Probabilistic representations of solutions to the heat equation
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Abstract.  In this paper we provide a new (probabilistic) proof of a classical result
in partial differential equations, viz. if ¢ is atempered distribution, then the solution of
the heat equation for the Laplacian, with initial condition ¢, is given by the convolution
of g with the heat kernel (Gaussian density). Our results also extend the probabilistic
representation of solutions of the heat equation to initial conditions that are arbitrary
tempered distributions.
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1. Introduction

Let (X =0 be a d-dimensional Brownian motion, with Xo = 0. Let ¢ € S'(EYY, the
space of tempered distributions. Let ¢; represent the unigue solution to the heat equation
with mnital value 4, vie

1
digy = ;ﬁ;p; O0=r=T; wm=p.

2 .
It 15 well-known that ¢ = ¢ # pr, where plx) = — L e /20 gnd 4" denotes

(2 n=/=
convolution. When ¢ is smooth, say ¢ € 8, the space of mpidly decreasing smooth
functions, then the probabilisite representation of the solution is given by the equality

@it, v) = Ep{X;+ x)and is obtained by taking expectations in the Lo formula

I 1 'y
@(X: +x) = plx) + f Ve(X, +x) - dX, + 5 f Ag(X; + x)ds.
il = J0

Such representations are well-known (see [ 1-4]) and extend w a large class of initial
vitlue problems, with the Laplacian A replaced by a suitable (elliptic) differential operator
L and (X;) being replaced by the diffusion generated by L. A basic problem here is 1o
extend the representation 1o situations where ¢ is not smooth.

The main contdbution of this paperis 1o give a probabilistic representation of solutions
to the initial value problem for the Laplacian with an arbitrary initial value ¢ € 8'. This
representation follows from the Lo formula developed in [9], for the §'-valued process
{tx,@). where 7. 15 the ranslation of gbyx e B4 Our representation (Theorem 2.4)
then reads, ¢, = Ety, ¢ where of course g is the solution of the initial value problem for
the Laplacian, with initial value ¢ € 8. In particular, the fundamental solution pix — -)
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has the representation, prix — -) = Ety, 8. However, the results of [9] only show that if
@ € 5. then there exists g = p such that the process (Ty, ¢) takes values in 5. Here for
cach real p, the Sps are the *Sobolev spaces” associated with the spectral decomposition
of the operator |x|* — A or equivalently they are the Hilbert spaces defining the countable
Hilberian structure of S (see [6]). S;,J »the dual of 5 p, is the same as S_ . Clearly it would
be desirable to have the process (Ty,¢) lake values in S, whenever ¢ € 5. Such a result
also has implications for the semi-martingale structure of the process (Ty, ) — it is a semi-
martingale in 5, (Corollary 2.2) and fails to have this property in S| forg < p+ 1 (see
Remark 5.2 of [5]).

Given the above remarks and the results of [9], the properties of the ranslation operators
become significant. We show in Theorem 2.1 that the operators t, 0 Sy — Sp forx e B4,
are indeed bounded operators, for any real p, with the operator norms being bounded above
by a polynomial in |x|. The proof uses interpolation techniques well-known 1o analysts.
Theorem 2.4 then gives a comprehensive treatment of the initial value problem for the
Laplacian from a probabilistic point of view.

2. Statements of the main results

Let (€2, F, (Fr=n, P) bea fillered probability space with a filtration (5 ) satisfying usual
conditions: F; = [, , JFy and Fy contains all P-null sets. Let (X )r=0 be ad-dimensional,
{7 )-Brownian motion with X; = (.

& denotes the space of mpidly decreasing smooth functions on B (real valued) and
&7 its dual, the space of tempered distributions. We refer to [11] for formal definitions.
For x € BY &, € & will denote the Dirac distribution at x. Let {t, : x € BY} denote
the translation operators defined on functions by the formula t, f{v) = f{y — x) and let
7y : 8 — & act on distributions by

(20, F} = @, T_x ).

