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Abstract

Diallel crosses as mating designs are used to study the genetic properties of inbred lines in plant
breeding experiments. Most of the theory of optimal diallel cross designs is based on standard
linear model assumptions where the general combining ability effects are taken as fixed. In many
practical situations, this assumption may not be tenable since we are studying only a sample, of
inbred lines, from a possibly large hypothetical population. A random effects model is proposed
that allows us to first estimate the variance components and then obtain the variances of the
estimates. We address the issue of optimal designs in this context by considering the A-optimality
criteria. We obtain designs that are A-optimal for the estimation of heritability in the sense that
the designs minimize the sum of the variances of the estimates of the variance components. The
approach leads to certain connections with the optimaztion problem under the fixed effects model.
Some numerical illustrations are given.
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1. Introduction

Diallel crosses as mating designs are used to study the genetic properties of inbred lines in plant
breeding experiments. Plant breeders frequently need overall information on average performance
of individual inbred lines in crosses- known as general combining ability, for subsequent choosing
the best amongst them for further breeding. For this purpose diallel crossing techniques are
employed.

Consider a hypothetical population involving large number of lines and crosses so that all means
are estimated without error. Crossing a line to several others provides the mean performance of
the line in all its crosses. This mean performance, when expressed as a deviation from the mean
of all crosses, is called the general combining ability of the line. Any particular cross, then, has
an expected value which is the sum of the general combining abilities of its two parental lines.
The cross may, however, deviate from this expected value to a greater or lesser extent. This
deviation is called the specific combining ability of the two lines in combination. In statistical
terms, the general combining abilities are main effects and the specific combining ability is an
interaction. Griffing (1956) defines diallel crosses in terms of genotypic values where the sum of
general combining abilities for the two gametes is the breeding value of the cross (i, 7). Similarly,
specific combining ability represents the dominance deviation value in the simplest case ignoring
epistatic deviation; see Kempthorne (1969) and Mayo (1980) for details.

From the population consisting of a large number of lines the plant breeder carries out a diallel
cross experiment after drawing a random sample of p lines. Since we are observing a sample



from a large hypothetical population of lines and crosses, the expected value of an observation Yj;
(conditional on the realized value of the general combining ability and specific combining ability)
arising out of cross (7, j) involving lines i and j,i < j; i,7 = 1,...,p is modeled as
E(Yij) = n+g; + 95 + 555 » (1.1)

where p is the general mean, g; (g7) is the realized value of g; (g;), the general combining ability
effect of sampled i-th (j-th) line and sj; is the realized value of s;;, the specific combining ability
effect of cross (3, j).

Accordingly, in experimental mating design, the analysis of the observations arising out of n
crosses involving p lines will be carried out based on a model

Yin=p+9gi+gj+eij; 1<y, (1.2)

where Y;j; is the observation out of the /-th replication of the cross (4, ), g; is the i-th line effect
with E(g;) = 0, Var(g;) = o7, Cov(gi, g;) = 0, pu is the general mean and e;;; is the random error
component with expectation zero and variance o2, i < j;4,j = 1,...,p. Here the specific combining
ability effects are assumed to be negligible and have been absorbed in the error component. In
the model, as given in (1.2), p is the fixed effect while g;, g; (i < j) and e;j; are random effects.
This is the characteristic of what is called a random effects model, named Model 1T by Eisenhart
(1947) and Griffing(1956).

The basic idea in the study of variation among observations arising out of crosses is its par-
titioning into components attributed to different causes like additive value, dominance deviation
and epistatic deviation; see Falconer (1991). The relative magnitude of these components deter-
mines the genetic properties of the population. One of such properties is heritability which is of
paramount interest to plant breeders to understand the gene action on which depends the breed-
ing policies. The relative importance of heredity in determining phenotypic values is called the
heritability of a character in broad sense. Thus the ratio 05 / O'Z gives a measure of heritability,
where af, = 03 + 02 is the phenotypic variance and 03 is the genotypic variance. Such a measure
expresses the extent to which individual’s phenotypes are determined by the genotypes.

