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Ahbstract

The partial trace operation and the strong subadditivity property of entropy in quantum
mechanics are explained in linear algebra terms,
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1. Introduction

There 5 an mmlerestung matrix operation called partial trace in the physics lit-
erature. The first goal of this short expository paper 5 o connect this operation Lo
others more familiar o linear algebraists. The second goal is to use this connection Lo
present a slightly simpler proof of an important theorem of Lieb and Ruskai [11,12]
called the swrong subadditivity (55A) of quantum-mechanical entropy. Closely re-
lated to 58A, and a crucial ingredient in one of its proofs, 1s another theorem of
Lich [9] called Lieb’s concavity theorem (solution of the Wigner—Yanase-Dyson
conjecture). An inleresting alternate formulation and proof of this latter theorem
appeared in g paper of Ando [1] well-known to linear algebraists. Discussion of
the Lich-Ruskai theorem, however, seems 1o have remained confined o the physics
literature. We believe there 1s much of interest here for others as well, particulary
for those interested in inear algebra.
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2. The partial irace

Let .# be a finite-dimensional Hilbert space with imner product {., .} and let
() be the space of linear operators on #. If A is positive semi-definite (4 = )
and has traec one (Ir A = 1) we say A 15 a density matrix

Let 37, .#2 be two Hilbert spaces of dimensions n, m respectively. Let #) @
#°2 be their tensor product. The partial trace Iy, 15 a linear map from (% ®
A1) imto S0 ) defined as follows. Let ey, ..., £ be an orthonomal basis
for # 2. If A € () @ #2). then it g, A 15 the linear operator Ay on # | defined
by the relation

/]
Ay =) (x@ej. Ay ®e)), (1)
i=l
forall x, y € 3.

It is casy to see that Ay is well-defined (independent of the choice of the ortho-
normal basis {e;}). The partial trace Az = try, A 15 defined analogously, and 15 an
operator on 4 ;.

If A 1s positive, then so are its partial traces Ay, A2; and if A s a density matrix,
then so are A, Ax

An operator A on # ® H 2 15 sad w be decomposable f 1L can be factored
as A = A @ Az where A, Az are operators on ¥, 22, respectively. IF 4, 42
are densily matrices, then so s their tensor product 4 = 4 @ Az; and in this case
Al =trg, A, A3 = ry | A (The conditions r A; = 1 are needed for this.)

Let A be any operator or %) ® %2 with partial traces A, A2 and let B be a
decomposable operator of the form B) @ 1. Then one can see that

erB:ll'A|B|. [2}

For this choose orthonommal bases f,.. .. Jonand &y,..., ey for ¥ and 3
respectively and observe that

rAB=) {fi®e;. AB(f; ® ¢)))
id
=) (fi®ej ABIfi ®ej)
id
=Y _(fi. AL By fi)
=
= Ir f'l| E| :

The relation (2) characterises the partial trace operation A — A, and may be
taken as a definition instead of (1), (See the comprehensive review article by Wehrl
[22, p. 242]. The definition given there restricts itsell to A being a densily matrix;
the partial tree A s then called the reduced density matrix.)
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The third definition of partial trace that we give now seems more revealing. Let A
be any operatoron ) @ #2 and write its matrix representation in a fixed orthonor-
mal basis fi @e;, 1 < i< n 1 = j=< m. Patition this matrix into an n % n block
form

A=[Ay] 1<i,j<n, 3

where each Aj; i1s an m » m matrix. Then the partial truce 4) of A isthen xn
malnx

A =[ra;] 1<ij<n, (4)

Le., the partial trace 15 obtained by replacing the m x m matrix A;; in the decompo-
sition (3) by the number tr Aj;.

The partial trace A; is defined analogously: split A into anm » m block matrix
with n x n blocks and then replace each block by its trace.