The nuclear space structure of & is given by the family of Hilbert spaces Sp. p € R,
obtained as the completion of S under the Hilbertian nomms {| - || o} per defined by

lel? = Y @Ikl + dPle, b,
k

where ¢ € S, and the sum is taken over k = (k... k) € Z2 k| = (hky + --- +
k). {w, hy) denotes the inner product in L2(RY) and {h¢, k € 22} is the ONB in L* (),
constructed as follows: for x = (x.... ., xg) fe(x) = hg(x1) .. A, (xg). The one-

dimensional Hermile functions are given by heis) = W—:W]HE‘_["EHJH“S}, where
Hels) = (=1)%e” £.¢=% are the Hermite polynomials. While we mainly deal with real
vitlued functions, at times we need to use complex valued functions. In such cases, the
spaces &p are defined in a similar fashion as above, i.e. as the completion of § with respect
to || - || - However, in the definition of ||¢:-||i above we need to replace the real LT inner
product {g, hg) by the one for complex valued functions, viz. {p, W) = _,I;:.,u fp{.r}l@'{.r}ldx
and (g, hy)* is replaced by |{g, he}*. It is well-known (see [6, 7)) that S = [, 8. 8" =
Up &p and S;,_, =: dual of 5, = 5_p. We will denote by {-,-} 5. the inner product corre-
sponding 1o the norm || - || 5.
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Let (¥;)r=n be an Sp-valued, locally bounded, previsible process, for some p € R Let
i 18, — &,_) 2 be the partial derivatives, | =i = 4, in the sense of distributions. Then
since d;, 1 = 7 = d are bounded linear operators it follows that (8 ¥;)r=0 is an Sp_q2-
vitlued, locally bounded, previsible process. From the theory of stochastic integration in
Hilbert spaces [8], it follows that the processes

I T
( f r_,.ux_:.) ( f i r_,dx_‘,.)
0 1=l 0 1=

are continuous JF; local martingales for 1 < i = d, with values in 8p and S, 2 respee-
tively. If X, = (X!, ..., X9) is a continuous BY-valued, JF,-semi-martingale, it follows
from the general theory that the above processes wo are continuous F-semi-martingales
with valuesin Sp and 5,12 respectively.

Theorem 2.1. Let p € B There exists a polvnomial Py(-)of degree k = 2([|p|] + 1) such
that the following holds: For x e BY 7, : Sp — 8y is a bounded linear map and we have

el p = PellxDleell p
forall g € Sp.

In ([9], Theorem 2.3) we showed that if (X, )= is a continuous, d-dimensional, -
semi-martingale and ¢ € &, C &', then the process (Ty, @ )r=0 is an & -valued continuous
semi-martingale for some g < p. Corollary 2.2 below says that we can ake g = p — 1.

COROLLARY 2.2

Let (X1 )r=0 bea continwous d -dimensional, Fy-semi-martingale. Let ¢ € Sp, p € B Then
{Tx,@)r=0 is an Sp -valued, continuous adapted process. Mowover it is an Sp_l-n-'ﬂhwd,
continuous Fy-semi-martingale and the following Ite formula holds in Sp_as ¥ = (),

o 1
TY, @ = TX, ¢ — Ef dil Ty, @)d X
- i

RPN e
s ¥ f a7 (rx,@)d( X", X7, (2.1)
ig=l1 0
where X; = {Xrl ..... X;'r}l and {{X", X-"'},}l is the guadratic variation pocess between

(XDhand (X)), 1<i,j=<d

Proof. From Theorem 2.1, it follows that (tx, @) is an Sp-valued continuous adapted
process. By Theorem 2.3 of [9], 3 g < p. such that (ry, @) is an &, semi-martingale and
the above equation holds in 5. Clearly each of the terms in the above equation is in Sp_;
and the result follows.

The next corollary pertains o the case when (X)) = (X!.. ... X¥) is a d-dimensional
Brownian motion, Xg = 0. In ([5]. Definition 3.1), we introduced the notion of an SL{:
S_p. p o= W-valued strong solution of the SDE

d¥; = A de + VY, - dX,.