Our primary interest is thus in h* = o7 /(07 +07). It may also be mentioned here that the best
linear unbiased predictor (BLUP) of the unobserved line effects 4+ g; depends on good estimates
of 02 and o2. The BLUP(g) of g is used to rank the values of inbred lines, which are unobservable,
so that the predictors of g; and g; have the same pairwise ranking as g; and g; with maximum
probability. Thus in order to get a good estimate of h? and an efficient BLUP, we propose optimal
designs for estimation of o7 and o7. To find the estimates of the variance components o; and o7,
we adopt the Henderson Method III (See, Searle, Casella and McCulloch (1992, pg. 202). Such a
method has been used here since it gives an unbiased estimate of the variance components.

An experiment is carried out using a diallel cross design with p lines and n crosses. A diallel cross
design is said to be complete if each of the (]2’) crosses appear equally often in the design otherwise
it is said to be a partial diallel cross design. Customarily, diallel cross experiments have been
carried out using a completely randomised design or a randomised complete block design. Several
methods of obtaining such diallel cross designs have been given, together with their efficiency
factors, by Kempthorne and Curnow (1961), Curnow (1963), Hinkelmann and Kempthorne (1963)
and Singh and Hinkelmann (1988, 1990). However, with the increase in the number of lines p,
the number of crosses in the experiment increases rapidly, and in such a situation, adoption of a
complete block design is not appropriate. Singh and Hinkelmann (1995) used conventional partially
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balanced incomplete block designs both to select the diallel crosses to be observed and to arrange
them into blocks. Some orthogonal blocking schemes had also been advocated by Gupta, Das and
Kageyama (1995). Most of the theory of optimal diallel cross designs is based on standard linear
model assumptions where the general combining ability effects are taken as fixed and the primary
interest lies in comparing the lines with respect to their general combining ability effects. Under
such a model, Gupta and Kageyama (1994), Dey and Midha (1996), Mukerjee (1997), Das, Dey
and Dean (1998), Das, Dean and Gupta (1998), Chai and Mukerjee (1999), Parsad, Gupta and
Srivastava (1999) and Das and Ghosh (1999) have characterised and obtained optimal completely
randomised designs and incomplete block designs for diallel crosses. In many practical situations,
the fixed effects assumption may not be tenable since we are studying only a sample, of inbred
lines, from a possibly large hypothetical population. A random effects model is proposed that
allows us to first estimate the variance components and then obtain the variances of the estimates.
We address the issue of optimal designs in this context by considering the A-optimality criteria.
We obtain designs that are A-optimal for the estimation of heritability in the sense that the designs
minimize the sum of the variances of the estimates of the variance components.

In Section 2 we first obtain the estimate of o7 and o7, under an unblocked model, and then
obtain the variances of these estimates. In Section 3 similar thing is done under a block model.
Finally, in Section 4 we characterize A-optimal designs.

2. Unbiased Estimates of Variance Components and their Variances

In this section we consider the unblocked model. An experiment is carried out using unblocked
diallel cross design with p lines and n crosses. From (1.2) we can represent our model in matrix
notation as

Y = pl+ Dig+e, (2.1)

where Y is the vector of n observations, ¢ is the p x 1 vector of general combining ability effects
with E(g) = 0 and Var(g) = o071, e is the error vector with E(e) = 0 and Var(e) = 071, and
Dy = (d})) is the p x n line versus observation matrix with d{!) = 1 if v-th observation is out of a
cross involving the u-th line and d{}) = 0 otherwise. Here 1 represents a column vector of all ones

and I denotes an identity matrix. We assume that D; has full row rank. Equivalently,

Y = X<M> +e,
9
where X = (1 D).

In general, for a matrix X = (X; X5), we have an identity among the matrices of quadratic
forms given by,
X(X'X) X = Xy (X1X0) " X + M Xo (XM Xo) ™ Xo M, (2.2)

where T~ is a g-inverse of a matrix 7 and M; = I — X;(X]X;)” X] is idempotent. From this
identity we can obtain three quadratic forms, that is, the total corrected sum of squares (SST),
the sum of squares due to lines (SSL) and the sum of squares due to error (SSE). Partitioning
SST into SSL and SSFE, based on Henderson’s Method III, we have

SST =S5SL+ SSE.



