possibly reduced by intersecting it with the set A = {(x1, x2) ∈
R2 : x1 ≤ x2}. For a rectangular region we use

[L1, U1 ∧ U2]× [L1 ∨ L2, U2]. (2.13)

3 Censored case

Here we consider the case when there is censoring in addition to the two competing risks. It is
important that the censoring mechanism, that may be a combination of other competing risks,
be independent of the two of interest. We now identify three causes of failure, δ = 0, 1, or 2,
where {δ = 0} is the event that the subject was censored.

Let Ci denote the censoring time, assumed continuous, for the ith subject, and let Li =
Ti ∧Ci. We assume that {Ci} are identically and independently distributed (IID) with SF, SC ,
and are independent of the life distributions, {Ti}. For the ith subject we observe (Li, δi), the
time and cause of the failure of the ith subject. Here the {Li} are IID by assumption.
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3.1 The estimators and consistency

For j = 1, 2, let Λj be the cumulative hazard function for risk j, and let Λ = Λ1 + Λ2 be
the cumulative hazard function of the life distribution T . For the censored case, the natural
(unrestricted) estimators of the CIF’s are the sample equivalents of (1.2) using the Kaplan-
Meier (1958) estimator,Ŝ, of S:

F̂j(t) =
∫ t

0
Ŝ(u) dΛ̂j(u), j = 1, 2, with F̂ = F̂1 + F̂2, (3.1)

where Ŝ is chosen to be the left-continuous version for technical reasons, and Λ̂j is the Nelson-
Aalen estimator (see, e.g., Fleming and Harrington, 1991) of Λj , given by

Λ̂j(t) =
n∑
i=1

I(Li ≤ t, δi = j)∑n
s=1 I(Ls ≥ Li)

, j = 1, 2. (3.2)

Although our estimators use the Kaplan-Meier estimator of S rather than the empirical, we
continue to use the same notation for the various estimators and related entities as in the
uncensored case for notational simplicity.

As in the unrestricted case, we define our restricted estimators by

F ∗1 = F̂1 ∧ F̂ /2, F ∗2 = F̂2 ∨ F̂ /2, and F̂ ∗ = F ∗1 + F ∗2 = F̂ . (3.3)

Consistency. Let TC denote the right endpoint of the support of C. We assume that TC ≤ TF .
Then it is well known that F̂1 and F̂2 given by (3.1) are strongly uniformly consistent. Thus the
consistency of the restricted estimators follow using the same argument as in the uncensored
case in Section (2.2).

3.2 Weak convergence

Let

Zn =
√
n[F̂ − F ], Zjn =

√
n[F̂j − Fj ] and Z∗jn =

√
n[F ∗j − Fj ], j = 1, 2,

that have the same form as (2.3) in the uncensored case except that the unresticted estimators
have been obtained via (3.1). Let

π(t) = P [Li ≥ t] = P [Ti ≥ t, Ci ≥ t] = S(t)SC(t).

Using a counting process-martingale formulation, Lin (1997) has shown that Z1n
w=⇒ Z1 on

[0, b] for all b < TF , where Z1 is a mean-zero Gaussian process with

Cov(Z1(s), Z1(t)) =
∫ s

o
[1− F1(s)− F2(u))][1− F1(t)− F2(u))]

dΛ1(u)
π(u)

+
∫ s

0
[F1(u)− F1(s)][F1(u)− F1(t)]

dΛ2(u)
π(u)

. (3.4)
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From this one can show that Z2n
w=⇒ Z2 and Zn

w=⇒ Z, both mean-zero Gaussian processes,
with covariances found by switching subscripts 1 and 2 in (3.4) in the first case, and by setting
F2 = 0, Λ2 = 0, F1 = F and Λ1 = Λ, in the second case. Now, using the argument of Breslow
and Crowley (1974), these marginal convergences imply the following joint convergence, as in
Section 2.3.