P | =

Yo =, (2.2)
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where V = (d;, ... .dy) and A = Z‘_l EEI‘ There we showed that if ¢ € 5}, then the
above equation has a unigue Q}-vuluui strong solution, g = p + 2. Theorem 2.1 implies
that we indeed have an (unigue) S;.J-vuluuj strong solution.

COROLLARY 2.3
Let g € Sp. Then, eq. (22) has a unigue S, -valued strong solutionon 0 =t = T.

Proaf. By Corollary 2.2, the process {(ty,¢), where (X;) is a d-dimensional Brownian
motion, Xy = 0, satisfies eq. (2.1). Further,

—illlf'""ﬂ
EL lrx.ell= pdf—f f Iz Lfﬁll - (om }‘wdxdr«::x,-_

Unigueness follows as in Theorem 3.3 of [5]. O

We now consider the heat equation for the Laplacian with initial condition ¢ € &, for
some p e .

1
gy = ;)-x‘lfp, D=<fr=T,

o0 = p. (2.3)

By an Sp-valued solution of (2.3), we mean a continuous map t — ¢ : [0, T] — 5,
such that the following equation holds in Sy :

I
1
¢r =¢v+f =~ Agyds. (24)
|: Fi

Let {h7 "'} bethe ONB in S,_; given by h™" = (2k| + d) "~ k. We then have for
p=0andr =T:

oo
2 1,2
”‘ﬂ‘"p_[: E fes. hp -1
|k|=t]

Iwh”%;l+7fc@ ~poidigy. n_]
[k |=0

— I
=1 1 =1
=ML+Z{bwﬂuwﬂwﬁ) ds

|k [=h p—l

s ay
= ”‘?}”;‘J—l +2 f (;ﬂ‘ﬁ‘h@-.) da.
LV p—1

It follows from the results of [5] (the monotonicity condition) that for p < 0,

1 . 2
2<5aw.wlﬁ_4—§:umwuﬂl*fcuwup4

for some constant € = O for all ¢ € Sp. We then get

”ﬁhl_uﬂp|+cfuﬁhlm
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Hence for the case p < 0, uniqueness follows from the Gronwall lemma. Unigueness for

the case p = 0, follows from uniqueness for the case p = 0 and the inclusion 5, C &

for g = p. It is well-known that the solutions of the initial value problem (2.3) in S'(B)

are given by convolution of ¢ and pyix), the heat kernel. That these coincide (as they

should) with the S p-valued solutions follows from the ‘probabilistic representation’ given

by Theorem 2.4 below. Define the Brownian semi-group (7} )~ 0on & in the usual manner:
Tiglx)=¢* pix) 1 =0, Typ=¢

2 i ; ;
where pri{x) = ﬁzc[_l"‘l A ¢ = 0 oand ‘# denotes convolution: f#*glx) =

fﬁ,.u Fivigla — vidy. In the next theorem we consider standard Brownian motion (X, ).

Theorem 2.4. (a) Let ¢ € Sp. Then for t = ), the Sp-valued random variable tx,p is
Bochner integrable and we have

Erxp=p*p =Ty

In particufar, foreverv p e B, and T = (), sup, . | 17| = oo where | T;| is the operator
nom of T 1 85 — Sp.
(b} Forg € Sp. the initial value problem (2.3) has a unigue S p-valued solution g, given by

o= Erx,p.

