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ApETRACT. Weintroduce & notion called 'maximal commuting piece’ for tuples
of Hilbert space operators. Given a commuting tuple of operators forming
A row contraction, there are two commonly wsed dilations in multivariable
operatar theory, First there is the minimal isometric dilation consisting of
isometries with orthogonal ranges, and hence it is & moncommuting tuple.
There is also a commuting dilation related with & standard commuting tuple
ait boson Fods space. We show that this commuting dilation is the maximal
commuting piece of the minimal isometric dilation. We use this result to
classify all representations of the Cuntz algebra Oq coming from dilations of
commuting tuples.

1. INTRODUCTION

It is a welkknown result due to Sz.-Nagy [28] that every contraction on a Hilbert
space dilates to an isometry. There is a very natural generalization of this result to
a class of operator tuples defined as follows.

Definition 1. A contractive n-tuple, or a row contraction, is an n-tuple T’ =
(T1,...,Ty) of bounded operators on a Hilbert space 'H such that YTy 4+ --- 4+
T = F.

n =

Such tuples are known as row contractions, as the condition is equivalent to
having the operator (Ty,.... T, from H & --- & H (n times) to H be a contraction.
It is possible to dilate contractive tuples to tuples of isometries with orthogonal
ranges. Moreover, such a dilation is unique up to unitary equivalence, under a
natural minimality condition just as in the one-wariable case. This dilation, which
we call the mintmal isometric dilation or the standard noncommauting dilation, has
been explored by many authors. Some ideas along this direction can already be
seen in the early paper of Davis. In more concrete form this dilation can be
seen in the papers of Bunce [11] and Frazho [17], [I8]. A very extensive study of
this notion has been carried out by Popescu in a series of papers ([21-[25], £], [3]),
and he has neat generalizations of many results from the one-variable situation. We
borrow many of his ideas, particularly from his paper on the Poisson transform [24],
and we also make use of the explicit structure of the ‘minimal isometric dilation’
he obtains in [2]].

Now suppose the tuple under consideration is a commuting tuple in the sense
that TyT; = T,T; for all 1 < 4,§ < n. Then it is natural to wish for a dilation
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consisting of mutually commuting isometries. Unfortunately, such a dilation does
not exist in general for n = 3 [20]. However, there is a dilation of commuting
contractive tuples that has been studied and popularized recently by Arveson [G].
This particular dilation has also been looked at by Popescu [24], and much earlier
by Drury [16] in his study of the von Neumann inequality for tuples. Similar ideas
have been explored by Agler [1], Athavale [7] and others for different classes of
operators using varions reproducing kernels. We call this dilation of Drury, Arveson
and Popescu the standand commuting dilation of contractive commuting tuples.
This dilation consists of a commuting tuple, but the constituent operators are not
isometries. Then a natural question arises: In what sense is this dilation canonical?
In Section 3, as our main result, we show that the standard commuting dilation
is the ‘maximal commuting tuple contained’ in the minimal &ometric dilation. To
begin with, we make these words inside inverted commas precise by defining what
we mean by a ‘maximal commuting piece’ of a tuple of operators. We can explore
how the standard commuting dilation of the maximal commuting piece sits inside
the minimal isometric dilation of the original tuple, and whether it is the maximal
commuting piece of the minimal isometric dilation, ete. We have been able to carry
out this study for purely contractive tuples in Section 2.

Any tuple (Wy,..., W, ) of isometries with orthogonal ranges satisfying 3 W, W}
= I gives us a concrete representation of the familiar Cuntz algebra [12]. Recently,
there has been a lot of effort to study such representations in connection with
wavelet theory, see for instance the papers [9], [I{]] of Bratteli and Jorgensen. If we
start with a contractive tuple (T1,...,T,) satisfying } " ;T = T and consider the
minimal izometric dilation, we actually have a representation of the Cuntz algebra.
This was proved by Popescu in [2I]. Very interesting results on classification of
these representations up to wnitary equivalence in terms of invariants determined
by (T1,...,T,) have been obtained by Davidson, Kribs, and Shpigel [14], where
the operators T act on a finite dimensional space. Tt is natural to ask what rep-
resentations of the Cuntz algebra can one get by dilating contractive tuples which
are also commuting. Surprisingly, they are very few and are all determined by the
GNS representations of the so-called Cuntz states. This result we obtain in Section
4, as an application of the main result. Unlike the work of Davidson et al., we need
not restrict the operators 7} to be acting on finite dimensional spaces.

All the Hilbert spaces we consider will be complex and separable. For a subspace
‘H of a Hilbert space, Py will denote the orthogonal projection onto ‘H. For fixed
n = 2, we need two standard n-tuples of operators, denoted by V and 8, acting on
Fock spaces. For any Hilbert space K, we have the full Fock space over I denoted
by T'(K) and the boson (or symmetric) Fock space over K denoted by T'L (X)), defined
s

o

MK)=Cekek®a - ek @...,
r)=CokekFo...0kTa...,

where K& denotes the m-fold symmetric tensor product. We will consider the
boson Fock space as a subspace of the full Fock space in the natural way. We
denote the vacunm vector 1 &0& --- (in either of these Fock spaces) by w. Let C®
be the n-dimensional complex Enclidian space with the usual inner product, and
['(C") the full Fock space aver C". Let {e1,....e,} be the standard orthonormal
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basis of C". Then the (left) creation operators ¥, on T{C") are defined by
Vic=e @z,

where 1 < ¢ < n and x € T{C") (of course, here g; ® w is interpreted as e;). It
is obvious that the tuple V = (Vy, .., V,) consists of isometries with orthogonal
ranges, and it & contractive; in fact, 3 ViV,* = I — Ey, where E; is the projection
onto the vacuum space. Let § = (51,..., 5, ) be the tuple of operators on T (C7),
where 5; is the compression of V; to T'(C"):

S,‘ = Pr,i.:‘_‘u]""ilr“icu].

Clearly each V,* leaves I'.(C") invariant. Therefore, 5z = Ve, for = € T',(C").
Then it & easy to see that (51,...,5,) is also a contractive tuple satisfying 3 5, 57
= I"—Ej (where now I, E} are respectively the identity and the projection onto the
vacuum space in I'.(C")). Moreover, a simple computation shows that 5,5; = 5,5,
forall 1 <4,j< n.