Theorem 3.1 The trivariate process (Z1n, Z2n, Zn) w=⇒ (Z1, Z2, Z = Z1+Z2) on [0, b]×[0, b]×
[0, b] for all b < TF , where Z1, Z2, and Z are mean-zero Gaussian precesses, and, for s ≤ t,
their covariances are given by

Cov(Z(s), Z(t)) = S(s)S(t)
∫ s

0

dΛ(u)
π(u)

, (3.5)

Cov(Z1(s), Z2(t)) =
∫ s

0
[1− F1(s)− F2(u)][F2(u)− F2(t)]

dΛ1(u)
π(u)

+
∫ s

0
[1− F2(t)− F1(u)][F1(u)− F1(s)]

dΛ2(u)
π(u)

; (3.6)

the other covariances being computable from (3.4)-(3.6), and the fact that Z = Z1 + Z2.

Again, using the same notation as in the unrestricted case, we have

Z∗1n = Z1n + 0 ∧ [(Z2n − Z1n)/2 +
√
n(F/2− F1)],

Z∗2n = Z2n + 0 ∨ [(Z1n − Z2n)/2 +
√
n(F/2− F2)],

and, using the same proof as that of Theorem 2.2, we get

Theorem 3.2 The conclusions of Theorem 2.2 hold using the Kaplan-Meier estimator of S
instead of the empirical, with the covariance structure obtainable from Theorem 3.1 the same
way as the covariance structure of Theorem 2.2 was derived from (2.4).

We obtain the same stochastic ordering result in Section 2.4 in the censored case under
the contiguous alternatives, (2.8), by observing the following. From (3.4)-(3.6), with Y =
(Z2 − Z1)/2, it can be shown after some algebra that

σ2
1(t) ≡ V ar(Z1(t)) =

1
2

∫ t

0
[S2(t) + S2(u)]

dΛ(u)
π(u)

,

σ2
2(t) ≡ V ar(Y (t)) =

1
2

∫ t

0
S2(u)

dΛ(u)
π(u)

,

σ12(t) ≡ Cov(Z1(t), Y (t)) = −1
2

∫ t

0
S2(u)

dΛ(u)
π(u)

, and

ρ(t) ≡ Corr(Z1(t), Y (t)) = −σ2(t)
σ1(t)

.

This shows that the conditional distribution of Z1(t) given Y (t) = y is N(−y, σ2(t)), where
σ2(t) = σ2

1(t)(1 − ρ2(t)), which is exactly the same result as in the uncensored case except
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for the fact that the formulas for σ2
1(t), σ2

2(t), σ12(t), ρ(t) and σ(t) are different. However, the
proof of Theorem 2.3 is independent of the values of these parameters. By a similar argument,
the results of Section 2.5 continue to hold for the censoring case using the formulas for the
parameters in this case.

As Lin (1997) has noted, the form of the covariance in (3.4) is too complicated to com-
pute P [supt Z1(t) > x] to construct exact asymptotic confidence bands as was done in the
unrestricted case using (2.11). He has given several procedures for constructing approximate
confidence bands for F1. Naturally, these could also be used for confidence bands for F2. As
in the uncensored case, we can get more conservative bands by centering at F ∗j instead of F̂j
in these bands, and we could possibly reduce the widths of the simultaneous confidence bands
using (2.13).

3.3 Hypothesis test

Consider the same test as in (2.10) using censored observations. Again it is natural to reject
H0 for large values of supt[Z∗2n(t) − Z∗1n(t)]. Now Z∗2n(t) − Z∗1n(t) has the limiting mean-zero
Gaussian distribution of W2 −W1 = (Z2 − Z1) ∨ 0 under H0 : F1 = F2 = F/2 in the notation
of Theorem 2.2, but using the Kaplan-Meier estimators. ¿From the covariance formulas in
(3.4)-(3.6), we get a somewhat simplified expression for

Cov(Z1(s)− Z2(s), Z1(t)− Z2(t)) =
∫ s

0
S(u)

dΛ(u)
SC(u)