If B isa decomposable operator of the form B = By @ I and if B) = [.bu-] is the
matrix of B in the basis fj, ..., Ji» then B can be written in n x n block matnix
form as

B=[b;I] 1€ij<n
From this one sees that if A and A are as in (3) and (4), then

rAB = bjirAj =tr 4, By.
iq

Thus this definition of the operation A — A leads to the same object as before.
Next we decompose this map as a composite of three maps.

Let @ = ¢™™/" he the primitive mth root of unity. Let U be the m x m unitary
diagonal matrix

U = diag(l, w.w’, ..., w1y,

Let T be any m x m matnx and let Z0(T'), the diagonal part of T, be the matnx
obtained from T by meplacing all its off-diagonal entries by #ers. Then following
the ideas in [4] we wnte

1 m—1
WT) = [FEELE,
M==3
k={)
MNext let
W=UgUg---gll (ncopies).

Let A be any operator on # ) & #7 and let
1 m—1
(A)=— Y wHawt (5
1(A) mg )
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If the matrix of A is partitioned as in (3) then
B\ (A4) = [F(A;))]. (6)

Let V be the m x m cyclic permutation matnx acting as Vey; = e, 1 = j < m,

where 6,01 = e1. Thisis the matnx
0 0 1]
1 0 0
v — 0 1 0
|00 1 0]

If Iy is anm = m diagonal matnx, then
1 m—1 |
— ) Vv¥DVi= —diugwrD,..., tr D},
e m
a diggonal matax with all 1its diagonal entries equal. Let
X=VaVeg---aV (n copies),
and for A € (%) ® ¥ 2) let
1 -1
o wa s *k .R_
2(4) = — ZX AX (7
k=)
If A is partitioned as in (3), we have

|
Prod{A)= [;{ﬂ'ﬂu”m] . (8)

where [y, 15 the m x m identity matrix.
Now ket 71 denote the (1.1) entry of a matrix T If Ais an nm x nm partitioned
matnx as in (3), let P1(A) be the n = n matnx defined as

b3(A) = m[AZ D], (9
We have then
trw, A = B30 Dro P (A). (10)

The expressions (5) and (7) for @, @2 cleady display them as “averaging
operations”. The map @5 is, upto a constant multiple, picking out a principal sub-
matnx. This too has an interpretation as an averaging operation [3,6]. All three are
completely positive maps [3], &, @ and 95 o @ o 9 are trace-preserving.

The partial trace (third definition) and its genemlisations have been studied in the
matrix lierature, though not under this name. For example, de Pillis [7] has shown
that the partial trace of a positive (semi-definite) matnx s postive. Generalisations,
where the blocks are replaced not by their truees but by other functions may be found
in [7.15.16] and in references given therein.
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3. Entropy inequalities

Let A be a density matrix. The (von Neumann) entropy of A s the non-negative
number

S(A) = —tr{dlog A). (11
One of its basic properties is concaviry as 8 function of A:

s (‘dl"r 13_) 5 34 ‘::ﬂ.‘?}.‘._ (12)

2

It is not difficull o prove this; see e.g.. [2, Problem IX.8.14]. In fact, a much
stronger statermnent follows from Loewner's theory of operor monotone functions.
The function f{t) = —f log ¢ 15 opemtor concave on (0, oo) (see [2, Exercise
V.2.13]).

Some deeper properties of entropy were proved by Licb and Ruskaiin 1973, OF
these a few have found their way into the matrix theory literature [ 1,2]. We will ouch
upon these briefly on way to the Licb—Ruoskai theorem on 58A.

Let A be a density matrix and K any self-adjoint operator. For 0 = ¢ < 1 let

1
Si(A, K) = sr[A KA K], (13)

where [ X, ¥ stands for the commutator XY — VX, The quantity (13) is a measure
of non-commutativity of A and K, and is called skew-entropy. This 100 15 4 concave
function of A, a consequence of a more general theorem of Liebh [9]:

Lieb’s Concavity Theorem. The function
flA. By =uwX*A'XB!"' (14)
af pasitive matrices A, B is jointly concave for each matrix X and forQ <1 £ 1.

