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Abstract. We study the extreme points of the unit ball of a Banach space

that remain extreme when considered, under canonical embedding, in the unit

ball of the bidual. We give an example of a strictly convex space whose unit

vectors are extreme points in the unit ball of the second dual but none are

extreme points in the unit ball of the fourth dual. For the space of vector-

valued continuous functions on a compact set we show that any function whose

values are weak∗-extreme points is a weak∗-extreme point . We explore the

relation between weak∗-extreme points and the dual notion of very smooth

points. We show that if a Banach space X has a very smooth point in every

equivalent norm then X∗ has the Radon-Nikodým property.

1. Introduction

For a Banach space X we denote the closed unit ball of X by X1 and the set of
extreme points of X1 by ∂eX1 . Our notation and terminology is standard and can
be found in [2, 3, 9]. We always consider a Banach space as canonically embedded
in its bi dual.

An extreme point of X1 is called weak∗-extreme if it continues to be an extreme
point of X∗∗

1 . It is known from the classical work of Phelps ([19]) that for a compact
set K, any extreme point of the unit ball of C(K) is weak∗-extreme . Importance of
these points to the geometry of a Banach space was enunciated in [23], where it was
proved that a Banach space has the Radon-Nikodým property (RNP) if and only if
for every equivalent norm the unit ball has a weak∗-extreme point. Several stronger
forms of extreme points have been well studied in the literature, for example Kunen
and Rosenthal have showed in [13] that any strongly extreme point of X1 is a
strongly extreme point of X∗∗

1 . Similarly it is well known that denting (weak∗-
denting in dual spaces) points continue to be denting (weak∗-denting) points of
the bidual unit ball . Thus all these points are weak∗-extreme and moreover they
belong to the same class of extreme points in the unit ball of any dual of even order.

In the second section of this paper we give conditions under which extreme points
get preserved from a subspace and conditions when they fail to belong to the same
class of extreme points in the unit ball of bigger space. Using this, we show that
weak∗-extreme points can fail to be weak∗-extreme in the bidual unit ball. We
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also give some interesting examples of preserved extremality. We make free use of
techniques from M -structure theory to construct these examples. The book [9] is
now a standard reference for results related to M -ideal theory.

Recall that x ∈ X1 is a strongly extreme point if for any sequences {xn} and
{yn} in X1, 1

2 (xn + yn) → x implies xn → x and yn → x. This is equivalent to
the definition given in [13]. We will consider weak∗-extreme and strongly extreme
points in the spaces of operators.

In the second section of the paper we study a new class of extreme points that
have been recently considered in [6] while studying very smooth points of Ba-
nach spaces. These are extreme points of X∗

1 that are points of continuity for
i : (X∗

1 , weak∗) → (X∗
1 , weak). We show that when X∗ or Y has the compact

metric approximation property any τ ∈ L(X, Y )∗1 of the above type is of the form
x⊗ y∗ where x ∈ ∂eX

∗∗
1 and y∗ ∈ ∂eY

∗
1 are points of weak∗-weak continuity for the

identity map on the respective unit balls.
Analogous to the result of Rosenthal quoted above we show that if every equiv-

alent norm on X has a very smooth point then X∗ has the RNP.

Acknowledgement. The second author’s research was supported by I. F. C. P.
A. R project grant No: 2601-1. He thanks Professor G. Godefroy of the University
of Paris VI for his hospitality during this author’s visit in April 2002, when part of
this work was done.

2. Weak∗-extreme points

In [15] the author considered the following kind of extreme points. Let x0 ∈ X1

be such that |x∗(x0)| = 1 for all x∗ ∈ ∂eX
∗
1 . It is easy to see that for a compact set

K every extreme point of C(K)1 and for a positive measure µ every extreme point
of L1(µ)1 is such a point. It was observed in [20] that any such point is a strongly
extreme point. Our first result shows that these points behave the same way in the
bidual.

Proposition 2.1. Let X be a Banach space and let x0 ∈ X1 be such that |x∗(x0)| =
1 for all x∗ ∈ ∂eX

∗
1 . Then |τ(x0)| = 1 for all τ ∈ ∂eX

∗∗∗
1 .

Proof. We first observe that if Y ⊂ X is a subspace and y ∈ Y is such that
|x∗(y)| = 1 for all x∗ ∈ ∂eX

∗
1 then |y∗(y)| = 1 for all y∗ ∈ ∂eY

∗
1 .