,

using the fact that π(u) = S(u)SC(u) by our independence assumption. Since the Kaplan-Meier
estimator of SC , ŜC , converges uniformly to SC wp1, we have

√
n

∫ t

0

√
ŜC(u) d[F̂2(u)− F̂1(u)]→d B(F (t)), 0 ≤ t < TF . (3.7)

Note that the test statistic on the lhs of (3.7) reduces to that of the uncensored case when
SC ≡ 1. Thus we can use the same asymptotic test as in the unrestricted case with the

addition of the term
√
ŜC(u) in (3.7). This is the same test derived by Aly, Kochar and

McKeague (1994) using a different method.

4 Simulations

Since there are no mathematically tractable parametric families of continuous non-independent
bivariate distributions where the CIF’s are ordered but not the hazard rates, we have chosen
Block and Basu’s (1974) absolutely continuous bivariate exponential distribution and one of
Gumbel’s (1960) bivariate exponential distributions for our simulation study.

If (X,Y ) has Block and Basu’s distribution, then its joint density is given by

f(x, y) =

{
α1α(α2+α0)
α1+α2

exp{−α1x− (α2 + α0)y}, x < y,
α2α(α1+α0)
α1+α2

exp{−α2y − (α1 + α0)x}, x > y,
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where α0 ≥ 0, α1 > 0 and α2 > 0 are parameters, and α = α0 + α1 + α2. The cause specific
hazard rates are

λj(t) ≡
αjα

α1 + α2
, j = 1, 2,

are proportional, and α0 is the dependence parameter, with X and Y independent if and only
if α0 = 0. Since the problem is scale independent, we have kept α1 fixed at 1, and carried out
the simulations for various values of α0 and α2, computed the biases of all the estimators, and
the ratios of the MSE’s of the unrestricted to those of the corresponding restricted estimators
at all deciles of the distribution of (X ∧ Y ). Many different sample sizes were used and all
simulations were done with 10,000 iterations. For brevity, we report only a few of the cases.
In both the uncensored case and the censored case we present the simulation results for α0=
1 and α2 = 1, 1.5 and 2, with a sample size of 50. The censoring variable was the standard
exponential, corresponding to a censoring of 25%, 22.2% and 20%, respectively, in the 3 cases.

For the Gumbel distribution, (X,Y ) has the survival function,

S(x, y) = exp{−ax− by − cxy},

with nonnegative values of the parameters. In both the uncensored and the censored cases we
consider the parameter values of a = c = 1 with b = 1 (F1 = F2), 1.5 and 2. A censoring
distribution of exp{0.85} was used; the amounts of censoring are 25.18%, 22.23% and 19.86%,
respectively. In all cases a sample size of 50 was used with 10,000 iterations.

As expected, F ∗1 shows a negative bias while F ∗2 shows a positive bias (except for one case
that is probably due to sampling error), although not very much. The MSE for the restricted
estimators are uniformly smaller than the unrestricted ones in all cases. The gain in terms of
MSE goes up as F2 gets closer to F1 when order reversals are more likely.

We also carried out the same simulations for Block and Basu’s (1974) bivariate exponential
distribution with α0 = α2 = 1, and α1 = 1 + .01j, j = 1, . . . , 10, without censoring, to assess
the effect of the violation of our order restriction on the MSE. For α1 = 1.01, 1.02 and 1.03, the
ratio MSE(F̂j)/MSE(F ∗j ) seems to be uniformly larger than 1; then it starts falling off starting
at α1 = 1.04. We present the results for the cases of α1 = 1.03, 1.04 and 1.05 in Table 3.
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Table 1.