Now,

SST = Y'MY, (2.3)
SSL=Y'|[MD| (D;MD;)” D;M]Y, (2.4)
SSE =Y'M,Y, (2.5)

where M =1 — 111" and My =1— (1 D})[(1 D})' (1 D})] (1 D}).

We now obtain the expected values of SSL and SSFE using results given in Searle, Casella and
McCulloch (1992, pages 204 and 466). Let G = D, D} = (g,;) and s = D;1. Using the definition
of Dy it can be verified that for i # j, g;; gives the number of times cross (7, j) appears in the
design, g;; = s; where s = (s1, 52,...,5,)" and s; is the replication of the i-th line. Also, since we
assume Rank(D;) = p, G is symmetric with Rank(G) = p and tr(G) = 2n where for a square
matrix A, tr (A) stands for the trace.

E[SSL] = o] tr [MD|D\]+ 0’ (Rank (1 D}) — Rank (1))

[ 1
= o’tr (I — Ell’) D'lDl} +0oZ(p—1)
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I 1
= o u [0 = = (D) ()] + 020 - 1)

9

[ 1
= oltr |G — —ss'] +0o2(p—1),
R

and
E[SSE] = (n-—p)o?.
Thus,
SSL| _ fo2\ .
ElSSE]_L(OQ—LU, (2.6)
— Llgg _ ‘
where L = ( o [G "Ss] (—1) ) ,and 0% = (Jé)
0 (n—p) o
From (2.6) it follows that an unbiased estimator of o is
52
SSL
~2 gl — 71
(e ().
o1 | n—p —(p-1)
where L™ = Gty o L] < 0 tr[G-1ss] )
e TS . oy L4 -1 _ 1 n—p —(p—l)
Let Cp = G — ~ss" and W = D} — 1s". Then L™ = P T G < 0 tr > . Also, we
can write
SSL=Y'(MD} (D;MD})” DiM)Y =Y'WC; W'Y, (2.8)
since 1
MD; = D~ ~15/ =, (2.9)



and

1 1 1
DiMD, = D, (1 _ _11'> Dl = D\D, — ~s5 = G — —s5' = Cp. (2.10)
n n n
Note that,
! 1 !
D1W = -Dl (Dl — —18>
n
1 !
— G- tsd =G,
n
and
WW = (D — Ss1)(D) — 11
! n 1 n
1
= G- =55 =C,.
n

Also, since Cyl = 0, Rank(Cy) < p—1. However, since Rank(D;) = p, it follows that Rank(Cy) =

p—1. To study the sampling distribution of 62 in terms of its sampling variance-covariance matrix,

we first derive the dispersion matrix of (ggé

Let Ay = WCyW'. Then using the results given in Searle, Casella and McCulloch (1992, pg.
467) on variance and covariance of quadratic forms, under normality, we obtain

Var(SSL) = Var(Y'WC; W'Y)
= Var(Y'AY)
= 2tr (4V)® where V = Disp(Y) = 02D\ D, + 021

= 26 [WCW' (o2D\D; + 0?1)]
= 2tr [oyWCy W'D\ DyWCy WD, Dy + 002 W Cy WD DyW Cy W'
+020?W Cy W'WCq W' D{ Dy + ot W Cy WWCy W] .
Now evaluating each of the above four terms, we have
v (oW Cy W' Dy DyW Cy W'D, Dy
= o tr [(DyW)Cy (DyW)(DyW)Cy (D W]
= oy tr [CoCy CoCoCy Co]
03 tr CZ,

tr [o202W Cy W' Dy Dy W Cy W]

= ojo? tr [(W'W)Cy (DyW) (DyW)Cy |
= ; 2 tr [CoCy CoCoCy |

= 0302 i [CoCoCy ]

= 007t [GoCy Ci)



_ 22
= o,0, tr Cy,

tr [o202W CqW'WCy W DD
2tr [(DiW)Cy CoCy (DIW)]
2 tr [CoCy CoCy Co

o2 tr [CoCy Ci
2

tr [ W CrWW W]
= ol tr [(W'W)Cq (W'W)Cq]
= ol tr [CoCy CoCy |
= o tr [C’OCO_]
= o} Rank(Cy)
= (p—1)or.