For operator tuples (T}, . ... T, quite often we need to consider products of the
form T, Ty, --- T, where each ap € {1,2,...,n}. So it is convenient to have a
notation for such products. Let A denote the set {1,2,...,n} and A™ denote the
m-fold cartesian product of A for m = 1. Given o = (o, .. . 00y) in A™ T will
mean the operator T, T, --- T, . Let A denote L, A", where A" is just the set
{0} by convention, and by T" we would mean the identity operator of the Hilbert
space where the operators T, are acting. In a similar fashion, for o € A, ¢ will
denote the vector e,, ® €4, ® --- @ €4, in the full Fock space T{C"), and & is the
VACTIIN L.

2. MAXIMAL COMMUTING PIECE AND DILATION

Definition 2. Let H, £ be two Hilbert spaces such that H is a closed subspace of
£. Suppose T, B are n-tuples of bounded operators on H, £ respectively. Then R
is called a dilation of T if
Riu=T"u

for allw € H,1 <¢ < n. Insuch a case T & called a piece of B. If further T is a
commuting tuple (ie., T;T; = T;T; for all 4, 7), then it is called a commuting piece
of B. A dilation £ of T is said to be a minimal dilation if span{f*h:a € AMhe
H}= L.

In this definition we note that if B is a dilation of T, then H is a co-invariant
subspace of B, that &, all B} leave it invariant. It & standard (see [19]) to call
(Ry, ..., R:) an extension of (T7,...,T) and (7, ..., T5) a part of (RY,....R}).

In such a situation it is easy to see that for any o, 3 € A, T*(T"7)* is the compression
of B {Eﬁj" to H, that 1s,
(1) T(T7)* = PyR*(R")"|n.
We may extend this relation to any polynomials p, g in 7 noncommuting variables,
to et

p(T) (L))" = Pup(R)(q(R))" |n-
Usually property (2.1) & all that one demands of a dilation. But we have imposed

a condition of co-imariance in Definition 2, as it is very convenient to have it this
way for our purposes.
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Now we look at commuting pieces of tuples. Let B be a n-tuple of bounded
operators on a Hilbert space £. Consider

C(R) = {M : M is a co-invariant subspace for each R,
R{Rih = RiR{h,Yh e M, Y, 7}

SoC{ R) consists of all co-invariant subspaces of an n-tuple of operators R such that
the compressions form a commuting tuple. It is a complete lattice, in the sense that
arbitrary intersections and span closures of arbitrary wnions of such spaces are again
in this collection. Therefore it has a maximal element. We denote it by £ R) (or
by £F when the tuple under comnsideration is clear).

Definition 3. Suppose B = (Ry,---, B, is an n-tuple of operators on a Hilbert
space £. Then the marimal commuting piece of B is defined as the commuting
piece £° = (Rf, ..., B obtained by compressing B to the maximal element £°( 1)
of C{ ). The maximal commuting piece is said to be trivial if the space £°(R) is
just the zero space.

It is quite easy to get tuples with trivial commuting piece, as tuples with no
nontrivial co-invariant subspaces have this property. Of course, our main interest
lies in tuples with nontrivial commuting pieces. The following result is quite useful
in determining the maximal commuting piece.

Proposition 4. Let B be an n-tuple of bounded operators on a Hilbert space L.
Let Ky = span{RB“(B,R; —RjR)h : h € L.a € ﬁL} Jor all 1 < i, < n, and
K= W{U:I_,:r Kit. Then £9(R) = K+, In other words, L°(R) = {h € L :
(RiR; — RiR})(R*)*h=0,¥V1 <i,j<mac A}
Proof. First, K* is obviously a co-invariant subspace of B, as each R, leaves K
invariant. Now for¢,7 € {1,2,...,n}, and by € L5 ha € £,
((RIR] — BRI RY) Ry ha) = (ha (R R — BiRj)ha ) = (.

So we get (R R} — RjR{)h; = 0. Now if M is an element of C(R), take 4, j €
{1,....nhac Ahy e M he L. We have

the BY(RiRy — RjR)h) = ((RIR] — RUR) (") hy, by =0,
as (R*)*hy € M. Hence M is contained in K. Now the last statement is easy to

BB O

Corollary 5. Suppose B, T are n-tuples of operators on two Hilbert spaces £, M.
Then the mazimal commuting piece of (By &1, .. B, & T,) acting on L5 M
i (R & T7, ..., B @& 1) acting on L8 & M" The mazimal commuting piece of
(el . R, actingon Lo M (R el . R®1) ading on £° & M.

Proof. Clear from Proposition 4. O
Proposition 6. LetV = (V... .Vl and § = (51, ..., 5, be standard contractive

tuples on the full Fock space T'(C") and the boson Fock space T'L(C") respectively.
Then the marimal commuting piece of V is 8.

Proof. As we have already noted in the Introduction, § is a commuting piece of
V. To show maximality we make use of Proposition 4. Suppose ¢ € ['[C") and
VWV, —ViViy) =0 forall e € A1 < 4,5 < noand y € T{C"). We wish
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to show that xz € T (C"). Suppose z,, is the m-particle component of . that is,
T = P,,,q Tm with &y, € (C™)®™ for m = 0. For m = 2 and any permutation o of

{1,2,...,m} we need to show that the unitary U, : (C*)® — (C")®, defined hy
Ue(21 @ - @ tm) = ttg11y @ - - B Ug—1 (s

leaves z,, fixed. Since the group of permutations of {1,2,....m} & generated
by permutations {(1,2),...,(m — 1,m)} it is enough to venify U,(z,,) = z for
permutations o of the form (i, i4+1). Sofixmand i withm = 2and 1 <7 < (m—1).
We have

(€D o V2 (ViVi — ViV Jy) = 0,
1
for every y e T{C™), 1 < k. [ < n. As a is arbitrary, this means that
(T zB(erBeg —gRe) @w) =10

for any z € (C")®" " w e (C™)® . This clearly implies Un{z,,) = Ty, for
a=(ii+1). O

[rn—i—1)

Now let us see how the maximal commuting piece behaves with respect to the
operation of taking dilations. Before considering specific dilations, we have the
following general statement.