Comparison of bias (B) and MSE of F̂1, F
∗
1 , F̂2 and F ∗2 at q-quantiles of (X ∧ Y ) for Block

and Basu distribution, with n = 50 and 10,000 iterations.

q B(F̂1) B(F ∗1 ) MSE(F̂1)
MSE(F ∗1 ) B(F̂2) B(F ∗2 ) MSE(F̂2)

MSE(F ∗2 )

uncensored α0 = 1, α1 = 1, α2 = 1
.1 0.0000 -.0086 1.5322 -.0001 0.0085 1.2117
.2 -.0001 -.0124 1.5192 0.0002 0.0122 1.2737
.5 -.0003 -.0202 1.5655 0.0001 0.0199 1.4461
.8 -.0003 -.0254 1.7499 0.0001 0.0253 1.6874
.9 -.0002 -.0268 1.8631 0.0006 0.0272 1.8010

uncensored α0 = 1, α1 = 1, α2 = 1.5
.1 0.0002 -.0044 1.3940 0.0006 0.0052 1.1942
.2 0.0005 -.0044 1.3207 0.0001 0.0049 1.1972
.5 0.0007 -.0031 1.2089 0.0004 0.0042 1.1567
.8 0.0003 -.0025 1.1551 -.0001 0.0027 1.1384
.9 0.0006 -.0019 1.1451 -.0004 0.0021 1.1359

uncensored α0 = 1, α1 = 1, α2 = 2
.1 -.0001 -.0028 1.2895 -.0002 0.0026 1.1492
.2 -.0002 -.0023 1.1748 -.0002 0.0019 1.1079
.5 -.0008 -.0017 1.0615 0.0000 0.0009 1.0450
.8 -.0014 -.0017 1.0221 0.0011 0.0014 1.0195
.9 -.0013 -.0015 1.0179 0.0013 0.0015 1.0164

25% censoring α0 = 1, α1 = 1, α2 = 1
.1 0.0002 -.0085 1.5328 0.0004 0.0090 1.2062
.2 -.0002 -.0128 1.4989 0.0004 0.0129 1.2710
.5 0.0008 -.0204 1.5613 0.0002 0.0213 1.4288
.8 0.0006 -.0274 1.7404 0.0011 0.0291 1.6090
.9 -.0003 -.0308 1.8190 0.0008 0.0313 1.7159

22.2% censoring α0 = 1, α1 = 1, α2 = 1.5
.1 -.0001 -.0047 1.3971 0.0000 0.0047 1.2028
.2 0.0000 -.0051 1.3304 0.0003 0.0053 1.2009
.5 -.0003 -.0050 1.2433 -.0003 0.0044 1.1733
.8 -.0001 -.0042 1.2016 -.0012 0.0029 1.1741
.9 0.0000 -.0042 1.2040 -.0010 0.0032 1.1855

20% censoring α0 = 1, α1 = 1, α2 = 2
.1 0.0001 -.0026 1.2945 0.0000 0.0027 1.1413
.2 0.0000 -.0023 1.1853 0.0002 0.0025 1.1097
.5 0.0001 -.0011 1.0759 -.0001 0.0011 1.0541
.8 0.0002 -.0004 1.0409 0.0008 0.0014 1.0356
.9 0.0002 -.0004 1.0350 -.0001 0.0004 1.0324
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Table 2.

Comparison of bias (B) and MSE of F̂1, F
∗
1 , F̂2 and F ∗2 at q-quantiles of (X ∧ Y ) for Gumbel

distribution, with n = 50 and 10,000 iterations.

q B(F̂1) B(F ∗1 ) MSE(F̂1)
MSE(F ∗1 ) B(F̂2) B(F ∗2 ) MSE(F̂2)