Let K = {x∗ ∈ X∗
1 : x∗(x0) = 1} be equipped with the weak∗-topology. Let

Φ : X → C(K) be the canonical embedding defined by Φ(x)(x∗) = x∗(x). Since
∂eX

∗
1 ⊂ ΓK we get that Φ is an isometry. Also Φ(x0) = 1. Note that Φ∗∗ :

X∗∗ → C(K)∗∗ is an isometry and Φ∗∗(x0) = 1. Since C(K)∗∗ is again a space of
the form C(K ′) for a compact set K ′ and 1 ∈ ∂eC(K ′) it follows from our earlier
remarks that |τ(1)| = 1 for all τ ∈ ∂eC(K ′)∗. Thus by the observation made at the
beginning of this proof we get that |τ(x0)| = 1 for all τ ∈ ∂eX

∗∗∗
1 . �
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We recall from [9] that M ⊂ X is an M -ideal if there is a projection P on X∗

such that ker(P ) = M⊥ and ‖P (x∗)‖+ ‖x∗ − P (x∗)‖ = ‖x∗‖ for all x∗ ∈ X∗.
Our next result gives conditions under which extreme points gets preserved from

a subspace and conditions when they fail to belong to the same class of extreme
points in the unit ball of the bigger space.

Theorem 2.2. Let M ⊂ X be a proper subspace.
(a) Suppose there is a projection of norm one P in X∗ such that ker(P ) =
M⊥ and RangeP1 is weak∗-dense in X∗

1 . Then any strongly extreme point
of M1 is strongly extreme in X1 and any weak∗-extreme point of M1 is an
extreme point of X1

(b) If M is an M -ideal in X then no weak∗-extreme point of M1 can be a
weak∗-extreme in X1.

Proof. (a) We recall construction from Lemma 1 in [21]. For any y∗ ∈ M∗ and any
Hahn Banach extension x∗ of y∗, y∗ → Px∗ is a well defined linear map and since
P is of norm one, we see that M∗ is isometric to PX∗. Thus we may assume M∗

is embedded in X∗ and define Φ : X → M∗ by Φ(x) = x|M∗ . Since Range P1 is
weak∗-dense in X∗, we have Φ is an isometry whose restriction to M agrees with
the canonical embedding of M in M∗∗.

If m0 is a strongly extreme point of M1 then it is easy to verify that (see [13])
that m0 is strongly extreme in M∗∗

1 as well and hence strongly extreme in X1. Also
if m0 is a weak∗ -extreme point of M1 then clearly it is an extreme point of X1.

(b) Let P be the L-projection in X∗ with kerP = M⊥. Since Range(P ∗) =
M⊥⊥, if m0 ∈ M1 is a weak∗-extreme point we have P ∗(m0) = m0 is an extreme
point of the unit ball of M⊥⊥, as the latter space is isometric to M∗∗. Take any unit
vector τ in (M⊥)∗ = ker(P ∗) (which is non-trivial since M is proper subspace).
Since P ∗ is a M -projection, ‖m0±τ‖ = 1 as m0 and τ are in disjoint M -summands.
Thus m0 is not an extreme point of X∗∗

1 �

Remark 2.3. (a) If X is a not a reflexive space and is an M -ideal in its
bidual then X ⊂ X∗∗ satisfies both (a) and (b) of the above hypothesis. We
also note that if X, Y are Banach spaces such that K(X, Y ) is an M -ideal
in L(X, Y ) then again the above hypothesis is satisfied. See Chapter III
of [9] for several examples of spaces that are M -ideals in their biduals and
Chapter VI of [9] for examples of spaces X and Y for which K(X, Y ) is an
M -ideal in L(X, Y ).

(b) For a compact set K let WC(K, X) denote the space of X-valued
functions on K that are continuous when X has the weak topology,
equipped with the supremum norm. It follows from Example 2 in [21]
that C(K, X) ⊂ WC(K, X) satisfies the hypothesis (a) above. Thus any
weak∗-extreme point of C(K, X)1 is an extreme point of WC(K, X)1. Any
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strongly extreme point of C(K, X)1 is strongly extreme in WC(K, X)1.
This observation gives a simpler proof of Corollary 9 from [11]. Also as
remarked before Corollary 9 in [11] it is not known if every extreme point
of C(K, X)1 is always extreme in WC(K, X)1.

