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Abstract

In this article, we construct spectral triples for the C*-alpebra of continnows fimetions
on the quantum ST{2) proup and the quantum sphere. There has been varions approaches
towards building a caleulus on quantum spaces, but there seems to be very few nstances
of computations outlined in chapter G, EJ] We give detailed computations of the associated

Connes-de Rham complex and the space of La-forms.
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1 Introduction

Given a noncommutative space, there is no general method for constructing a spectral triple on
it. Even though there are general results asserting the existence of enough unbounded Kasparov
modules ([1]), in concrete examples, it is often difficult to carry out this prescription. In [:_2’.]1 the
anthors characterized all spectral triples for the C*-algebra A of continuous functions on SU,(2)
represented on its Lo-space, assuming equivariance under the (co-)action of the group itself.
In the present article, we take the more standard representation of A on H = Lo(M) @ La(Z)
(see ((1.3) below), and impose equivariance condition under the action of the group §' x §.
Employving similar techngues as in tj] we arrive at a spectral triple of dimension 2. One
advantage of this triple is that it is relatively easy to compute the associated Connes-de Rham
complex, which we give in section 3. This complex is supported on {0, 1}, and thus captures the

topological dimension, which can be seen to be 1 from the following well-known exact sequence
0 —KgCB)—A— C(8") —0. (1.1)

The complex of square integrable forms were introduced by Frolich et. al in EE{] We also present

caleulations of these Lo-forms for this spectral triple.
In the last section, we briefly indicate how to carry out a similar construction of a spectral

triple and the associated caleulus for the quantum sphere S



Let us start with a brief description of the C*-algebra of continuous functions on the quan-
tum SU(2), to be denoted by A. This is the canonical C*-algebra generated by two elements

o and /7 satisfying the following relations:
ata+83=1 a0 +¢B8 =1, a8 -gba=0, af* —qfta=0, 33 = 33. (1.2)

The C*-algebra A can be described more concretely as follows. Let {e;}izg and {e; hiez
be the canonical orthonormal bases for Lo(M) and La(Z) respectively. We denote by the same
symbol N the operator ey, — key, k = 0, on Lo(M) and e — key, k € £, on Ly(E£). Similarly,
denote by the same symbol £ the operator e «— egp_1, k = 1, ey — 0 on Lo(M) and the operator
e — ex_1, k € L on Ls(E). Now take H to be the Hilbert space Ly(M) ® Lo(Z), and define 7
to be the following representation of .4 on H:

ma)=ivVI-¢N eI, w(B)=d" ®L (1.3)

Then w is a faithful representation of 4, s0 that one can identify .4 with the C"-subalgebra of
L(H) generated by w(a) and «(4). Image of 7 contains K ® C(S!) as an ideal with C(S!) as

the quotient algebra, that is we have a useful short exact sequence
0— KeC(s!) —— A4-50(s") — 0. (1.4)
We will denote by Ay the *subalgebra of A generated by « and 3. Let

alF gk if i =0,

a3 gk = { . _
(a*)~i3ig* ifi <.

Then {o;# 3% : i € Z, j, k € M} is a basis for .A¢. The Haar state h on A is given by,

. u)
h:ae(1-¢°) Z 7 (ei, aeqp)-
i=(}
Remark 1.1 The representation w admits a nice interpretation. Let M be a compact topolog-
ical manifold and E, a Hermitian vector bundle on M. Let I'{M, E) be the space of continuous

sections. Then I'(M, E} is a finitely generated projective C(M) module. Define an inner
product on I'{M, E} as

(81, 82) :=[(51{m}, sa(m))  duv{m),

where v is a smooth measure on M and (-,-),, is the inner product on the fibre on m. Let
‘He be the Hilbert space completion of I'(M, E'). Then we have a natural representation of
C(M)in L(HEg). The same program can be carried out in the noncommutative context also.
Let B be a C"-algebra and E a Hilbert B-module with its B valued inner product (-,-);5. Let
T be a state on B. Consider the inner product on E given by (€1, e5) = 7({e1,e2)5). If we
denote by H g the Hilbert space completion of E, then we get a natural representation of B in
L{(Hg). Now in the context of SU,(2), let p = |eg)(eg| @ I € A. Then it is easy to verify that



He = [*(N) @ P(Z) for E = Ap with its natural left Hilbert A-module structure. Moreover,
the associated representation is nothing but the representation of A described above. Also,
viewed this way, one can think of the representation of A on La(h) given in E] as being a
countable direct sum of representations each of which look like 7 (just think of A4 as ©.Ap;

where p; = |e;){e:| ® I).