MSE(F ∗2 )

uncensored a = 1, b = 1, c = 1
.1 -.0004 -.0089 1.5308 0.0004 0.0089 1.2020
.2 -.0003 -.0128 1.5169 0.0004 0.0129 1.2974
.5 -.0005 -.0201 1.5486 0.0001 0.0198 1.4542
.8 0.0002 -.0246 1.7263 0.0002 0.0250 1.6821
.9 0.0003 -.0264 1.8459 -.0004 0.0263 1.8282

uncensored a = 1, b = 1.5, c = 1
.1 -.0025 -.0072 1.3635 -.0004 0.0043 1.2067
.2 0.0002 -.0048 1.3521 -.0001 0.0049 1.2102
.5 -.0001 -.0048 1.2367 -.0003 0.0045 1.1922
.8 0.0002 -.0042 1.2294 -.0003 0.0042 1.2130
.9 0.0002 -.0041 1.2322 -.0005 0.0038 1.2222

uncensored a = 1, b = 2, c = 1
.1 0.0000 -.0027 1.2830 0.0006 0.0033 1.1390
.2 0.0002 -.0020 1.1846 0.0007 0.0030 1.1086
.5 -.0004 -.0015 1.0725 0.0008 0.0018 1.0526
.8 -.0015 -.0021 1.0463 -.0003 0.0003 1.0399
.9 -.0008 -.0014 1.0427 0.0009 0.0015 1.0398

25.18% censoring a = 1, b = 1, c = 1
.1 -.0002 -.0091 1.5524 -.0001 -.0088 1.2163
.2 0.0001 -.0128 1.4901 -.0003 0.0127 1.2815
.5 -.0005 -.0216 1.5431 -.0003 0.0209 1.4266
.8 -.0005 -.0285 1.7140 0.0002 0.0282 1.6457
.9 -.0002 -.0309 1.8081 0.0000 0.0308 1.7570

22.23% censoring a = 1, b = 1.5, c = 1
.1 -.0018 -.0066 1.3681 0.0008 0.0055 1.1992
.2 0.0009 -.0043 1.4048 0.0008 0.0060 1.2049
.5 0.0009 -.0047 1.2831 -.0006 0.0050 1.2085
.8 0.0006 -.0051 1.2674 -.0005 0.0052 1.2298
.9 0.0001 -.0059 1.2860 0.0002 0.0063 1.2517

19.86% censoring a = 1, b = 2, c = 1
.1 -.0003 -.0030 1.2924 -.0001 0.0027 1.1398
.2 -.0001 -.0024 1.1860 0.0004 0.0019 1.0684
.5 0.0004 -.0011 1.0931 0.0004 0.0019 1.0684
.8 -.0009 -.0019 1.0685 -.0015 -.0004 1.0569
.9 -.0001 -.0012 1.0696 0.0000 0.0011 1.0611
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Table 3.

Comparison of bias (B) and MSE of F̂1, F
∗
1 , F̂2 and F ∗2 at q-quantiles of (X ∧ Y ) for Block

and Basu distribution with order reversals, with n = 50 and 10,000 iterations.

q B(F̂1) B(F ∗1 ) MSE(F̂1)
MSE(F ∗1 ) B(F̂2) B(F ∗2 ) MSE(F̂2)

MSE(F ∗2 )

uncensored α0 = 1, α1 = 1.03, α2 = 1
.1 0.0003 -.0710 1.2012 0.0000 0.0713 1.1910
.2 0.0000 -.0648 1.2428 -.0002 0.0646 1.1947
.5 -.0010 -.0455 1.3850 0.0003 0.0448 1.1797
.8 -.0010 -.0239 1.5016 0.0004 0.0233 1.1377
.9 -.0015 -.0154 1.5605 0.0004 0.0143 1.1004

uncensored α0 = 1, α1 = 1.04, α2 = 1
.1 0.0006 -.0840 0.9728 -.0011 0.0836 0.9390
.2 0.0001 -.0764 1.0403 -.0015 0.0745 0.9876
.5 0.0005 -.0517 1.2877 -.0011 0.0511 1.0574
.8 -.0005 -.0260 1.5016 -.0002 0.0253 1.0797
.9 0.0002 -.0157 1.6625 -.0003 0.0156 1.0461

uncensored α0 = 1, α1 = 1.05, α2 = 1
.1 0.0003 -.0964 0.7813 0.0003 0.0970 0.7351
.2 -.0007 -.0871 0.8914 0.0006 0.0871 0.7756
.5 0.0006 -.0576 1.1936 -.0008 0.0573 0.9054
.8 0.0001 -.0275 1.4988 0.0007 0.0282 1.0101
.9 0.0002 -.0163 1.6310 0.0004 0.0169 1.0035