Proposition 7. Swppose T R are n-tuples of bounded operators on H, £, with
H C L, such that R is a didation of T. Then H°(T) = C5(R)NH and B is a
dilation of T,

Proof. We have Rih = T7h, for h € H. Therefore, (RfR} — RIR})(R")"h =
(LT Ty hforhe H, 1 <4, j<n,and a € A. Now the first part of the
result is clear from Proposition 4. Further, for b € £5(R) we have Rfh = (R])"h,
and so for h € HY(T) = LR NH we have (RE)*h = Rfh = TFh = (TF)*h. This

proves the claim. O

Definition 8. Let T = (T}, ...,T,,) be a contractive tuple on a Hilbert space H.
The operator Ay = [I — (TyI7 +--- + I;,T,fj]’if is called the defect operator of T
and the subspace Ar(H) is called the defect spece of T. The tuple T is said to be
pure if 3\ T*(T")* converges to zero in the strong operator topology as m
tends to infinity.

Suppose 3 TLT" = I; then it is easy to see that 3~ . T(T")* = I for all m,
and there is no way this sequence can converge to zero. So in the pure case the
defect operator and the defect spaces are nontrivial

First we restrict our attention to pure tuples. The reason for this is that it is
very easy to write down standard dilations for pure tuples. So let 'H be a complex,

separable Hilbert space and let T" be a pure contractive tuple on ‘H. Take H =
[(C") @ Ar(H), and define an operator A: ' H — H by

(2) Ah =" e ® Ap(T*)*h,

o

where the sum is taken over all @ € A. It is well-known ([, [2), and also easily
verifiable using the pureness of T, that A is an isometry with

Ax{ﬁ" & h_:' = I‘ﬂ:h f{}'l' o Ji'u h‘ = ﬂI{H:I'
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Now H is considered as a subspace of H by identifying vectors h € H with Ah €
H. Then by noting that each V¥ @I leaves the range of A mvariant and ™ =
A*(V* @ NAfor all o £ A, it is seen that the tuple V= Viel. . V,&l) of
operators on H is a realization of the minimal isometric dilation of T. Now if T
is a commuting tuple, it is easy to see that the range of A is contained in H, =
[(C") @ Ar(H). In other words, now H can be considered as a subspace of H,.
Moreover, § = (S, @1,...,8, ®I), as a tuple of operators in H, is a realization of
the standard commuting dilation of (T}, . ., T},). More abstractly, if T is commuting
and pure, the standard commuting dilation of it is got by embedding H sometrically
in I, (C") @ K, for some Hilbert space K, such that (57 ® Ig, ... 8, @ Ix) iz a
dilation of T and Fpan {(8" @ Ic)h:he H,a e ﬁ_L} =T (C") = K. Up to unitary

equivalence there is a wmique such dilation, and dim(K) = rank({A7).

Theorem 9. Let T be a pure contractive tuple on a Hilbert space H. Then the
mazimal commuting piece V' of the minimal isometric dilation V of T is a realiza-
tion of the standard commuting dilation of T if and only if Ap(H) = Ap(H=(T)).
In such a case rank(Ar) = rank(Agp-) = rank( Ay ) = rank(A ).

Proof. We denote H*(T), Ar(H) and Ar{H=(T)) by H°, M, and M*® respectively.
It is obvious that T is also a pure contractive tuple. We already know from
Proposition 7 that Vo= (8@ Tpq) on T{C") @ M is a dilation of T It is the
standard dilation if and only if £ := span{(5" @ Im)Ah: h € H°, o € A} is equal
to [',(C") @ M, where A: H — H is the isometry defined by (2.2).

From the definition of A, uwing the commutativity of the operators T}, it is clear
that for h € H®, Ah € T'(C" )@ M. Hence £ C [ {C")@ME. Farther, as (S@1 ) is
a dilation, (5] @ Dy) leaves A{H®) invariant. Therefore, ({1 -3 5,55 @ Ly)Ah €
L for b € K" But, (I — 3% 55) being the projection onto the vacmm space,
(I-585)@Im)Ah =w®@ Arh. As {8%w, a € A} spans whole of T',(C"), we
get that T'(C" )@ M® C L. Hence £ =T, (C") ® M, and we have proved the first
claim.

Now suppose V' is a realization of the standard commuting dilation of T°
This in particular means that rank{Ap-) = rank(Ap-). Also as V is the mini

mal isometric dilation of T, rank{A7) = rank(Ag ). Further as Vo= (S @ Ta),

rank(Agp<) = dim{M) = rank(A7). O

We may ask whether the equality of ranks in this theorem is good enough to
mike a converse statement. To answer this we make use of the following simple
lemma.

Lemma 10. Suppose

B C
is a hounded positive operator on some Hilbert space. Then

A == kil ([ ; D _

Proof. Without loss of generality we can assume that M is a contraction. Then
it is a folklore theorem that there exists a contraction D such that B = O DAL,

M=[A B“]
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(1] ]

and hence runk{[g]:l < rank(A7). But A being positive, rank{4) = runk{A’i‘:I.
Therefore rank([ 4]) < r: mk{A:I n-mk ((an- O

Now

Remark 11. Let T be a pure contractive tuple on a Hilbert space H with minimal
isometric dilation V. If rank Ay and rank Ape are finite and equal, then Vika
realization of the standard commuting dilation of T.

Proof. In view of Theorem 9 we need to show that Ap(H) = Ap(H=(I)). Since
Ar(H) 2 Ar(H=(T)), and these spaces are now finite dimensional, it suffices
to show that their dimensions are equal, or rank(A7) = rank{ApPye). Clearly
rank{Ar) = rank{Ar Py ). Ako by assumption, rank{Ar) = rank{Ar-). By pos-
itivity rank(Ar-) = rank(AZ.). And then by the previous lemma rank(AZ,)
rank( Py (A2)Py.) = rank( A2 Py ) < rank( Ar Py. ). B

O

If both the ranks are infinite, we cannot ensure that Ar(H) = Ap(H=(T)), as
seen by the following example.