2 S! x Sl-equivariant spectral triples

The group G = S! x S! has the following action on A:

0= 20y
'T:__'ll'_l ¥ { I.'.? — '.i‘j_?'.'_? {2.1}

Let I/ be the following representation of G on H: U, , = =N 2w, Then for any a € A, one
has m(1-w(a)) = UZ  m(a)Us w, Le. the action 7 is implemented through this representation [/
of . A self-adjoint operator with discrete spectrum equivariant under this G-action must be
of the form

D : e — dijeig. (2.2)

It is easy to see that if D is such an operator, then [D, a| and |D, 4] are given by
[D1 ﬂ]fii’j = {d-i—l_.j T d‘!j} v 1— qﬂi Bi—1,4, (23}
[D,Ales; = (dij—1 —diz)a eij-1. (24)

Employing arguments very similar to those used in the proofs of propositions 3.1 and 3.2

in @, we now get the following results.

Proposition 2.1 Let D be an operator of the form e;; — dijei;. Then [D,al is bounded for
all a € Ay if and only if d;; s satisfy the following two conditions:

di 15 —dijl = O(V), (2.5)
dij_1 —dij| = O(i+1). (2.6)

Corollary 2.2 Let (Ag, H, D) be a spectral triple equivariont under the action of §* x S'.
Then D can not be p-summable if p < 2.

Proof: This is a consequence of the following growth restriction on the d;;’s:
dij = O(i + |§] + 1), (2.7)

which follows from the last proposition. |

That there indeed exists a spectral triple that is 2-summable is easy to see, by just taking
D to be the operator
D=NgS+I®N, (2.8)

where § =3 20 leij) (ei] — 2o iz0 |eij) {eigl-
iz0 i=0



Remark 2.3 The obstruction element given by Voiculescu {lE]} turns out to be zero for the
ideals £ where p < 2 {note that by proposition 1.7, , it is enough to look at positive
finite-rank contractions from the commutant /(&) in order to caleulate this obstruction).
Though one can not conclude anyvthing definite from this, it is possible that by dropping the

condition of §' x §'-equivariance, Dirac operators of lower summability might be achievable.

Proposition 2.4 Let D be as in the previous proposition. Assume that D has compact resol-
vent. Then up to a compact perfurbation, we have

1. For each j € £, all the di; s are of the same sign, )
2. there is a big enough integer M such that
4 (2.9)
(a) all the d;;’s for j = M are of the same sign,
(b) all the di;’s for j < —M are of the same sign. )

Proof: Again, the proof is very similar to the proof of proposition 3.2 in @, and hence is
omitted. |
This proposition says in particular that if (4, H, D) is a G-equivariant Fredholm module,

then upto a compact perturbation, PP = ﬂgg@ must be one of the following, where E is
some finite subset of {—M +1,-M +2,... . M -1}

Fy= Z leij) {eij| + Z leij) {eijls B = Z leij) (e + Z leij) {eq),

=0 >0 iz0 iz0

FE=M JEE j=M FEE
Py=Y"leghlel,  Po= ) leijleil.
] iz
JEE JEE®

We will prove below that the D given by {E} is in some sense the unique nontrivial Dirac

operator for the representation w of A.