Using the familiar dentificaton of () with % ® 2", this statement can be

reformulated as: the function
g(A.By=A"@ B’ (15)
of positive matnices A, B s jointly concave for 0 <S¢ £ 1.

This formulation, and a proof of it, were given by Ando [1]. Other proofs of Lieh’s
theorem that predate Ando’s include ones by Epstein [8], Uhlmann [21] and Simon
[20].

Another quantity of interest is the selative entropy

S5(A|B)y =trAllog A — log B) (16)
associated with a pair of density matrices A, B.
If 15 any convex function on the real line, then for Hermitian matrices A, B

tr[f(A) — f(B)] = tr[(A — B) f'(B)].
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This inequality {called Klein’s inequality ) apphed w the function f(t) = tlogs
on the positive hall-line shows that for positive matrices A, B,
trAflog A —logB) = (A — B).
If A, B are density matrces, then tr{A — B) = 0, and hence
S(A|B) = 0. (17
It is an easy corollary of Lich’s concavity theorem that
S(A[B) 15 jointly convex in A, B. (18)

{Choose X = I and differentiate the function (14) at + = 0.)

Finally, we come o the properties of §(A) and ${A|B) related to partial traces.

Let Ay, Az be density matrices. 1L 1s easy W see that § 15 additive over lensor
products:

54 ® A2) = 5{A )+ 5(A2). {19

Now let A be a densily matnx on 3 @ %7 and let Ay, Az be its partial races.
The subadditivity property of § says that

SUAY = 5(A )+ 5(Aq). (200
This can be proved as follows. From (17) we have
0 5{A|A; ® A2)
=trA(log A —log(d; & Az))
=trA(logA —log(d, @ 1) — log(d @ A2))
=tr{Alogad — A jlogA; —Azlog Az)  using (2)
= —5(A) + 5(A4) + S(A2).
From the definition (16) it 15 obvious that
S(UAU*|UBU*) = 5(A|B)
for every unitary matrix L. Hence, from the representations (5) and (7) we see that
5(P2 0 P(A)[Pr 0 P (B)) = S(P1(A)|P1(B)) = S(A|B).
Note that @ o v (A) 15 a matrix of the special form (8). [U1s casy o see that
S(®3 0 %20 P (A)|P3 0 P20 P (B)) = 5(P2 0 P(A)| P20 P1(B)).
Thus we have
5(A1|B1) = S(A|B). (21)

A more general result 15 known [13,14] and can be proved using our lechnigues:
if @ 1s any completely positive, trace-preserving map, then

S(P(A)|P(B)) = S(A|B).
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Now consider a tensor product ) ® %2 @ 3 of three Hilbert spaces. For
simplicity of notation let us use the notation Aj21 for an operator on this Hilben
space, and drop the index j when we take a partial wace tre . Thos e, A2 =
Az, oy, Az = Az, ele.

554 of entropy 15 the following statement.

Theorem (Lweb-Ruskai). Let Ay 23 be a density matrixon 3| @ # 2 @ # 1. Then
S(A123) + 5(Az) £ 5(A12) + §5(Ana). 23

Proofl. Using the diminishing property (21) with respect o the partial trace tr 4, we
see that

S(A12[4) ® A2) = S(A113]4, @ An).
We have seen while proving (20) that 5(T'|T & T2) = —5(T) + 5(T) + 5(T).
S0 the above inequality can be rewritlen as
—5(A12) + S{A )+ 5{A2) £ —5(A13) + S(A ) + 5(An),

and on rearranging terms, as (22). O

The reader should note that the imequality (22) s similar in form o others that
look like

S(EUFY+SENF) = S(E)Y 4+ S5(F).

As we said in the introduction, our emphasis here has been on hinear algebra
and matnx inequalities. To understand the importance of these results in physics
the reader should tum to the original papers of Lieb and Ruskai, and to the review
articles by Licb [ 10] and by Wehrl [22,23 ] where meferences to other works (including
altemate proofs and extensions) may be found. See also the books [17,18] and the
recent article [19].
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