We now illustrate the strength of our Theorem with some specific examples.
It follows from the remarks on page 78 of [9] that a proper M ideal cannot have

a strongly extreme point in its unit ball. In view of our results so far it would
be interesting to see examples of M -ideals that have weak∗- extreme points. The
following example is also interesting from another point of view. It was shown in
[8] that for any Hilbert space every extreme point of L(H)1 is a strongly extreme
point. For p 6= 2 we exhibit extreme points in L(`p)1 that are not even weak∗-
extreme.

Example 2.4. Consider for 1 < p < ∞, the space K(`p). It is a proper M -ideal
of its bidual, L(`p).

When p 6= 2, it was shown in [10] that there exists T ∈ K(`p) such that there is
no B ∈ L(`p) such that ‖T ± B‖ = 1. Thus T is an extreme point of L(`p) and
hence is weak∗-extreme in K(`p). But from Theorem 2.2 it follows that T can not
be weak∗-extreme point in L(`p).

The following example exhibits a situation where all the unit vectors are weak∗-
extreme points of the unit ball and hence are extreme points of the unit ball of
the second dual but none is an extreme point of the unit ball of the fourth dual.
Compare this with the example in [18] where the author exhibits a strictly convex
space X where none of the unit vectors of X are extreme points of the unit ball of
the second dual.

Example 2.5. Let A be the disc algebra on the unit circle Γ. It is well known that
(C(Γ)/A)∗ = H1

0 is a smooth space (see [9], page 167) and C(Γ)/A is an M -ideal
in its bidual. Thus every unit vector is a weak∗-extreme point and as it is an M -
embedded space which is not reflexive, none of them are extreme points in the unit
ball of the fourth dual.

In sharp contrast to this we next give an example of Banach space X having
weak∗-extreme points that remain weak∗-extreme in the unit balls of all the duals
of even order of X and are not strongly extreme points.

Recall that (see [9]) a Banach space X is said to be L-embedded if with canonical
embedding of X in X∗∗, we have X∗∗ = X ⊕1 N (`1 direct sum). Note that in this
case any extreme point of X1 is a weak∗-extreme point.

Example 2.6. Let X be any infinite dimensional reflexive separable Banach space.
It follows from [7] that there is a renorming on X in which there are at most
countably many strongly extreme points in the unit ball. Since the unit ball of an
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infinite dimensional reflexive space has uncountably many extreme points in its unit
ball we fix a x0 ∈ ∂eX1 such that it is not strongly extreme. Let Y be an `1 direct
sum of countably infinitely many copies of X. It follows from Proposition IV.1.5 in
[9] that Y is a non-reflexive L-embedded space. Let x′0 ∈ ∂eY1 have x0 in the first
coordinate and zeros elsewhere.

Rao has proved in [22] that any L-embedded space X is under the appropriate
canonical embedding, an L-ideal in all the duals of even order of X.

Thus x′0 is a weak∗-extreme point of the unit ball of any dual of even order of Y

and is clearly not strongly extreme .

We next study the extremal structure of the unit ball of the space of operators
with special emphasis on the subspace of compact operators.

Before proving our next result we recall an equivalent formulation of a weak∗-
extreme point from [7]. x ∈ X1 is a weak∗-extreme point if and only if for sequences
{xn}n≥1 and {yn}n≥1 in X1, xn+yn

2 → x implies xn−yn → 0 in the weak topology.

Proposition 2.7. Let T ∈ K(X, Y )1 be such that T ∗(y∗) is weak∗-extreme in X∗
1

for all y∗ ∈ ∂eY
∗
1 . Then T is a weak∗-extreme point.

Proof. Let {Sn}n≥1 and {Rn}n≥1 be sequences in K(X, Y )1 such that Sn+Rn

2 → T .
Since for each y∗ ∈ ∂eY

∗
1 the corresponding sequence of adjoint operators evaluated

at y∗ converges to T ∗(y∗), by our hypothesis we get that S∗n(y∗) − R∗
n(y∗) → 0 in

the weak topology. In particular for any τ ∈ ∂eX
∗∗
1 , τ((S∗n − R∗

n)(y∗)) → 0. By
a result of Ruess and Stegall [24], we know any extreme point of K(X, Y )∗1 is of
the form τ ⊗ y∗ (with the action τ ⊗ y∗(T ) = τ(T ∗(y∗))). Now as remarked in
Section 3 in [24], applying the Rainwater theorem we get that Sn−Rn → 0 weakly.
Therefore T is a weak∗-extreme . �

Remark 2.8. Similar arguments can be used to show that f ∈ C(K, X)1 is weak∗-
extreme if f(k) is weak∗-extreme for all k ∈ K. The converse of this statement is
also true, see the added note at the end of the paper

In the following Proposition we extend Theorem 2 in [4] to the space of compact
operators.