Theorem 2.5 Let D' be an G-equivariant Dirac operator. Then the Kasparov module associ-

afed with D' is either trivial or is same as the one associated with D or =D,

Proof: Let u = xqy(3"6)(3 — I) + I. First, observe that ([u], (A, H, D)) = indexSu§ = L
Since the K-groups for SU,;(2) are free abelain, by the results of Rosenberg & Schochet ([icl).
it is now enough to show that {[u], (A, H, D")) is either 0 or £1 if P’ := ﬂ%“—ﬂr is one of the
P’s above. Since {[u), (A, H, D)) = index P'ul’, direct calculation now tells us that if P’ is Py
or Py, the above pairing would be zero; it would be —1 if I = P}, and it is 1 and if P' = P,
O

—qi*

The canonical unitary
A o

that comes in the definition of SU,(2) has non-trivial

K-theory class (see the remark following theorem 5, @} One can verify that by computing its
pairing with D @ I (acting on H ® C*).



The following proposition can be derived as a corollary to proposition 4.3, @] But the
proof presented there was just by computing pairings between appropriate elements and does

not give an insight as to why it is true. We give a different proof here that sheds light on this.

Proposition 2.6 Given anym € K'(5U,(2)) = £, there erists a Kasparov module (La(h), F)

which induces this element.

Proof: Using remark El. one could look at Ls(h) as ©.4p;. Representation of 4 by left
multiplications in each piece looks like . Now given m in Z, one has to pick m copies of i,
and define F' to be (signm}S on each of these pieces and I on others. Then (La(h), F) would
be the required module. |

3 Connes-de Rham complex

Let Q*(Af) = ©,.0"(Af) be the universal graded differential algebra over Ay, ie. 0"(A4f) =
span{ag(da1). .. (fan) : a; € Ay, §(ab) = a(6b)+(da)b}. The universal differential algebra is not
very interesting from the cohomological point of view. Interesting cohomologies are obtained
from the representations of the algebra. For the spectral triple (A, H, D), one has the standard

Connes-de Rham complex of noncommutative exterior forms Q7F,(Ay), given by
(A) == O (A)/(8 + 58) = n(Q°(A)) /n(59).

where & = @508, is the two sided ideal of 0°(A4) given by R, = {w € OP(A) : m{w) = 0}.
But often, the explicit computation of this complex is rather difficult. What we will do is the

following. We will compute the complex obtained from the representation flow : Q*(A) — Q(H)
where 8 : L(H) — Q(H) = L(H)/K(H) is the projection onto the Calkin algebra. More

specifically, let d : Ay — L£(H) be given by da = [D,r(a)]. Define m, : Q"(As) — L(H) by
Ta(ag(bay) ... (6a,)) = m(ag)(day)...(da,). Define d = #od, 1, = fom,, and ¥ 1= @, :
&0" — Q(H). Let J, = keripy,. Define Q1(A ;) = Q7(Ap )/ (Ja + 6J0-1).

Then QG {Af) = (2" (Af)) /(61 ). We will compute these cohomologies 075(.45). Before
entering the computations, it should be stressed here that by computing these rather than the
standard complex, we do not lose much. Becanse, first, since for a compact operator A one
has Tr(K|D|~?) = 0, proposition 5, page 550, E"] concerning the Yang-Mills functional holds
in our present case. Second, in the context of the canonical spectral triple associated with a
compact Riemannian spin manifold this prescription also gives back the exterior complex.

First, we need the following lemma which will be very useful for the computations.
Lemma 3.1 Assumea,be Ay andec e K(H). Ifa(l@ S)+b=c thena=5b=0.

Proof: For a functional p on L(L2(M)), and T € L(H), denote by a, the operator (p @ id)T.
Now ohserve that for any a € 4 and any functional p,

ayt = fa,. (3.1)

]



Write P = (I +5). It is easy to see that the given condition implies that (b, —a,)+2a,P =

¢, Which in turn implies that

(b, —azdes = e Vi<, (3.2)
(b +aple; = cpe; ¥i=0 (3.3)

Now from and {E}, it follows that for any i, j € £ and j < 0,

(b, — apdesll = |1(B, — @, ) e
= ||£j_i{hp —ag el

= [I(bp — ap)ej|
= lleoe;l-
Since ¢ is compact, lim; ,_ . ||c,e;|| = 0. Hence (b, —a,)e; = 0 for all i. In other words,

(b, —a,) = 0. Since this is true for any p, we get @ = b. Using this equality, together with
equations @} and 1@}, a similar reasoning vields a = (0. |

Lemma 3.2 Let I3 denote the ideal in Ay generated by 3 and 3°. Then forn = 1, we have
W (Af)) = (I ® 8)"A; + (I ® §)" T, {3.4)

Proof: Let us first prove the equality for n = 1. Let Z, = ¢V +* (N +k), By = ZLJ-_H] o) edl,
and .
G = { 10 les)(eial ifj=1,
0 if 4 =0.