Therefore,
Var(SSL) = 2{o, tr Cf + 2070, tr Co + (p — 1)0, }.

Let Ay = M. Now using the fact D, My = 0 and A; My = 0, we have

AV Ay = Ay (02D1 Dy + 021) My = A, (02D(D})' My + 02 M) = 0.

Therefore,
Cov (SSL, SSE)
Cov(Y'A1 Y, Y'A)Y)
= 2tr [A;VA)V]
= 0.
Finally,

V(SSE) = V(Y'AyY)
= 2tr [My (02D\ Dy +021) My (02D} Dy + 021
= 2tr |:O'§MOM0j|

= 20t tr M,
= 2(n—p) ol
Thus, we now have
. (SSLY _ [ 2{o, tr Cf + 20207 tr Cy + (p — 1)o, } 0
DZSp(SSE) = ( 0 Gn—p) ot | (2.11)



From (2.7) and (2.11) we finally have
o2 SSL ayn a
Disp| 9| =L"'Di LYy =2 "t "2 2.12
P (62) ZSp(SSE>( ) ( as Gz )’ (212)
where

a1 = {(n —p)(oy tr CF + 20207 tr Co + 07) + 0 (p — 1)} /{(n — p)(tr Co)*},
a12d= ag1 = —o(p —1)/{(n —p) tr Co},
agy =0, /(n —p).

3. Unbiased Estimates and their Variances under a Block Model

An experiment is carried out using a diallel cross design with p lines and b blocks each having
k crosses. Here, n = bk.
We represent our model in matrix notation as

Y =pl+ D)3+ Dig+e, (3.1)

where as before, Y is the vector of n observations, g is the p x 1 vector of general combining ability
effects with E(g) = 0 and Var(g) = 021, j is the fixed effect due to blocks and e is the error vector
with E(e) = 0 and Var(e) = 021. Also, D; = (d\})) is the p x n line verses observation matrix,
as mentioned earlier, and Dy = (d?)) is the b x n block versus observation matrix with d?) = 1 if

uv
the v-th observation arise from the u-th block and d) = 0 otherwise. Equivalently,

U
YX(5)+6,
g

1T 1'Dy 1'D}
X,X - D21 DgDé DQDll y (32)
D1 DD, DD,

where X = (1 D), D}). Then,

where D11 = s, Dy1 = k1, D\D} = G, D,D), = kI, DD}, = N and N = (n;;) is the incidence
matrix with n;; indicating the number of times the i-th line occurs in the j-th block. In our model
(3.1) we may consider /5 to be a random effects block parameter. Such a consideration do not alter
the results obtained here.

Now, using the identity given in (2.2), we can obtain four quadratic forms, that is, the total
corrected sum of squares (SST), the sum of squares due to lines (SSL), the sum of squares due
to blocks (SSB) and the sum of squares due to error (SSE). Partitioning SST into SSL, SSB
and SSE, based on Henderson’s Method III, we have

SST =SSL+ SSB+ SSE.
Now, as in previous section, SST = Y'MY,
SSL =Y'|[MyDi (DiMyD})™ DyMy] Y, (3.3)
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SSB+SSL=Y'[M(D} D){(Dj D;)M(Dy D))} (Dy DyyM]Y, (3.4)
SSE =Y' MY, (3.5)
where

1
M = I--11,
n

My = I—(1 Dy Dy (1 Dy (1 Dy

I
My = I—(1 Dy Dy)[Q Dy DY) (1 Dj D’)]_ (1 D, D).
Let C = G — k7 'NN'. Tt is easy to see that Rank(C) < p—1. We now obtain the expected values
of SSL, SSB and SSE. Here we shall use the fact that Rank(X) = b+ Rank(C') and also use
results given in Searle, Casella and McCulloch (1992, pages 204 and 466).

