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1. Introduction

Let A be an n× n complex matrix and ||A|| its norm as a linear operator on the
Euclidean space Cn ; i.e.,

(1) ||A|| = sup {||Ax||2 : x ∈ Cn, ||x||2 = 1},

where ||x||2 is the Euclidean norm of the vector x . The initial–value problem

(2) ẋ(t) = Ax(t), x(0) = x0,

has the solution

(3) x(t) = etA x0.

For many purposes — such as error bounds — one needs upper bounds for the quantity
||etA|| . A very useful bound is given in terms of the logarithmic derivative of A defined
as

(4) µ(A) = lim
h→0+

||ehA|| − 1

h
.

We have

(5) ||etA|| ≤ eµ(A)t for all t ≥ 0,

and µ(A) is the smallest number for which such an inequality holds. We know that

(6) µ(A) = λ1

(
A+ A∗

2

)
,
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where λ1(H) denotes the maximum eigenvalue of a Hermitian matrix A . See [1, 4].

In a recent paper [3], L. Kohaupt has studied the problem of finding the second loga-
rithmic derivative, and solved it when the operator norm is induced not by the Euclidean
norm as in our definition (1) but by the p –norm where p = 1 or ∞ . In this note we
resolve the problem for p = 2 . The somewhat unexpected answer led us to investigate
the third derivative as well. We prove the following

Theorem 1: Let ϕ(t) = ||etA||, t ≥ 0 , and let ϕ̇(0),
..
ϕ(0),

...
ϕ(0) denote the first

three right derivatives of ϕ at 0 . Then

(7)
..
ϕ(0) = ϕ̇(0)2.

Let λ1 > λ2 ≥ · · · ≥ λn be the eigenvalues of A + A∗ and x1, . . . , xn the corre-
sponding eigenvectors.

Then

(8)
...
ϕ(0) = ϕ̇(0)3 − 1

4

n∑
j=2

(λ1 − λj) | < xj, Ax1 > |2.

Note that ϕ̇(0) is just µ(A) . The equality (7) is a little surprising and does not
persist when we go to the third derivative. Our proof of (8) requires the assumption that
the eigenvalue λ1 is simple. It might be possible to drop this requirement.

2. Proofs

To handle higher order terms we need an extension of a standard perturbation result.
The discussion in the next paragraph is modelled on that in [5, p. 69].

Consider the eigen equation

(9) (A+ εB + ε2C) x1(ε) = λ1(ε) x1(ε),

where A,B,C are Hermitian, and λ1(0) = λ1 is a simple eigenvalue of A . Then
we have a series expansion

(10) λ1(ε) = λ1 + εk1 + ε2k2 + · · · .

Let x1, x2, . . . , xn be the eigenvectors of A corresponding to eigenvalues λ1, λ2, . . . , λn .
The vector x1(ε) has a series expansion

(11) x1(ε) = x1 + (εt21 + ε2t22 + · · · ) x2 + . . .+ (εtn1 + ε2tn2 + · · · ) xn.

The coefficients k1 and k2 are found as follows. Combine (9), (10), (11) and equate
the first order terms in ε to get
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A(t21x2 + t31x3 + · · ·+ tn1xn) +Bx1 = λ1(t21x2 + t31x3 + · · ·+ tn1xn) + k1x1.

Taking inner product of both sides with x1 , we get

(12) < x1, B x1 > = k1,

while taking inner products with xj, j ≥ 2 , we get (using Axj = λjxj )

tj1λj+ < xj, Bx1 > = λ1tj1, or

(13) tj1 =
< xj, Bx1 >

λ1 − λj
, j ≥ 2.

Again, using (9), (10), (11) and equating second order terms in ε , we get

A

(
n∑
j=2

tj2xj

)
+ B

(
n∑
j=2

tj1xj

)
+ C x1 = λ1

(
n∑
j=2

tj2xj

)
+ k1

(
n∑
j=2

tj1xj

)
+ k2x1.

Taking inner product of both sides with x1 , we get

n∑
j=2

tj1 < x1, Bxj > + < x1, Cx1 > = k2,

and then substituting for tj1 from (13)

(14)
n∑
j=2

| < xj, Bx1 > |2

λ1 − λj
+ < x1, Cx1 > = k2.

The information contained in (10) and (12) is often written as

(15) λ1(A+ εB) = λ1 + ε < x1, Bx1 > + O(ε2),

where x1 is the normalised eigenvector corresponding to the simple eigenvalue λ1 of
A . More generally, when λ1 is not a simple eigenvalue, we have

(16) λ1(A+ εB) = λ1 + ε max
x∈M, ||x||=1

< x,Bx > +O(ε2),

where M is the eigenspace corresponding to the eigenvalue λ1 of A . See, e.g.,
equation (3.8) in [2].