It is easy to check that

[D,a] = a(-I®S8),

[D,8] = ¢"N®[S8,£7]+3. (3.5)
It follows from these that
D, @8% = —ill® 3™ + (j - KB 85 +2(Z ® Cj)es 1 3°F
—-2(Z; ® By @ g (3.6)

Hence d(a;#3*%) = —i(I @ S)ay# 3% + (j — k)ay 37 3**. Thus for any a € Ay,
do=(128S)W}h+e, where be 4;, ecI;. (3.7

Note that for any a’ € Ay, ¥(a’)(f@S5) = (I 25)(a’) in Q(H). Hence ¢:(a’(da)) is again of the
form (I @ 8)b+ ¢, whereb € Ay, ¢ € T3, ie. is a member of (I ® §)Ay 4+ Ts5. Thus (R (Af)) C
(I ®S)As+TI5. For the reverse inclusion, observe that (I®S8) = (1—¢°)~}((da)a* + ¢*(da* )a),
3=dg3 and 3" = —dj3".

The inductive step follows easily from (@ |



Lemma 3.3 Jy = {0}, and for n = 1, we have
Y(oJ:) = (I @) Ar + (I8 8)"T,. (3.8)

Proof: By lemma v Ay — Q(H) is faithful. Hence it follows that Jy = {0}.

We will prove here (§.§) by induction. From lemma B3 we have 1(6.1) C (2 Ay)) =
Af + (I @ 8)T3. Let us show that I, (I ® §)3 and (I @ S)5* are all members of ¥»(§.4; ).

Choose w € Q'(A;) such that (w) = (I @ §). Let wy = kogw — 8(oy ),k = £1. Then
it follows from @ that ¥{wy) = kar(I ® S) — kax(I @ S) = 0, so that wy € J1. P(duwr) =
Pk(day)w) = k2ay, = o € ¥(8Jy), ie. both a and o* are in 1(4.J;). It follows from this that
I e y(8.h).

Next we show that (I®5)3 € 1(8.;;). Takew = 3(a(d3)—d(af)+q3(da)). Thenp(w) =10
and v(fw) = ( @ S)af. So (I @ S)af € (6.J1). Similarly taking w = 3(a*(63) — 8(a* ) +
g '8(da")), it follows that (I ® S)a* 3 € ¢(8.J1). These two together imply (I ® S)3 € ¥(d.41).

A similar argument shows that (I @ §)3* is also in ¢(8.J;). Thus A;+ (I @ )Tz = (d.);).

For the inductive step, notice that ¥(8.4,) C (" Af)) = (T2 8)" 1A + (I @ )" 5.
We will show that the following are all elements of ¢2(4.1,):

(I S)"+la, (I®S8)*+2as, (I 8)+lag",
(I ®S)"Ha*, (I8 2a*8, (I8 Fa's.

From the right Ag-module structure of v(8.1,), it will then follow that (1@ S)*+!, (I 8)"+3
and (I @ §)"+23* are in ¢/(8.J,), giving us the other inclusion.

Choose w € Jn_1 such that ¥(dw) = (I @ S)". Take wrp = kw(dax), k = 1. Then
wk € Jn and ¥(dwy) = (I ® §)" ag. Similarly choosing w such that ¥(fw) = (I ® §)"*'3
and wy, as before, we get wy, € J, and ¥(dwy) = ¢ *(I ® §)"*?a3. Finally, take w such that

(fw) = (I ® §)"*'3* and wy, as before to show that (I @ §)" 2 ay3* € ¥(6.J,). O
Theorem 3.4

= _[Ar@eIz ifn=1,

d(‘4‘*’}_{“:} ifn>2.
Proof: Proof follows from lemmas Eam’i @ m|

Remark 3.5 The differential d : Ay — Q}(Af) = Af @ T3 is given by

d(o; @ 8**%) = —ia; 3 3% @ (j — k)o@ 3*F.