Example 12. Let B = (R, B2) be a commuting pure contractive 2-tuple on an
infinite dimensional Hilbert space Hy (We can even take Ry, Hs as scalars) such
that A g(Hy) is infinite dimensional. Take H = Hy@&C?, and let Ty, Ts be operators
on M defined by

Ry Ry
= 0 4 |, T = 0 a1,
00 ta 0
where #;,#; are any two scalars, 00 < #;,#2 < 1. Then T = (T4,T5) is a pure
contractive tuple. Making use of Corollary 5, H®(T") = Hy (thought of as a subspace
of H in the natural way) and the madmal commuting piece of T is (7, Ha), and

therefore rank{Ag-) = rank(Ar) = co. But Ar(H) = Ag(He) @ C2.

We do not know how to extend Theorem 9 to contractive tuples which are not
necessarily pure.

3. COMMUTING TUPLES

In this section we wish to consider commutative contractive tuples. Let us begin
by describing how one obtains two standard dilations for such tuples.

Recall standard tuples ¥ and S on Fock spaces ['(C") and T, {(C"), respectively,
introduced in the Introduction. Let C*(V) and C*(5) be unital C* alpebras gen-
erated by them. For any a, 3 € A, V(I — 3 V‘.*:I{E-H:I* is the rank one operator
x = {e?, z)e” formed by basis vectors e, e”. So €*(}) contains all compact op-
erators. In a similar way we see that C*(8) ako contains all compact operators
of T(C™). As V™V, = 4,1, it is easy to see that C(V) = W{E"{EH]*
o, 3 E ﬁL} By explicit computation we see that the commutators 57, 5] are com-
pact for all 7,j (see [B, Proposition 5.3, or [8]). Therefore we can also obtain
C*(8) = span{S“(8")* :a, F€ A}

Suppose T is a contractive tuple on a Hilbert space H. We obtain a certain
completely positive map (Popescu’s Poison transform) from C*(V) to B{H), as
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follows. For (0 < v < 1 the tuple +T' = (rT}, ..., rT,) is clearly a pure contraction.

So by (2.2) we have an isometry A, - H — D{C*) @ A, (H) defined by
Ayh = Zﬁ” @A) h, ke H,

i

where A, = (I —¢2 Z"I",'I":‘:I’lT So for every 0 << r < 1 we have a completely positive
map 1. O (V) — B{H) defined by

¥r(X) = A(X @ DA, X € C*(V).

By taking the limit as ¢ increases to 1 (see or [2] for details), we obtain a unital
completely positive map ¢ from C* (V) to B{H) satifying

PHVA)*) = THT)* fora, B € A

As C*(V) = span{V™ (VI ca, 8 e A}, ¢ is the unique such completely positive

map. Now consider the minimal Stinespring dilation of 1. S0 we have a Hilbert

space H containing H, and a unital +-homomorphism 7 : C*(V) — B(H), such that
WX) = Pym(X)p VX € C*(V),

and span{n(X)h: X € C*(V),h € H} = H. Taking V = (V;,...,V,) = (=(W1),

com(Ve)), one verifies that each {V,-:I" leaves H imariant and V is the unique

minimal sometric dilation of T'.

In a similar fashion, if T is commuting, by considering (8 instead of C*(1),
and restricting A, in the range to I',(C"), and taking limits as before (see [&],
[Z4. [3]), we obtain the unique unital completely positive map ¢ : C*(5) — B(H)
satisfying

HSHS)) =TT, afel
Consider the minimal Stinespring dilation of ¢. Here we have a Hilbert space H;
containing H and a unital s-homomorphism m 1 C*(8) — B(H; ) such that

#(X) = Pymi(X)|n VX € C¥(S),

and span{m(X)h : X € C*(2)h € H} = Hy. Taking § = (5,...,5,) =
(m( 510, ... m(5.)), we see that § & the standard commuting dilation of T hy
definition (it is not difficult to verify that it is a minimal dilation in the sense of our

Definition 2). As minimal Stinespring dilation is unique up to unitary equivalence,
standard commuting dilation is also unigque up to unitary equivalence.

Theorem 13 (Main Theorem). Suppose T is a commuting contractive tuple on
a Hilhert space H. Then the marimal commuting piece of the minimal {sometric
dilation of T is a realization of the standard commuting dilation of T

Our approach to proving this theorem is as follows. First we consider the stan-
dard commuting dilation of T on a Hilbert space H; as described above. Now the
standard tuple § is also a contractive tuple. So we have a unique wnital completely
positive map n 1 OV — C%(8) satisfying

L

V@) =8%8%)*, apBel

Now clearly ¥ = ¢ oy, Consider the minimal Stinespring dilation of the composed
map m o OV — B(H;). Here we obtain a Hilbert space Ha containing H,
and a unital +-homomorphism m 0 C* (V) — B(Ha) such that

m o X) = Py ma(X ), ¥X € C%(V),
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and span{m (X )k : X € C*(V),h € H1} = Ha. Now we have a commuting diagram
as follows:

B(Hz)
i
w2
B(H,)
my |
cHy) — C*§8 — B(K)
7 o

where the down arrows are compression maps, the horizontal arrows are unital
completely positive maps and the diagonal arrows are unital +-homomorphisms.

Taking ¥V = (Vi, ..., V) = (ma(V1), ..., m2(V])), we need to show that (i) V
is the minimal isometric dilation of T, and (i) § = (7m(51),...,m(S,)) is the
maximal commuting piece of E Due to unigqueness up to unitary equivalence of
the minimal Stinespring dilation, we have (1) if we can show that m B a minimal
dilation of v = ¢ o 9. For proving this we actually make use of (ii). First we prove
(i) in a very special case.

Definition 14. An n-tuple T = (T, ..., T},) of operators on a Hilbert space H is
called a spherical unitary if it is commuting, each T & normal, and TYTY +--- +
T,T: = 1.

Actually, if H is a finite dimensional Hilbert space and T & a commuting tuple
on ‘H satisfying 3 T;T* = I, then it is automatically a spherical unitary, that is,
each T} is normal. This & the case because here a standard commuting dilation of
T i a tuple of normal operators, and hence each T is subnormal (or see [6] for

this result), and all finite dimensional subnormal operators are normal (see 1.
Note that if T is a spherical unitary, we have

S - ) SiSH)(SE7)) =TI - ) _TTHIT)* =0

for any o, 3 € A. This forces ¢(X) = 0 for any compact operator X in C*(S).
Now, as the commutators [5], 5;] are all compact, we see that ¢ is a unital *-
homomorphism. So the minimal Stinespring dilation of ¢ is itself. 5o the following
result yields Theorem 13 for spherical unitaries.