Proposition 2.9. Let X be any Banach space and let Y be such that ∂eY
∗
1 is weak∗

closed. Let T ∈ K(X, Y ) and T ∗(y∗) be strongly extreme in X∗
1 for all y∗ ∈ ∂eY

∗
1 .

Then T is a strongly extreme point.
If T ∈ L(X, Y ) satisfies the same hypothesis and if further every extreme point

of ∂eX
∗
1 is a weak∗-denting point then T is a strongly extreme point.

Proof. If T is not strongly extreme, there exists an ε > 0 and a sequence {Tn}n≥1

such that ‖Tn‖ > ε and ‖T ±Tn‖ ≤ 1+ 1
n (see Theorem 2 in [4]). For each n choose

unit vectors xn with ‖Tn(xn)‖ > ε. Let y∗n ∈ ∂eY
∗ and y∗n(Tn(xn)) = T ∗

n(y∗n)(xn) >
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ε. Now using the hypothesis we get a weak∗ accumulation point y∗ ∈ ∂eY
∗
1 and a

subnet of {y∗n}n≥1 that weak∗ converges to y∗. Since T is a compact operator T ∗

maps it to a norm convergent net. As T ∗(y∗) is a strongly extreme point we get
the required contradiction as in the proof of Theorem 2 in [4].

When T is not a compact operator we only get weak∗ convergence in the last
part of the above proof. But if T ∗(y∗) is a weak∗ denting point then any net in the
unit ball weak∗ converging to T ∗(y∗), converges in the norm. Thus we again get
norm convergence to complete the proof. �

Our next Corollary should be compared with Theorem 2 in [8] where the authors
proved that if F is a uniformly rotund space, any isometry in L(E,F ) is a strongly
extreme point. We recall that T is a coisometry if T ∗ is an isometry, also any
uniformly rotund space is reflexive.

Corollary 2.10. Let E∗ be a reflexive and locally uniformly rotund space and let
F be such that the weak∗ closure of ∂eF

∗
1 consists of unit vectors. Let T ∈ L(E,F )

be a coisometry. Then T is a strongly extreme point.

Proof. Let f∗ ∈ (∂eF
∗
1 )−w∗

. Since T ∗ is an isometry, T ∗(f∗) is in particular a point
of mid-point locally uniform rotundity and hence a strongly extreme point. Also
any net from T ∗(F ∗

1 ) that converges weakly to T ∗(f∗) converges in the norm by
local uniform rotundity. Thus the conclusion follows from the proof of the above
Proposition. �

We next give a partial converse to Proposition 2.9 when Y is an L1- predual
space, that is Y ∗ is isometric to L1(µ).

Proposition 2.11. Let Y be an L1-predual space and let T ∈ K(X, Y )1 be a
strongly extreme point. Then for any y∗ ∈ ∂eY

∗
1 , T ∗(y∗) is strongly extreme in X∗

1 .

Proof. Since Y is an L1-predual, by a result of Kakutani (see [14], Chapter 6) Y ∗∗ is
canonically isometric to C(K) space and in the canonical identification ∂eY

∗
1 ⊂ K

(extreme points correspond to indicator functions of normalized µ-atoms). Also
since Y has the metric approximation property (see [14] page 212), K(X, Y ) can be
identified with the injective tensor product X∗⊗ε Y . We now recall the well-known
canonical embedding X∗ ⊗ε Y ⊂ X∗ ⊗ε Y ∗∗ ⊂ (X∗ ⊗ε Y )∗∗ (see [5]). Applying the
result of Kunen and Rosenthal [13] once again,we get that T is strongly extreme in
(X∗ ⊗ε Y )∗∗1 . In particular T is a strongly extreme in (X∗ ⊗ε Y ∗∗)1. We now note
that this latter space is identified with C(K, X∗). Thus applying Theorem 2 from
[4], as ∂eY

∗
1 ⊂ K we conclude that T ∗(y∗) is strongly extreme in of X∗

1 . �

3. Relationship with Very smooth points

In this section we study the relationship between weak∗-extreme points of X∗
1

and very smooth points of X. A unit vector x ∈ X is said to be a very smooth
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point if x, under the canonical embedding, is a smooth point of X∗∗ (i.e, there is
a unique norming functional for x in X∗∗∗). As noted in [6] if x∗ ∈ X∗