4 L*-complex of Frohlich et. al.

In this section we will compute the complex of square integrable forms for the spectral triple
(Ag, H,D). For that we begin with similar computations for the spectral triple (C[z, 271, Hy =
Lo(Z), Dy = N) associated with the algebra Clz, 2~ 1]. Here we consider the embedding my :
Clz,27"] = L(H) that maps z to £.



Lemma 4.1 (i) 03 (C[z,27']) =0, forn> 2,

(i) Oh,(Clz, 27]) = Clz, 7).

Proof: (i) Let w = 3 tng.com, 282" -2 52" € Q¥(C[2, 271]), where the sum is a finite one
and 4 is the universal differential. Then it is easily verified that

k. * kﬂ_
(w,w)n, = f{Z'Ill‘“'nkﬂnn__.--__nkzznﬂj} (Zm-'--nkﬂn‘,__...__nkzzﬂ iz,

where dz is the Lebesgue measure on the circle. Therefore,

Br(T[2, 3_1]} = {we ﬂk{ﬂ[z, z_l]} : (w,w)p, =0}
— {Zaﬂn}.“:nk‘zﬂnd‘zﬂi FGaT, Jzﬂk . Z -n_l P ..n’k&ﬂn,'“_-ﬂk = ﬂ_ Hﬁlr}‘

Tt g =T

Consequently we have,

2M0Fa L faTh _ “-nkzz‘i: nikfy.. .82 € F(Clz, 27Y)), (4.9)
827626z —rbz-- 62 € H(Clz,27"]), (4.10)
2z bz — ;c’iz"""lﬁz- 8z € R4_1(Clz, 271)). (4.11)

r+1
From ([L11]) we get §2"8z--- 82 € 68_1(C[z, 27!]). Combining this with (L.9)) and {L.10) we
get,
282" .- 6z™ € Ri(Clz, 27']) + 68i—1(Clz, 27 1)) for large ny.

Since 8, (Clz, 27 1) + 68 _1(C[z, 27Y]) is a bimodule we have
2MEA L TR ﬁk{ﬂlz,z_l]} + 8 8p—1(Clz, 3_1]} W org, s, Tk

This proves (i).

(ii) It suffices to note that
ST F T 'Rlzﬂ“-l'm_lﬁz c ﬁl('ﬂ[fsf 3—1]}_
The induced d : O, (C[z, 27']) — C[z, 2] is given by d(z") = nz2". O
Now we are in a position to compute the complex of square integrable forms.

Theorem 4.2 (i) Q%(A) =0 forn > 2.
(ii) ﬁ’E:EAf} = Clz, 271 for n = 0,1 (equality as an Ay bimodule), and the differential d :
Ap — OL(Ag) is given by d{ai @ %) = —iz',

Proof: Note that the homomorphism & in {]E} induces a surjective homomorphism denoted

by the same symbol from A to C[z, 27']. We have the following short exact sequence
0 — Iz — A; > Clz, 27 — 0,

Let oy : Q%(A;) — Q(C[z,27!]) be the induced surjective map. One easily verifies that
{w,w)p = (gx(w), ox(w))p,. Therefore,

Ri(Ag) = {w € O*(A)) : (w.w)p =0} = o (A(Cl2, 271])).

We have the following commutative diagram



.ﬁﬂ. — Iﬁ —_— Aj —_— '3:'[3, 3_]] ——— m,(fﬂlz, 3_]]}

! ! !
fa(4;) — QYA 5 A(Cl) — QL (Clz )
! | |

fa(Ag) — (4 5 @(Clazl]) — OB (Clz 7))

fnlAf) — Q°(4y) I Q(Cl2TY]) — OB(Clz27Y)

This along with the previous lemma proves the theorem. We will only illustrate (i).