E[SSL] = o} tr [MyD]D1]+ o7 (Rank (X) — Rank (1 D}))

2 ! ! 0 Ol 0 OI I IAYA a YA
= o,tr DDy — Di(1 Dy) 0 k127 0 k12 (1 D) Dy
+ 02((b + Rank(C)) — b)
= oZtr |G — k™ (DyD})(DyD})'] + 0?Rank(C)
= o2tr |G~ k'NN'| + 02 Rank(C)
and

E[SSE] = (n—b— Rank(C))o?

Therefore,
SSL o2
E[SSE] L<J§>:L02, (3.6)
[ trC Rank(C')
where I = 0 n—0b— Rank(C) )

From (3.6) it follows that an unbiased estimator of o2 is

~2
~2 Ug 1 SSL
oo () =i 855), -
1 1 n—b— Rank(C) —Rank(C')
where L™ = (n—b—Rank(C)) tT C ( 0 tr C )

Note that since Dy M,D} = G — %NN’ = C we can write,

SSL = Y'(MyD; (D;MyD})” DyMy) Y
— Y'HC H'Y

where H = MDD = D! — k" D, N".



The following results are useful and would be used subsequently.
D\H = D\D| -k 'D D,N'

= G—%NN’ = C,

H'H = (Dy-k'ND,) (Dj— k™' DyN')
= D\D,—k'NN' = C,

and

Dy;H = Do(D, -k 'DyN')
= N —k'kN = 0.

To study the sampling distribution of 62 in terms of its sampling variance-covariance matrix we
now, working on lines similar to that in Section 2, obtain the dispersion matrix of (ggg)

Let B; = HC~H'. Then,

Var(SSL) = Var(Y'HC™H'Y)
= Var(Y'BY)
= 2tr (B;V)® where V = Disp(Y) = 02D\ D; + 021

= 20 [HC H' (62D}D, + 021)|”
= 2tr [ojHC™H'D\D\HC™H'D\D; + 002 HC~H'D{ D, HC™ H'
+o.00 HC"H'HC™H'D{D, +0,HC"H'HC H'| .

Now evaluating each of the above four terms, as in unblocked case, we have

tr [oyHC™H'D\D\HCH'D\Dy| = o)t C?,
tr [o202HC™H'D{D,HC™ H'|
tr [USUSHC_H'HC_HD'IDl] = oo, trC,
and tr [o!HC"H'HCH'| = o} Rank(C).

_ 2.2
= o0, trC,

Therefore,
Var(SSL) = 2{0;1 tr C% + 2070, tr C' + o Rank(C)}.

Let By = Mj3. Now using the fact D, M3 = 0 and By M3 = 0, we have
B\VB, = By (02D Dy + 0I) My = By (02D} (D) Mz + 02M;) = 0.
Therefore,
Cov (SSL, SSE)
= Cov(Y'B, Y, Y'ByY)

= 2tr [A1VA2V]
= 0.



Finally,
V(SSE) = V(Y'ByY)
= 2tr [M; (07D\Dy +021) M; (07D} Dy + 021
= 2tr [0l M5 M)
= 20! tr My
2(n — b — Rank(C)) o?.

Thus, we now have

. (SSL\ _ ([ 2{o, tr C*+20%0; tr C' + o} Rank(C)} 0
Disp (SSE) - ( 0 2n—b— Rank(C)) ot | Y
From (3.7) and (3.8) we finally have
. [&62 . (SSL ap a
g) _ 11 —1y 1 12
Disp <6§> L™ " Disp <SSE> (L) =2 < o1 oy ) : (3.9)
where

a1 = {(n—b—Rank(C))(o, tr C*+2070; tr C+o;)+o; (Rank(C))*}/{(n—b—Rank(C))(tr C)?},
ayy = ag = —ot Rank(C)/{(n — b — Rank(C)) tr C},
and
agy = o2/(n —b— Rank(C)).