5 Examples

We analyze a set of mortality data provided by Dr. H. E. Walburg, Jr. of the Oak Ridge
National Laboratory and reported by Hoel (1972). The data were obtained from a laboratory
experiment on 99 RFM strain male mice who had received a radiation dose of 300 rads at
5-6 weeks of age, and were kept in a conventional laboratory environment. After autopsy, the
causes of death were classified as cancer, of which there were two types,- thymic lymphoma,
reticulum cell sarcoma, and other causes, 39 of the 99 being classified in the last category.
Since mice are known to be highly susceptible to cancer when irradiated (Kamisaku, et al.
(1997)), we illustrate our procedure for the uncensored case considering “other causes” as
cause 1 and cancer as cause 2 in our terminology of Section 2, making the assumption that
F1 ≤ F2. The unrestricted estimators are displayed in Figure 1, the restricted estimators and
their simultaneous 80% confidence bands are displayed in Figure2.

We also considered the large sample test of H0 : F1 = F2 against H1 − H0, where H1 :
F1 ≤ F2, using the test described in Section 2.4. The value of the test statistic is 2.316
corresponding to a p-value of .0206. For the same data, Dykstra, Kochar and Robertson (1995)
tested H0 : λ1 = λ2 against H1 −H0, where H1 : λ1 ≤ λ2. They
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Figure 1: Unresticted estimators of cumulative incidence functions: F̂1 (dotted line) and F̂2

(solid line).
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Figure 2: Restricted estimators of cumulative incidence functions and their 80% simultaneous
confidence bands: F ∗1 (dotted lines) and F ∗2 (solid lines).

grouped the data into 6 groups and performed an asymptotic likelihood ratio test (LRT).
Recently, El Barmi and Kochar (2000) used a LRT to test for ordering of cause specific survival
functions (integral over (t,∞) instead of [0, t] in (1.2)) using the same grouped data. Using
their technique we have performed the LRT on this grouped data for testing ordering of the
CIF’s. This yielded a p-value of .0447 based on the least favorable distribution. Although the
results are comparable, we do not recommend grouping of continuous data for inference when
methods for analyzing the complete data are available, since grouping introduces uncontrollable
bias.

The same data were analyzed by Aly, Kochar and McKeague (1994) in testing whether
cumulative incidence for lymphoma was larger than that for sarcoma, treating the “other
causes” as a censoring mechanism, assumed to be independent of the incidence of cancer.
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From (3.7), their procedure and ours are identical in this case.

6 Concluding remarks

In this paper we have provided estimators of the CIF’s of two competing risks under a stochast-
ing ordering constraint, with and without censoring. The two risks of interest are not assumed
to be independent, but the censoring mechanism, when existent, is assumed to be independent
of the two causes of failure. We have shown that the estimators are uniformly strongly con-
sistent. The weak convergence of the estimators have been derived. These have been used to
develop asymptotic tests for equality of the CIF’s against the ordered alternative. We have
also provided formulas for constructing asymptotic simultaneous confidence bands that are
more conservative than in the unrestricted case, and whose widths could possibly be smaller
than those without the order restriction. Exact asymptotic bands are difficult to construct
in the censored case because of the complicated covariance structure. However, Lin (1997)
has provided several methods for approximating the bands, and we have shown how to take
advantage of the order restriction to produce more conservative bands, and possibly reduce
the bandwidths. Simulations seem to indicate that the MSE’s of the restricted estimators are
uniformly smaller than those of the unrestricted ones in all cases for finite samples when the
order restriction holds. We have also analyzed a real life data set and compared our results
with those in the literature.
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