Let wn, € Q"(Ay), then by the previous lemma on(wn) = win + dws n—1 where w1, €
BnlClz 2 )t € Bnoa(ClzizY)). Let why = 07 (win) 68y = 032 y(wno1), then
Onlwn —wy,, —0uh,, ;) = 0 implying w, € Rn + §8n_1. O

5 Computations for the quantum sphere

In this section we will briefly indicate how to carry out all the earlier constructions for the
quantum spheres. We will be sketchy because most of the arguments are very similar to
the case of SU4(2). Quantum sphere was introduced by Podled in [{J]. This is the universal
C*algebra, denoted by C {.Sf?zf_.}, generated by two elements A and B subject to the following

relations:

A*=A, B'B=A-A%+e¢l,
BA=¢gAB, BB =g¢*'A—qg'+ecl

Here the deformation parameters ¢ and ¢ satisfy |g| < 1L e = 0. For later purpose we also note

down two irreducible representations whose direct sum is faithful. Let Hy = E?(N}._’H_ =M.
Define m (A), 7. (B) : Hy — Hy by

4 1/2
| D T O P é el i}

1 (B)(en) = cy(n)?e,_; where ecp(n) = A g™ — {Aiq?”}? +c.

Since v = w4 & w_ is a faithful representation, an immediate corollary follows.

Theorem 5.1 (Sheu [IT]]) (i) C(S2,) = C*(F) &, C*(F) :={(z,y): z,ye C(T),a(z) =
a(y)} where C*(.7) is the Toeplitz algebra and o : C*(.7) — C(S') is the symbol homomor-
phism.

(ii) We have a short eract sequence

0 — K -C(52) = C*(T) — 0 (5.12)

[

Proof: (i) An explicit isomorphism is given by = — (my(x), 7_(x)).
(ii) Define a{r,y)) = x then kera = K. O



Corollary 5.2 (i) Ko(C(S2)) = KY(C(SL)=Z o Z.
(i) K1(C(SZ)) = KM (C(SL)) =0.

Proof: The six term exact sequence associated with along with the KK-equivalence of
K and C*(.77) with C proves the result. m|

Proposition 5.3 Let Ay, be the *subalgebra of C(S3.) generated by A and B. Then

0ON 10
(Af'iﬂ1 H—H+ &H_, D= (1"\? ﬂ) = (ﬂ—l))

is an even spectral triple.

Proof: We only have to show that [D, a] is bounded for @ € A 5;,,. For that it is enough to note
that

(i) Nre(A), mL({A)N are bounded,

(i) n(ep(n)'’? — \/2) is bounded as n becomes large,

(iii) [N, ! =L O

Remark 5.4 This spectral triple has nontrivial Chern character. This can be seen as follows:
let Py = i(lea){eol} € C(S;.), then applying propasition 4, page 296, Fll.we get the index pairing
((R], [(Afin, H, D, ~)]) = —1, implying nontriviality of the spectral triple.

Now we will briefly indicate the computations of the complex (Q3(Afin).d) introduced at the

beginning of section E

Theorem 5.5 (i) N5(Ap,) =0 forn = 2.

(ii) Q3(Afin) = Cl2,27 "), here also equality is as an A fin bimodule.

Proof: Let w be the associated representation of (*({Ayg;,) in £L(H). Then straightforward
verification gives (i) [D,A] is compact, (i) [D,B] = | @ k + compact, and (iii) [D, B*] =

a1
—I* @ k + compact, where k = ( i % ) Therefore, modulo compacts
T (Agn)) = CjinlT) Bk
(@ (Agin)) = Cin(T)® Ly,
where C7, (.77} is the *-algebra generated by .¥7. Now for (i), note that

Wy =BIB"dB ... B+ B"dBJB . .- 4B
e — e —

n—2 timea n—2 timesa

satisties {a) m{w,) is compact and (b)r({dw, )} = 21 is invertible, hence (i) follows.
For (ii}, observe that if @ € Ay, and w(a) is compact then Na and aN both compact. Hence,
N Apin) = m(0'(A fin)) = C|z, 2] because modulo compacts C[z, 7] is C* (7). O

10
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