In the remaining paper we take Rank(C) = p — 1 since we assume that D)1 =
the only two independent restrictions among the columns of the design matrix.

iDi1 =1 are

4. A-Optimal Designs

In Section 2 and Section 3 we have explicitly obtained the variance of 63 and 62 under an
unblocked and a blocked model. Let D(p, n) be the class of diallel cross unblocked designs involving
p lines and n crosses and D(p, b, k) the class of diallel cross designs with p lines arranged in b blocks
of k crosses each. Also, we use Dy(p, n) to denote the subclass of designs in D(p, n) having designs
with s; = s =2n/p;i=1,...,p. In fact, among designs in D(p, n), only designs in the subclass
Do(p,n) has maximal tr Cy. Finally, Dy(p, b, k) is the subclass of designs in D(p, b, k) for which
tr C' is maximum. A design d is said to be A-optimal if, among all designs in D, d minimizes
Var(s2) + Var(s2). We need the following wellknown result, see, for example, Cheng (1978, page
1246).

Lemma 4.1 For given positive integers v and t, the minimum of n? + n3 + -+ + n2 subject to

ni+ne+ -+ +n, =t, where n;’s are non-negative integers, is obtained when t — v[t/v] of the n;’s

are equal to [t/v]+1 and v —t+v[t/v] are equal to [t/v], where [z] denotes the largest integer not

exceeding z. The corresponding minimum of n} +n3 + - -+ n2 is t(2[t/v] + 1) — v[t/v]([t/v] + 1).
We now give a Lemma that would be used subsequently.

Lemma 4.2 Consider a real symmetric square matriz A of order m having rank r. Then
tr A2 S 1
(tr A)2 — r
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and the equality is attained when the non-zero eigenvalues of A are equal.

Proof. Let A1, Ag, ..., A\, be the non-zero eigenvalues of A. Then

tr A YN
(tr A)2 (X Ai)?

But,

r

/\——Z/\ > 0
=1

r T \2
Z - ;)‘) > 0
r
N 1
or, Zz_l ) > =

(Ci M) o

and the result follows.
In the unblocked situation, rewriting the variance expressions as given in (2.12), we have

v = 20t [ER ] it [ 42t [Bo=81n

1
tr O()
and

Var(s?) = 20,/(n—p).

In order to minimize Var( 2) 4+ Var(6?2), within the class of designs D(p,n), it is sufficient to
and

minimize Aroo)? C tr o
Similarly from (3.9) it follows that an A-optimal design in D(p, b, k) minimizes

Next we have the following two Lemmas

tr ¢2

troy and

trc

Lemma 4.3 For any design d € D(p,n),
tr (Coq) < 2n(p — 2)/p.
Equality holds if and only if s4, =2n/p=sfori=1,...,p

Proof. For any design d € D(p,n),

1 p
C()d stz - 52832
1=1

Now, since 3%, s4; = 2n and 2n/p = s, using Lemma 4.1,
p
> s5 > 4An?/p.
i=1

Hence,
tr (Coa) < 2n —4n/p =2n(p — 2)/p.
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By Lemma 4.1, equality above is attained if and only if s4; =2n/p=sfori=1,...,p.
Lemma 4.4 For any design d € D(p, b, k),
tr (Cy) < k7 '0{2k(k — 1 —22) + px(x + 1)},
where © = [2k/p]. Equality holds if and only if ng; =z orx+1foralli =1,2,...,p,j =1,2,...,b.

Proof. For any d € D(p,b, k), we have

p b
tr (Cy) = stz—k IZanm
i=1j=1
p b
= 2bk—k‘122nfh~j.
i=1j=1

Now, 3P, 22:1 ngij = 2bk. Therefore, using Lemma 4.1,

p b
> ma; > b{2k(2x +1) — pr(z + 1)},

i=1j=1
where x = [2k/p]. Hence,

tr (Cy) 2bk — k™ 'b{2k(2z + 1) — pa(x + 1)}

E~'o{2k(k — 1 — 22) + pr(z +1)}.

IN

By Lemma 4.1, equality above is attained if and only if ng; =2z orz +1,fori=1,2,...,p; j =
1,2,...,b.
Note that if 2k < p then z = 0 and in that case we have

tr (Cyq) <2b(k—1), dé€ D(p,b,k). (4.1)
Making an appeal to the results of Lemmas 4.2 and 4.3, we have the following result.