1 attains its
norm at such an x then x∗ is an extreme point of X∗

1 and also a point of weak∗-weak
continuity for the identity map on X∗

1 .
We first note that if an extreme point x∗0 ∈ ∂eX

∗
1 is also a point of weak∗-weak

continuity for the identity map on X∗
1 , then it is an weak∗-extreme point. For if

x∗0 = 1
2{Λ1 + Λ2} for Λi ∈ X∗∗∗

1 then x∗0 = Λ1/X = Λ2/X. Since X∗
1 is weak∗

dense in X∗∗∗
1 let {x∗α} ⊂ X∗

1 be a net converging in the weak∗ topology of X∗∗∗ to
Λ1. Thus x∗α → Λ1/X in the weak∗ topology of X∗. Therefore by the continuity
assumption this net also converges in the weak topology. Thus x∗0 = Λ1. Hence
x∗0 ∈ ∂eX

∗∗∗.
In [6] the authors gave an example of a Banach space X and a x∗ ∈ ∂eX

∗
1 that

is a point of weak∗-weak continuity of the identity map on X∗
1 but is not a point

of weak∗-weak continuity for the identity map on X∗∗∗
1 . Thus these extreme points

do not belong to the precise class in the bidual.
A natural question to consider is when do extreme points belong to a better class

of extreme points as they pass through the higher ordered duals. Our next example
illustrates such a phenomenon.

Example 3.1. Let K be a compact set and k0 ∈ K be an accumulation point. Since
χ{k0} ∈ C(K)∗∗ it is easy to see that δ(k0) ∈ ∂eC(K)∗1 is not a point of weak∗-weak
continuity for the identity map on C(K)∗1. However since δ(k0) it is a denting
point, it is a weak∗-denting point of C(K)∗∗∗1 and hence is a point of weak∗-weak
(in fact weak∗-norm) continuity for the identity map on C(K)∗∗∗1 .

Remark 3.2. If Λ ∈ ∂eX
∗∗∗
1 is a point of weak∗- weak continuity for the identity

map on X∗∗∗
1 then again by the denseness of X∗

1 in X∗∗∗
1 we have that Λ = x∗ ∈

∂eX
∗
1 . The above example shows that x∗ in general need not be a point of weak∗-

weak continuity of the identity map on X∗
1 . By taking X = c0, since every extreme

point of X∗
1 is a weak∗-denting point, it is easy to see that X∗

1 and X∗∗∗
1 have the

same extreme points that are points of weak∗-weak continuity for the identity map
on the respective unit balls. However since X(4) can be identified with a C(K) space
we get from the above example that ∂eX

(5)
1 has points of weak∗-weak continuity

that are no longer points of weak∗- weak continuity for the identity map on X∗∗∗
1 .

In the following theorem we describe extreme points of L(X, Y )∗1 that are points
of weak∗-weak continuity for the identity map on L(X, Y )∗1 under some additional
hypothesis on X or Y involving the compact metric approximation property (see
[16], page 94). Recall that for any x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗ by x∗∗ ⊗ y∗ we denote
the functional defined on L(X, Y ) by (x∗∗ ⊗ y∗)(T ) = x∗∗(T ∗(y∗)).

Theorem 3.3. Suppose X∗ or Y has the compact metric approximation property.
Let τ ∈ ∂eL(X, Y )∗1 be a point of weak∗-weak continuity for the identity map on
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L(X, Y )∗1. Then τ = x ⊗ y∗ ∈ ∂eK(X, Y )∗1 where x ∈ ∂eX
∗∗and y∗ ∈ ∂eY

∗
1 are

points of weak∗-weak continuity in the respective unit balls.
If further x or y∗ is a weak∗-denting point then x⊗ y∗ is a point of weak∗-weak

continuity of the identity map on K(X, Y )∗1.