Theorem 15. Let T be a spherical unitary on a Hilbert space H. Then the marimal
commuting piece of the minimal isometric dilation of T is T

As proof of this theorem involves some lengthy computations, we prefer to post-
pone it. But assuming this, we prove the Main Theorem.

Proof af Theoremn 13. As (5] contains the ideal of all compact operators, hy
standard C*-algebra theory we have a direct sum decomposition of m as follows.

Take Hi = Hic & Hin, where Hip = span{m (X )k : h e H, X € C*(5) and X
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is compact} and Hyy = Hy & Hie. Clearly My is a reducing subspace for m.
Therefore
mm=fﬂ”

that is, m; = m1o & v, where
mo(X) = Py em (X) Py mn(X) = Pryyyy m (X )Py,
As observed by Arveson [B], mo(X) is just the identity representation with some

multiplicity. More precisely, Hio can be factored as Hio = T.(C") @ Ar(H), so
that m- (X)) = X &1 in particular mo(5;) = 5, ®1. Also myn (X)) = 0 for compact
X. Therefore, taking Z; = mn(5;), we see that £ = (2, ..., Z,) & a spherical
unitary.

Now, mpon = (mpgon) & (myon) and the minimal Stinespring dilation of a
direct sum of two completely positive maps is the direct sum of minimal Stinespring
dilations. So He decomposes as Has = Hap & Hay , where Hap, Hoy are orthoponal

reducing subspaces of ma, such that 7 also decomposes, say T2 = Too & may, with

TﬁN{X:') !

mic 0 X) = Py moc (X )|io, myon{X) = By, man(X )ain

for X € C*V) with Hae = spm{mac(X)h : X € C¥),h € Hic} and
Hay = span{man(X)h: X € C*(V),h € Hin}. It is also not difficult to see that
Hae = span{mc(X)h : X € C*(V), X compact, h € Hic} and hence Hae factors
as Hae = D(C") @ Ap(H) with mec (Vi) = Vi@ L. Also (my (Vi),...,mn(Vy)) s a
minimal isometric dilation of the spherical isometry (2, ..., Z,). Now by Propo-
sition G, Theorem 15 and Corollary 5, we get that (7 (5)), ..., m(5,)) acting on
‘Hy & the maximal commuting piece of (m2( V1), ... ma{ V)0

All that remains to show is that 7o is the minimal Stinespring dilation of ¢ o 9.
Suppose this is not the case. Then we pet a reducing subspace Hop for m hy
taking Hay = span{m(X)h : X € C*(V),h € H}. Take Hay = Ha & Hayp and

correspondingly decompose ma as ma = Ty & Ty,

alX) (“‘*’“{X E s {x;.)-

Note that we already have H C Hay. We claim that He © Hay. First, as H; is
the space where the maximal commuting piece of (ma{V1), ..., m2(V)) = (map( V] )&
T (V1) oo o man( Ve 1B e (VL)) acts, by the first part of Corollary 5, H; decomposes
as My = Hy & Hy for some subspaces Hyg © Hag and Hyy © Moo So, for
X e O*(V), Py, m(X) Py, has the form (see the diagram)

moonp(X) 0
1] 0
T om(X) 0]
0 0

where g, 71 are compressions of m; to Hyg, Hyp respectively. As the mapping
7 from C*({}) to O8] is clearly surjective, it follows that Hy, My are reducing
subspaces for w0 Now as H is contained in Hag, in view of the minimality of m
as a Stinespring dilation, H; € Hag. But then the minimality of ma shows that

Ha C Hay. Therefore, Ha = Hag. O

Proof af Theorem 15. Here we need a different presentation of the minimal isomet-
ric dilation. This is known as the Schiffer construction [ﬂ] in the one-variable

Py ma(X )Py, =
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case, and [21] is a good reference for the multivariate case. Here we decompose the

dilation space H as H = H & ([(C") @ D), where D is the closure of the range of
the operator

D:He --aH—-HB---aH

T 1‘1’.|p|e-s T ﬂﬂpli“.—i

and D is the positive square root of
DQ = ['5:'_,1-'; = .1—?‘-1}]1'! Hiee

Whenever it is convenient for us, we identify H & - -- & H with C" @ H, so that
M, aer
e eopdes

(hayoorha) =D& ® b
=1
Then

(1) D(h, ... ha) = D(D_ei® hy) Z D (i — Y TrTihy).

i=1 i=1 =1
And the minimal isometric dilation V; has the form

(2) Vih@ ) e*Qd) =Th@ Dlei0h) @ e ® () e* @da)
=0 wEd

for he H.d, e Diora £ f_'L, and 1 <4 < n (C"w ®D has been identified with 7).

In the present case, as 3 T\T* = I, by direct computation D? i seen to be
a projection. So, D, which is the positive square root of D?, is equal to D2
Also, by the Fuglede-Putnam theorem ([19, [26]), {T1,.... T, T7,.... T} forms a

commuting family of operators. Then we pet

T "

(3) Dby hn) = D e®@T(Trhi—Tih) = Y e @ Tilhi),
&, 3=1 i3=1
where hy; =T7h; — Trhy for 1 <4,§ <n. Note that hy; = 0 and by, = —hy;.
Now we apply Proposition 4 to the tuple V acting on H. Suppose

y € HENH(Y).

We wish to show that y = . We assume y 5 0 and arrive at a contradiction. One
can decompose y as y = 08 3z e & o, with y, € D. If for some a, y. # 0,

then {w® ., {V; 1" = {:F‘" B Y ) = Yoo Ya) # 0. Since each (V;)* leaves H(V)
invariant, {L’ :| y € HE(Y). So without lass of generality we can assume |yg) =

"I‘aking m = 2 qeaAm € B Yo, we get y = 0D P noliim) A5 o €D, yo =
Dihy, ... ¢y, for some (hy, . o hy) (presently, D ht:ing_a projection, its range is
closed). Set 7y = 4 = yo, and for m = 1,

i ¥ en @ Qe ©e®De T . T hiy).