Theorem 4.1 Let di € D(p,n) be a diallel cross design, and suppose Coa; satisfies
(1) tr (Cogy) = 2n(p — 1)/p, and

(i1) Cogy is completely symmetric in the sense that Coqs has all its diagonal elements equal and
all its off-diagonal elements equal.

Then d is A-optimal in D(p,n).
Theorem 4.1 establishes the A- optimality of complete diallel cross designs in D(p,n). Again,
making an appeal to the results of Lemmas 4.2 and 4.4, we have

Theorem 4.2 Let d* € D(p,b, k) be a block design for diallel crosses, and suppose Cy satisfies
(i) tr (Cg) = k~'0{2k(k — 1 — 2x) + px(x + 1)}, and

(i1) Cgy is completely symmetric.
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Then d* is A-optimal in D(p,b, k).

We now show a connection between nested balanced incomplete block design of Preece (1967)
and optimal designs for diallel crosses. For completeness, we recall the definition of a nested
balanced incomplete block design.

Definition 4.1 A nested balanced incomplete block design with parameters (v, by, ki, r*, A1, by,
ko, Ao, m) is a design for v treatments, each replicated r* times with two systems of blocks such
that:

(a) the second system is nested within the first, with each block from the first system, called
henceforth as ‘block’ containing exactly m blocks from the second system, called hereafter as
‘sub-blocks’;

(b) ignoring the second system leaves a balanced incomplete block design with usual parameters
v, bl; kla T*a /\1;

(¢) ignoring the first system leaves a balanced incomplete block design with parameters
UaankQaT*;)‘Q-

From the well-known parametric relations for a balanced incomplete block design, it is easy to
see that the following parametric relations hold for a nested balanced incomplete block design:

ort = blkl = mble = kaQ, (’U — 1)/\1 = (kl — 1)7'*, (’U — 1)/\2 = (kg — 1)7'*

Consider now a nested balanced incomplete block design d with parameters v = p, by, k1, ks =
2, r*. If we identify the treatments of d as lines of a diallel experiment and perform crosses among
the lines appearing in the same sub-block of d, we get a block design d* for a diallel experiment
involving p lines with v. = p(p — 1)/2 crosses, each replicated r = 2by/{p(p —1)} times, and b = b,
blocks, each of size k = ki/2. Such a design d* € D(p,b, k); also, for such a design, ng«;; = 0 or
1fori=1,2,...,p,5 =1,2,....band Cg- = (p— 1)7120(k — 1)(I — p~'11’). Clearly, Cy- given
above is completely symmetric and tr (Cy-) = 2b(k — 1) which equals the upper bound for tr (Cy)
given by (4.1). Thus, from Theorem 4.1, the design d* is A-optimal in D(p, b, k). Summarizing,
therefore, we have

Theorem 4.3 The existence of a nested balanced incomplete block design d with parameters v =
p, b1 = b, by = bk, ky = 2k, ko = 2 implies the existence of an A-optimal incomplete block design d*
for diallel crosses.

The construction methods and elaborate tables of nested balanced incomplete block designs
are available in a recent review paper by Morgan, Preece and Rees (2000). The tables in their
paper provide solutions to our A-optimal diallel cross designs within the parametric range 2k <
p < 16, s < 30. The case 2k = p is dealt in Gupta and Kageyama (1994). The nested balanced
incomplete block designs have been extended to nested balanced block designs and a series of
designs, A-optimal under our setup, is given in Das, Dey and Dean (1998).

We now have the following

Theorem 4.4 A design d with p lines is A-optimal in Dy(p,n) with s = 2n/p if and only if the
number of times, ggziv, that cross (1,1") occurs in df satisfies

9azi — s/(p—1)| <1 fori# i, i,i' =1,...,p.
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Proof. For any design dy € Dy(p,n), Coay = Ga, — %511’ and

4 2 -2
tr (C[)do) =2n— _n = n(p )7
p p

which is fixed for the class of competing designs. Now, using the fact that » Zkygdoii’ =n,