Proof. Since X∗ or Y has the compact metric approximation property it can be
deduced from the results of [12] that there is a projection P : L(X, Y )∗ → L(X, Y )∗

of norm one such that ker(P ) = K(X, Y )⊥ and P (x ⊗ y∗) = x ⊗ y∗ for all x ∈ X

and y∗ ∈ Y ∗. Thus K(X, Y ) ⊂ L(X, Y ) satisfies condition (a) of Theorem 2.2.
Since {x⊗ y∗ : x ∈ X1 and y∗ ∈ Y ∗

1 } is weak∗ dense in L(X, Y )∗1, let xα ⊗ y∗α → τ

in the weak∗ topology. Since τ is a point of continuity we have that this net also
converges in the weak topology. P being identity on the net we have P (τ) = τ . As
K(X, Y )∗ is isometric to the range of P we get that τ ∈ ∂eK(X, Y )∗1. Any extreme
point of the latter set is of the form (see [24]) x∗∗ ⊗ y∗ for some x∗∗ ∈ ∂eX

∗∗
1 and

y∗ ∈ ∂eY
∗
1 , we have τ = x∗∗ ⊗ y∗. Again since τ is a point of continuity, using the

remark preceding this theorem it is easy to see that x∗∗ = x and y∗ are points of
weak∗-weak continuity of the identity map on the respective unit balls.

Now suppose x or y∗ is a weak∗-denting point. Since the hypothesis (a) of
Theorem 2.2 is satisfied we have :

K(X, Y ) ⊂ L(X, Y ) ⊂ K(X, Y )∗∗ ⊂ L(X, Y )∗∗

under the canonical embedding. As any point of weak∗-weak continuity has a
unique norm preserving extension to the bidual (see [9] Lemma III.2.14), we have
that τ has unique norm preserving extension to L(X, Y )∗∗. Now since we are
assuming that x or y∗ is a weak∗-denting point, it follows from Theorem 3.7 in [17]
that τ also has unique norm preserving extension from K(X, Y ) to L(X, Y ). Thus
applying Lemma III. 2. 14 in [9] again, we have τ is indeed a point of weak∗-weak
continuity of the identity map on K(X, Y )∗1. �

We recall from [25] that X is said to be a very smooth space if all the unit vectors
are very smooth points. It was shown in [25] that if X is a very smooth space then
X∗ has the RNP. Our next result is local version this result.

Proposition 3.4. If every equivalent norm on X has a very smooth point then X∗

has the RNP.

Proof. Suppose X∗ fails the RNP. From Corollary 1.4 in [23] we get an equivalent
norm on X∗ whose unit ball B has no weak∗- extreme points. Thus B contains no
extreme points of its weak∗ closure in X∗∗∗. Let B1 = B−, where the closure is
taken in the weak∗-topology of X∗. Thus there is an equivalent norm on X whose
dual unit ball is B1. Hence from our hypothesis and the remarks made above, it
follows that B1 contains a weak∗-extreme point say x∗0, which is also a point of
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weak∗-weak continuity for the identity map on B1. Therefore x∗0 ∈ B. Clearly x∗0
is a weak∗- extreme point of B. This contradicts our choice of B. �

If x∗ is a very smooth point then since X1 is (under the canonical embedding)
weak∗-dense in X∗∗

1 , it follows from our remarks that x∗ attains its norm at a
weak∗-extreme point of X1. Sullivan also showed in [25] that if X∗ is very smooth
then X is reflexive.

We next give an example of a non-reflexive space X in which every norm attaining
unit vector of X∗ is a very smooth point.

Example 3.5. Let X be any infinite dimensional non-reflexive Banach space with a
separable dual. It follows from Proposition 11 in [1] that there is an equivalent norm
|.| on X with (X, |.|)∗∗ rotund, weak and norm sequential convergence coincide for
unit vectors in the new norm. Thus if a unit vector x∗ of (X, |.|)∗ attains its norm,
by rotundity on X∗∗ and since weak and norm sequential convergence coincide on
the surface, we conclude that x∗ is a very smooth point (see [6]).

We conclude the paper with the following questions.

Question 3.6. Is there a notion of an extreme point that remains the same in all
the duals of even order and coincides with the usual notion of an extreme point when
the space is reflexive? In particular can one completely describe extreme points that
remain extreme in the unit ball of all the duals of even order of X, in terms of X

alone?

Question 3.7. For every positive integer n, can one construct a strictly convex
space X all of whose unit vectors are extreme points of the unit ball of X(2n) but
fail to be extreme in the unit ball of X(2n+2)?

Note added on 14-07-2003 : In a recent work K. Jarosz and the second author
( Weak∗-extreme points of injective tensor product spaces, Contemporary Math-
ematics Vol 238, Amer. Math. Soc., 2003) have showed that any weak∗-extreme
point of C(K, X)1 takes weak∗-extremal values.
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