£1,. . fm—1 #,4=1
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Clearly %, € (C")®" @ D for all mn € M. From the definition (3.2) of V;, commu
tativity of the operators T, and the fact that D is projection, we have

z {f,f‘i;; = i-_"_-.iir_’rijlilaj

1< <

= Y (TTjhy —TThy) + Y Dlei® Tjhij — e; ® Tihy)

LZijsn 1<i<j<n

+ ) (e®D(e; ® hiy) — e ® D(ei ® hyy))

1< j e
=D{ 3 (ei®@Tjhy—e;@Thy)}+ > ei® Dle; & hyy)
1<i<j<n ii=1
= D{ Z e @Thyg) + z e: @ Dle; @ hy;)
ig=1 ij=1
= D*(hy, ... ha) + Y e @ Die; ® hyy)
ij=1

= 5‘4] + i}.

Therefore {y, #g + #1) = 0 by Proposition 4. Now for m = 2

> Vi Vi, O (W = BT . T3, T b, )
£ 4oy trmm—1=1 ti=1
= Z Viiiia W [ Z Dle; @ T,y ... TF __Tihi. i
BT oini ten—1=1 i, 3=1

AT e T Bl

LS| Ty

T
+ > {a@D(geT) ... T;

trn—2

®
Tihy,, i)
=1

—ggega®T ... T8 Tk, )}

fen—a™ §
= E : &, 8- -Be,

& trn—1=1
BD(Y & ®LT; .. T, T hin i~ & ® LT, T, T his, i)
ti=1

+HY e@DEaTl; .. T T, )

ig=1

- ea®DeeT ... T T hi, )}
=1

(in the term above, ¢ and j have been interchanged in the last summation)
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Z €, 8---Be,
£1 peeigbon 1 =1
SID(> e ®T, - T hirsi— 3 & O T oo T, T hi )
i=1 i =1

+ Y e®D{g @M. T, T b — T T T i)}

ij=1

Z e, B---Bei,, 212 Dle;@ Ty ... T, ol 1)
£ 4oy trmm—1=1 =1

+ ) &,@® Qe e

By B T TP T iy = TETE By TR T

1

> en® B, ,@e@De; T .. TS _hy)

+ 3 @ -Qe,, Qe

@D(e;@T .. 5, (T T, i+ TT,, )

{in the term above, index i, _; has been replaced by 7 and @ has been

replaced by j in the first summation)

3 eu® - Qe, 060D 0T; .. T _hy)
:']:....im_-g:!':j=l
- Z €, ® B, Ve@Dle; Ty . T _ hy)

S{]H {,1.’-. Tm—1 _irrl} =L
Next, we would show that | T4 ]| = |Zo] =1 for all m € M. Indeed,

T

lZmialP=( Y en®--@e, ®ei®Dig T ... Ty hyj),

trn

T |

> ey @ ®ey Bew®Dley @ T Th hiy))
L. i, 1t =1
> Dl @T... Thhy) Y Dley @Th ... T hy)
B) poee by 2t =1 §=1 =1

> POyl Tohy) Y ey @T .. T hy)

ST S L | =1 =1

1563
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3 (> @ T, . Tohu = TPT . T ),
) e b t=1 [ k=1

Z ey @ T .. T hyje)

=1
> {Z Te(TeTy o T g — T T T i) T T B
i1 bt i=1 k=1
= 2 O (DeTihy — TeT har), hag)
t.j=1 k=1
= > O DT by — TVTETS by — T T Tihs + Tl T i), Ty hy — 17 b
t.j=1 k=1
= 3 O DT b — TTET) hy) T} b — Ti hy)
t.j=1 k=1
= 2 Q(BTIT h) — Tohy, Tyhy — Tihy)
i.j=1 k=1
Z{T ZTJ*T hi) — T T hy b
i 3=1
- Z{r ZTJ*T hi) — T Ry, by
t.3=1
» Z{er* ZT,;T*F* — 3 Tk ki)
=1 j=1 i=1
o s ¥ an hie) = Y Tk hy)
i=1 i=1 i=1
» z{{z T T g )= er Ry, b Z{ZﬂT*hk hy, by
i=1 k=1 =1 k=1
= (=Y TeT ki) hyh = (D(ha, ..o ha) (b, o B )) = (0] =
i=1 k=1

As{y, Top + 3 ) =0 and {y, Ty — Frng1) = 0 for m € M, we pet {y, To + Tug1) =0
for m € M. This implies 1 = {gg, 10} = {F0, Fo) = —{Gms1: Tmt1). By the Canchy-
Schwarz inequality, 1 < |#ms1||Zeesa]l - 1€ 1 =< || s for s € M. This is a
contradiction, as y = 0 £ €D, -, ¥m is in the Hilbert space H. O

4. REPRESENTATIONS OF CUNTZ ALGEBRAS

For n = 2, the Cuntz alpebra @, & the C*-algebra penerated by n-isometries
{31, .+ 8, } satisfying the Cuntz relations: sfs; = 81,1 < 4,7 < n, and

Z e =1. It admits many unitarily inequivalent representations. Various classes
of representations of @,, have been constructed in [@], [I0], [1d]. Given a tuple of
contractions T = (Ty,...,T,) on a Hilbert space satisfying ¥ T,T)* = I, we consider
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its minimal isometric dilation ¥V = (Vi,....V},). We know that the isometries V;
satisfy Cuntz relations, and we obtain a representation 7 of the Cuntz algebra O,
by setting mr(s;) = Vi. We wish to classify all representations of ¢, we can obtain
by dilating commuting contractive tuples T

Let &, = C'(A8,,) be the C*-algebra of all continnows complex wlued functions
on the sphere 8B, = {{z1,...,2.) : Yol = 1}. We have a ditinguished tu-
pke z = (=1, ..., 2,) of elements in 8, consisting of co-ordinate functions. Given
any spherical unitary £ = (£, ..., Z,;) there is a unique representation of S,
which maps z; to Z;,. Now given any commuting n-tuple of operators T, satisfying
3. LTY = I, we consider its standard commuting dilation 5 =(5,...,5.). Let
pr be the representation of 8, obtained by taking pr(z) = 5.

Definition 16. Let 7 be a representation of O, oo a Hilbert space £ with W =
(Wi, . W) = (m(s1),. .., 7(5,)). The representation 7 i said to be spherical if
gpan{W*h: he L5(W),a e IT'L} = L, where £°(W) is the space where the maximal
commuting piece W* of W acts as in Definition 3.