4s
tr(ngo) = Z Z gsoii' - ; Z Z gdoii’ + 482
8
= 23> Gair TP = — DD Gagi

s
i< i D

= s°p—8sn/p+2 Z Zgﬁoii,

1< 4

= Sp—4)+2>> gar-

1< g

But, from Lemma 4.1, with v = p(p — 1)/2 and ¢ = n, we have

5 i 2 nCls/tp = 1]+ 1) ~ s - 1]/ - ]+ ).
Hence,
tr (C) > 20— 4) + 025/~ 1) + 1) - P2V e/p - )15/ - 1]+ 1),

By Lemma 4.1, equality above is attained if and only if g4, = [s/(p — 1)] or [s/(p — 1)] + 1, for
N

From Theorem 4.4, partial diallel cross designs in which every line appears the same number
s = 2n/p of times and in which each cross appears either A\ = [s/(p — 1)] or A + 1 times are
A-optimal. A common way to construct a partial diallel cross design is to take a conventional
binary incomplete block design with p treatments each occurring s times, n distinct blocks of size
2 and treatment concurrences A and A+ 1 (called the auxiliary design by Singh and Hinkelmann,
1995) and to form crosses between the two treatments in each block. Any such partial diallel cross
design satisfies the conditions of Theorem 4.4 and is A-optimal. Among others, this includes the
M-designs of Singh and Hinkelmann (1995), the first series of designs of Mukerjee (1997), and the
designs formed from the basic plans listed by Gupta, Das and Kageyama (1995).

Finally, we have

Theorem 4.5 A design d* in Dy(p, b, k) with 2k/p an integer is A-optimal in Dy(p,b, k) if and
only if the number of times, gqeiv, that cross (i,i') occurs in d* satisfies

|9air — s/(p—1)| <1 fori#4, i,i =1,...,p.

Proof. Tt follows from Lemma 4.4 that a design d in Dy(p, b, k) with 2k/p integer has ng;; = 2k/p
foralli =1,2,...,p,7 =1,2,...,b. Thus, each line occurs s = 2kb/p times and Cy = Gd—%’“ll’ =
Ga— 217511’ with tr (Cy) fixed for the class of competing designs.
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Now, using the fact that n = bk and arguing on lines similar to the proof of Theorem 4.4 the result
follows.

Das, Dean and Gupta (1998) gave two general methods of construction of Partial diallel cross
designs. Their designs belong to Dy(p, b, k) with 2k/p an integer. Moreover the designs satisfy the
conditions of Theorem 4.5 and are thus A-optimal in Dy(p, b, k).

Example 4.1 Suppose we have p = 8 lines and n = 16 crosses. We recommend the following
design:  {(1,6):(2.5);(3:4);(0,7):(2,0)3(3,6):(4,5); (1.7): (3,1):(4,0)3(5,6):(2.7): (5.3):(6,2)3(0,1):(4,7) -
This design is A-optimal in Dgy(8,16). The condition of Theorem 4.4 is satisfied since every cross
(1,1") appears 0 or 1 time in the design.

Example 4.2 Consider the following design (rows are blocks) with parameters p = 8, b = 4 and
k = 4.

(2,5
(3,6
(4,0
(6,

(1,6
(2,0
(3,1
(5,3

Y

Y Y

(3,4) (0,7)
(4,5) (1,7)
(5,6) (2,7)
2) (0,1) (4,7)

This design is A-optimal in Dy(8,4,4). An A-optimal design in Dy(8,11,4) with b = 11 blocks of
size k = 4 can be obtained by appending the full set of p — 1 = 7 blocks as indicated in Das, Dey
and Dean (1998).

— — —

Y Y

) )
) )
) )
) 1)

Remark 4.1 The A-optimal design in D also minimizes the Var(57) in D since Var(67) is
independent of the design.

Remark 4.2 The results on the characterization of A-optimal designs hold for D-optimality as
2
well. This is so because, for unblocked case, the minimization of determinant of Dzsp( ) is

tr ¢2
(tr Co)
argument hold for designs under block model.

and as is required for A-optimality. The same

equivalent to the minimization of tr o

Remark 4.3 As a result of the very nature of the derived objective function under the random
effects model that we are minimizing, every result on previously known M S-optimal designs under
the fixed effects model remains valid under A- and D-optimality of designs in D, for random effects
model.
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