Now for any matrix A consider the function

g(t) = ϕ(t)2 = ||etA||2 = λ1(etA etA
∗
).

3



Then

ġ(t) = lim
h→0

1

h

[
λ1(etA(I + hA) (I + hA∗) etA∗)− λ1(etA etA

∗]
= lim

h→0

1

h

[
λ1(etA etA

∗
+ h etA(A+ A∗) etA

∗
)− λ1(etA etA

∗
)
]
.

Using (16) we get

(17) ġ(t) = max
x∈M, ||x||=1

< x, etA(A+ A∗)etA
∗
x >,

where M is the eigenspace of etA etA
∗

corresponding to the largest eigenvalue.
When t = 0 , this is the entire space Cn , and hence

(18) ġ(0) = max
||x||=1

< x, (A+ A∗)x > = λ1(A+ A∗).

Since

(19) ϕ̇(t) =
ġ(t)

2ϕ(t)
,

this gives the known result

µ(A) = ϕ̇(0) = λ1

(
A+ A∗

2

)
.

From (17) and (19) we have

ϕ̇(t) =
ϕ(t) ġ(t)

2 ϕ(t)2
= ϕ(t) max

x∈M, ||x||=1

< x, etA(A+ A∗)etA
∗
x >

2 < x, etA etA∗x >

≤ ϕ(t) λ1

(
A+ A∗

2

)
= ϕ(t) ϕ̇(0).

This implies that
ϕ(t) ≤ eϕ̇(0)t for all t ≥ 0,

which is the known result (5).

To calculate the second and the third derivatives we need the following

Lemma: Let x be a (normalised) eigenvector of A+ A∗ . Then

(20) < x,A∗ f(A+ A∗)Ax > = < x,A f(A+ A∗)A∗ x >,

for every function f . In particular,

(21) < x,A∗A x > = < x,AA∗ x >,
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(22) < x,A∗(A+ A∗)A x > = < x,A(A+ A∗)A∗ x > .

Proof: Choose an orthonormal basis consisting of eigenvectors of A+A∗ starting
with x . Let A = B + iC , where B = 1

2
(A + A∗), C = 1

2i
(A − A∗) . In the basis

we have chosen, let b1, . . . , bn be the diagonal entries of B , and let aij be the entries
of A . The two sides of (20) are the (1, 1) entries of the matrices A∗ f(A + A∗)A
and A f(A + A∗)A∗ , respectively. A simple calculation shows each of them is equal to
n∑
j=1

f(2bj) |a1j|2 .

�

Proof of Theorem 1: We have

g(h) = ||ehA||2 = λ1(ehA ehA
∗
) = λ1

[
(I + hA+

h2

2
A2) (I + hA∗ +

h2

2
A∗2)

]
+O(h3)

= 1 + h λ1

[
(A+ A∗) +

h

2
(2AA∗ + A2 + A∗2)

]
+O(h3).

Using (16) we get from this

g(h) = 1 + h λ1(A+ A∗) +
h2

2
max

x∈M, ||x||=1
< x, (2AA∗ + A2 + A∗2)x > +O(h3),

where M is the eigenspace of A + A∗ corresponding to its largest eigenvalue. Now
using (21) we see that for every x ∈M

< x, (2AA∗ + A2 + A∗2)x > = < x, (A+ A∗)2x > = λ2
1(A+ A∗).

This shows that

(23)
..
g(0) = λ2

1(A+ A∗).

Since
..
g(t) = 2 ϕ̇(t)2 + 2ϕ(t)

..
ϕ(t) , we have

..
ϕ(0) =

..
g(0)− 2ϕ̇(0)2

2ϕ(0)
.

Substituting the values of
..
g(0) and ϕ̇(0) from (23) and (6) here we get

..
ϕ(0) = λ2

1

(
A+ A∗

2

)
= ϕ̇(0)2.

This proves (7).
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To study the third derivative write out the expansion of g(h) as

g(h) = 1 + h λ1(Ã+ hB̃ + h2 C̃) +O(h4),

where

Ã = A+ A∗,

B̃ =
1

2
(A2 + A∗2 + 2AA∗),(24)

C̃ =
1

6
{A3 + A∗3 + 3A(A+ A∗)A∗}.