Note that this definition means in particular that if 7 is spherical then the
maximal commuting piece W is nontrivial. We will see that it is actually a spherical
unitary. But this & not a justification for calling such representations spherical,
becanse this happens for any representation of O, as long as W* is nontrivial!
The actual justification of this definition is in Theorem 18.

Theorem 17. LetT = (T, ... T,) be a commuting tuple of operators on a Hilbert
space H, satisfying ¥ T\T* = I. Then the representation 7w coming from the min-
imal isometric dilation of T is spherical. Suppose B = (R, ..., R,) is another
commuting tuple, possibly on o different Hibert space, satisfying % R, R = I
Then the representations wp, 7wy of O are unitarily eguivalent if and only if the
representations pr, pr of S, are unitarily equivalent,

Proof In view of Theorem 13, the maximal commuting piece of the minimal iso-
metric dilation V of T is a realization of the standard commuting dilation § of
T. The first claim follows easily, as the space on which the standard commuting
dilation acts includes the original space H. So V is the minimal sometric dilation
of 5. A similar statement holds for the tuple £. Now the theorem follows due to the
unigqueness up to equivalence of a mindmal isometric dilation of contractive tuples,
and the unitary equivalence of maximal commuting pieces of wnitarily equivalent
tuples. O

So this theorem reduces the classification problem for representations of O,
arising out of general commuting tuples to that of representations of §,,. But 8§,
being a commutative C*-algebra, its representations are well-understood and is part
of standard C*-alpebra theory. We find the description of this theory as presented
in Arveson’s classic ] most suitable for our purposes.

Given any point w = (wy, ...w,) € 88, we have a one-dimensional represent a-
tion ¢, of &, which maps f to f{w). Of course w is a spherical unitary as an op-
erator tuple on ©. We can construct the minimal sometric dilation (W), ..., W)
of this tuple as in the proof of Theorem 15 (Schiiffer construction). We see that the
dilation space is

H*=Ca((C")aC])cCa ([ (C")aln),
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where T} is the subspace of vectors orthogonal to (57, ..., 7, in C". Further, the
operators W are given by

Wrlha Zﬁ'" @dy) =whd Die, @ k)T e;® {z e* @dy).
We denote the associated representation of O, by p,.. This representation is known
to be irreducible, as it is nothing but the GNS representation of the so-called Cuntz
state on 0, (see [14], Example 5.1), given by

* * ———— ——
Siycr Sin 8y, 8 W W, W Wy

Now an arbitrary multiplicity-free representation of 8, can be described as fol-
lows (see [4]). Consider a finite Borel measure p on 88,,. Then we get a represen-
tation of S, on the Hilbert space L?(8B,,, p), which sends f € 5, to the operator
‘multiplication by f'. This representation can be thought of as a direct integral of
representations g, with respect to a measure p. Now it is not hard to see that the
associated representation of O, is simply the direct integral of representations p,,
with respect to p and acts on $H" u(dw). Finally, an arbitrary representation of
&S, 15 a conntable direct sum of such multiplicity-free representations. So we have
proved the following result.

Theorem 18. Every spherical representation of O, is a direct integral of repre-
sentations p,.w € 08, (GNS representations of Cuntz states ).

Here we have not bothered to say when two such representations are equivalent.
But in view of Theorem 17, we can do it exactly as in ([4], pages 54-55), by keeping
track of multiplicities and equivalence classes of measures.

Theorem 19. Let 7 be a representation of O, Then:

(i) w decomposes uniguely as m = 7" &', where 7¥ is spherical and (7' (s1), ...,
75, )) has trivial mazimal commuting piece {either 7 or 7° could also be absent).

i) The marimal commauting piece of (w(sy), ..., 7w(5,)) either is trivial or it is
a spherical unitary.

i) If w is trreducible, then either the mazimal commuting piece is trivial or
it is one-dimensional. In the second case, @ is unitaridy eguivalent to the GNS
representation of @ Cuntz state.

Proof. Suppose 7w is a representation of O, on a Hilbert space £ and
W= (m{s),....,7w(5.]).

Consider the space £ generated by C5(W) as £ = span{W™*h:he £5(W), a €
A}. Now each W) leaves £5(W) invariant, and clearly O, = C*{5*(s")* 1 a, 5 € AL
Then it follows that £° is a reducing subspace for 7. Taking £!' = (£%)1, we
decompose 7 as 70 @& 7! with respect to £ = £° @ £ Tt & clear that this is a
decomposition as required by (i). Unigueness of this decomposition and (i) follow
easily, as a maximal commuting piece of a direct sum of tuples is a direct sum
of maximal commuting pieces (Corollary 5), and then (iii) follows from Theorem

18. O

Let us see what happens if we dilate comnmting tuples T satisfying just 3 T, <
I. In this case, as is well-known, the minimal isometric dilation decomposes as
(VieDeWy, ... (Ve e W,), where (V, ..., V) is the standard tuple of full
Fock space, and (W9, ..., W, are isometries satisfying Cuntz relations. If T & not
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pure, the term (W, ..., W) is present and we get a representation of OQ,,. However,
as seen in the proof of Theorem 13, (W, ..., W,) i3 & minimal isometric dilation
of a spherical tuple (Z,,..., Z,) (the spherical part’ of the standard commuting
dilation of 7). and hence the representation of O, we get is still spherical.

On the other hand, it is easy to get examples of noncommuting tuples dilating
to representations of O, which are not spherical. For instance, we can consider the
tuple B = (R, Rz) on T2 defined by

01 00
R‘=[ﬂ {}]‘ R?‘:[l{}]‘
Then as By R} + Ra RS = I, the minimal isometric dilation of (7, Ba) satisfies the
Cuntz relations. We can see that it has trivial commuting piece through a simple
application of Corollary 4.3 of [14].

Finally, we remark that if we are to consider the case n = oo, that &, if we have
infinite tuples {T7,T5,.. ., }, then the standard commuting tuple {57, 52,...,} no
longer consists of essentially normal operators, as the commutators (57, 5;] have
infinite dimensional eigenspaces with nonzero eigenvalues. This i a serious obstacle
in extending the results of Sections 3 and 4 to infinite tuples. Taking a different

direction, many results have been now extended to the case of g-commuting tuples

(T = qu;T.T; with g;; € C) by 5. Dey in [15].