From (9), (10), (12) and (14) we know that

λ1(Ã+ hB̃ + h2C̃) = λ1(Ã) + h k1 + h2 k2 +O(h3),

where

(25) k2 = < x1, C̃x1 > +
n∑
j=2

| < xj, B̃x1 > |2

λ1 − λj
,

λj being the eigenvalues of Ã = A + A∗ , and xj the corresponding eigenvectors.
To calculate the second term in (25) note that

< xi, B̃xj > =
1

2
< xi, (A

2 + A∗2 + 2AA∗)xj >

=
1

2
< xi, [(A+ A∗)2 + A(A+ A∗)− (A+ A∗)A]xj >

=
1

2
{λ2

i δij + (λj − λi) < xi, Axj >}.

Hence,

(26)
n∑
j=2

| < xj, B̃x1 > |2

λ1 − λj
=

1

4

n∑
j=2

(λ1 − λj) | < xj, Ax1 > |2.

To calculate the first term in (25) note that

6 C̃ = (A+ A∗)3 + A(AA∗ − A∗A) + (AA∗ − A∗A)A∗

+ [A(A+ A∗)A∗ − A∗(A+ A∗)A].(27)

If W is the term inside the square brackets in (27), then by (22)

(28) < x1,W x1 > = 0.
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Further, note that

< x1, A(AA∗ − A∗A)x1 > = < A∗x1, [(A+ A∗)A∗ − A∗(A+ A∗)]x1 >

= < A∗x1, (A+ A∗ − λ1 I)A∗x1 >

= < A∗x1,

(
n∑
j=2

(λj − λ1)xjx
∗
j

)
A∗x1 >(29)

=
n∑
j=2

(λj − λ1) | < xj, A
∗x1 > |2

=
n∑
j=2

(λj − λ1) | < xj, Ax1 > |2.

(In the last step we have used the fact that xj are eigenvectors of A + A∗ ). This
shows also that

(30) < x1, (AA
∗ − A∗A)A∗x1 > =

n∑
j=2

(λj − λ1) | < xj, Ax1 > |2.

Equations (26) — (30) show that

(31) < x1, C̃x1 > =
1

6

{
λ3

1 + 2
n∑
j=2

(λj − λ1) | < xj, Ax1 > |2
}
.

From (25), (26) and (31) we obtain

(32) 6 k2 = λ3
1 −

1

2

n∑
j=2

(λ1 − λj) | < xj, Ax1 > |2.

This is then the value of
...
g(0) . Since

...
ϕ(0) =

...
g(0)− 6 ϕ̇(0)

..
ϕ(0)

2
,

we obtain the equality (8) from the expressions already derived for ϕ̇(0) and
..
ϕ(0) .
�

3. Remarks

1. We have proved (7) without the assumption that λ1 is a simple eigenvalue of
A+A∗ . The proof is facilitated by the first order expansion (16). We do not know
of an analogous second order expansion when λ1 is a multiple eigenvalue. This
compels us to assume λ1 is simple while proving (8). We believe this assumption
is not necessary.
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2. The inequality (5) says
ϕ(t) ≤ eϕ̇(0)t.

Because of (6) and (7) we know that

eϕ̇(0)t − ϕ(t) = O(t3),

and (8) tells us no further improvement is possible in general.

3. When the maximum eigenvalue of A + A∗ is simple we can get conditions for
equality in (5) using our result 8:

Proposition: Suppose λ1(A + A∗) is a simple eigenvalue of A + A∗ . Then
the following conditions are equivalent:

(i) ||etA|| = eµ(A)t for all t ≥ 0 .

(ii) ||ehA|| = eµ(A)h for some h > 0 .

(iii) The eigenvector x of A+A∗ corresponding to λ1 is also an eigenvector of A .

Proof: Clearly (i) ⇒ (ii). If (ii) holds for some h > 0 , then for all natural
numbers m

||eh/m A|| = eµ(A)h/m

because of submultiplicativity of the norm. Since ϕ̇(0) = µ(A),
..
ϕ(0) = µ(A)2 , we

have from (8)
n∑
j=2

(λ1 − λj) | < xj, Ax1 > |2 = 0.

Since λj 6= λ1 for j ≥ 2 , this implies < xj, Ax1 > = 0 . Hence A x1 is a multiple
of x1 . Thus the statement (iii) is true if (ii) is.

Now suppose (iii) holds. If Ax1 = λx1 , then A∗x1 = λ̄x1 and λ1 = λ+ λ̄ . In the
orthonormal basis x1, . . . , xn we can write

A =

[
λ 0
0 A1

]
.

Note that µ(A1) ≤ µ(A) = λ1/2 = Re λ . Hence

||etA|| = max (|etλ|, ||etA1||) = eµ(A)t.

Thus (i) is true if (iii) is.
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