ACKNOWLEDGEMENTS

The first author is supported by Indo-French (IFCPAR) grant No. IFC/#01-
1/2001 /1253, the second author is supported by research prant no. SR/FTP/MS-
16,/2001 of the Department of Science and Technology, India, and the last author
is supported by a research fellowship from the Indian Statistical Institute.

BEFERENCES

[1] J. Agler, 'The Arveson extension theorem and coanalytic models’, miegm! Equations and
Operatar Theory, 5 (1982) 608-631. MRB[Bdg:A7011]

[2] A. Arias and G. Popescu, ‘Noncommutative interpolation and Poisson transforms,” lemel J.

[3] A. Avias and G. Popescu, ‘Noncommutative interpolation and Poisson transforms I, Housfon
Jo Math, 25 (19949) 79-98. MR [2000i:47144]

[4] W. B. Arveson, An Mnuifaiion to C*-algebmes, Graduate Texts in Mathematics, No. 39,

[5] W. B. Arveson, ‘Subalgebras of C*-algebras I, Multivariable operator theory,” Acia Maih.,
181 (1994} 159-228. MR [2000e: 4713

[6] A. Athavale, ‘Onthe intertwining of joint isometries,” J. Operator Theary, 23 (1990} 339-350.
MRE [91i: 425

[7] A. Athavale, ‘Model theory on the unit ball in ™', J. Opemior Theory, 27 (1992} 3M7-3548.
MR [84i: 11

[8] B. V. Rajarama Bhat and T. Bhattacharyys, ‘A model theory for g-commuting contractive
tuples', J. Qpemmior Theary AT (2002) 97-116. ME [2008c: 47014

[4] ©. Bratteli and Palle E. T. Jorgensen Hemied funciion sysiems and permuiafion represenia-
tions af the Cuniz algebra, Mem. Amer. Math. Soc., 139 (1999), no. 663. MR [@9k:160HHal

[10] ©. Bratteli and Palle E. T. Jorgensen, ‘Tsometries, shifts, Cuntz algebras and multiresolution
wavelet analysis of scale N', Infegral Equations Operator Theory, 28 (1997) 382-43. MR
[99k:46004b)
[11] J. W. Bunce, ‘Models for n-tuples of noncommuting operators,” J. Funci. Anal | 57 (1984)

21-30. MR B6k:47019]



1568 B. V. RAJARAMA BHAT, T. BHATTACHARYYA, AND 5. DEY

[12] J. Cuntz, ‘Simple C*-algebras generated by isometries,’ Commun. Math., Phys, 57 (1977)
173-185. MR[G7T: 7180

[13] €. Davis, ‘Some dilation and representation theorems’, Procesdings af ihe Second Inierna-
fional Symposium m Wesf Africa on Functional Analysis and itz Applicafions [(Kumasi,
1979, Forum for Funct. Anal. Appl., Kumasi, Ghana, 19749, pp. 159-182. MR [Bde: 1712

[14] K. R. Davidson, D. W, Kribs, and . E. Shpigel, ‘Tsometric dilations of non-commuting finite
rank n-tuples', Canad. J. Math., 53 (2001) 506-545. ME[Z002F:47010

[15] Dey, 8. ‘Standard dilations of g-comnuting tuples’, Indian Statistical Institute, Bangalore
preprint (2006}

[16] 5. W. Drury, ‘A generalization of von Neumann's inequality to the complex ball’, Proc. Amer.
Math. Soc., 68 (1978} 300-304. MR BUc:TTTI

[17] A. E. Frazho, ‘Models for noncommuting operators’, J. Funci. Anal., 44 (1942} 1-11. MR
[Bdh: 4710

[18] A. E. Frazho, ‘Complements to models for noncommuting operators’, J. Funci. Anal, 59
(1084} 445-461. MR Béha 010l

[19] P. B. Halmos, A Hilberi Space Problem Baok, Second Edition, Graduate Texts in Mathemat-

[20] 8. Parrott, ‘Unitary dilations for commuting contractions’, Pacific J. Maih.. 34 (1970} 481-
400. MR [42: 3607

[21] G. Popescu, ‘lsometric dilations for infinite sequences of noncommuting operators’, Trana
Amer. Math. Soc., 316 (1980) 523-536. ME[B0c:4T06]

[22] G. Popescu, ‘Models for infinite sequences of noncommuting operators’, Adefa Sei Maih.
{Szeged), 53 (1980} 355-368. MR B1b:A7025

[23] G. Popescu, 'Charscteristic functions for infinite sequences of noncommuting operators’, J.
Operatar Theory, 22 (198%) 51-71. MR BLm:A7012

[24] G. Popescu, ‘Poisson transforms on some O*-algebras generated by isometries’, J. Funei.
Anal, 161 (1999} 27-61. MR [2000m #6117

[25] G. Popescu, ‘Curvature invariant for Hilbert modules over free semigroup algebras’, 4dvances
in Mathematics, 168 (2001} 264-300. MR [2002b:A6(07]

[26] C. R. Putnam, Commuiation properiies of Hilberi space Operators and Relaied Topics,
Springer-Verlag, New York, 1967, ME[36:707

[27] J. X Schiffer, ‘On unitary dilations of contractions’, Proc. Amer. Math. Soc., 6 (1955) 322,
MR [16: 03]

[28] B. Sz.-Nagy, €. Foins, Harmonic Analysiz of Opemiors on Hilheri Space, North-Holland,
Amsterdam (1970). MB[43:047]

INDIAN STATISTICAL INSTITUTE, R. V. COLLEGE P0sT, BANGALORE H60M059, INDUA
F-mail address: bhat@isibang.ac.in

DEPARTMENT OF MATHEMATICS, INDIAN [NSTITUTE OF SCIENCE, BANGALORE L6012, INDIA
E-mail address: tirthadmeth.iisc.ernet.in

INDIAN STATIETICAL INSTITUTE, R. V. COLLEGE POsT, BANGALORE S6{MIGY, INDiA
Fmail address: sentanuisibang.ac.in



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	j10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg
	18.jpg