Further g, — g strongly in Sp ast — 0

3. Proofs of Theorems 2.1 and 2.4

The spaces Sy can be described in terms of the spectral properties of the operator i defined
as follows:

Hf = (x| = A)f. fe&

If {Ag} is the ONB in L*{B9) consisting of Hermite functions (defined in §2), then it is
well-known (see [10]) that

Hf!k = {2{.{5 + ﬂ'}lﬁ;_
For f € &, define the operator H " as follows:
HP f =3 QI+ d)P{f, habhg.
k
Here p is any real number. For f € Sandz = x + iy € Cdefine H*f =3 (2|k| +
d)*{ f. hyyhy and note that, H® f = H*(H™ f) = HY(H*f) and H"Y : L* — L[?isan
isometry. Further,

IH £llg = Y (201 +d)™(f, e
k

= | fI3-

The following propositions (3.1, 3.2 and 3.3) may be well-known. We include the proofs
for completeness.
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PROFPOSITION 3.1

Foranypandg, |H gly—p = @y forg € 8. Consequently, H? : 55 —+ 5;_ p extends
ax a linear isometry. Morveover, this isometry is onto,

Proof. Leth} = (2]k| +d)~"hg. Then from the relation {g, i), = (21k] + d)*P (@, hi)
it follows that {A{} is an ONB for S;,. Let ¢ € 8. Since

HP@ =Y (0. h) Qlk| + d)Phy
k

=) . ) Ikl + d)R{TP,
k

weget |HPg|Z_, = el
To show that H” is onto, consider W € S;_p.

¥= (ki g ph{ ",
k
Defining ¢ =: 3 (v, hi "), _,hi, weseethat ¢ € S,. Also,

q g—p g—n g—n
HPp = (o, Kdghi " =D 1w, bl Phgphl P = . 1
k k
Let A; =x; + E:'IJ- and A:l!' =xj— E:'I_|.-, 1 = j =d. Thenilis easy Lo see that

o
H=3) (AjA] +ATA)).
=1

| —

For multi-indices o = (o), ... ,eg)and § = (fy, ... , fq) we define
o SN o N ¢ (ol L o L T
For an integer £ = 0 and x € [, recall that
1
(V22
where Hy is the Hermite polynomial defined by
£ )

2 2
£ X
Hﬁ{I}:{—l}L EL s

he(x) = e By (),

It is easily verified that
d x5 — i 7)
e (c x*2 Hﬁ{x}) =2 (1: /2 Hﬁ_l{x}).
dx

d % -2y
(x _ _) (l:_['l' IZJHE{I}) ol .l'-]HE+I (x).
dx

It then follows that
4
AT he (xj) = 1,'.-"3{-{'; + Dby 41(xj).
Ajhg(xj) = /2kjhy 1 (x;).

lterating these two formulas we get the following:
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PROFPOSITION 3.2

Let k, fi and a be multi-indices such that k; = a;. j =1,... .d. Then

ik + f!

1,2
I ) he4p(x),

(AH)Phy(x) = 21812 (

E 1,2
A%hp(x) = 2leel 2 L By _g(x),
k PR~ &k —ar

where k! = k1! ... kgl

PROFPOSITION 3.3

Forall m = 0, 3constants C) = Cy(m) and Cz = Caim) such that the following hold:
(a) Forall f e 8,

Iflm =€t D7 IA%AD fllo < C2) f ln-

lex| -+ =2m

ib) Forall f €8,

Iflm=C DY 129 flo < Cal fllm-

| [+ 5] =2m
Proaf. (a) We can write
H™ — Z E‘aﬂﬂd{;‘i_!'}ﬂ,
||+ =2m

where Cypg are constants. Since || f ||l = | H™ f|lo. the first part of the inequality follows.
To show the second half of the inequality it is sufficient to show that for f € & and
lal + 8] < 2m, |A*(ATWH ™ flg < Capllflo- Now,

”Au{A+},EH—mf”;_; » Z{Aaiﬂ+}ﬂH_”jf;fif}2
£

= [Z{EE-‘:E+ﬂ'}'_’"{flf!x}{r’!“'[r’lﬂﬁhn.he}}
)

k

=Y | Dokl +d) S ) Cr o thins poas hf.}}

f k
=Y QU +a—pl+dYChy oS hesap),
f

where the sum is taken over £ = (£, ... . Eg)such that €; +o; — f; = 0forl = j =4
and where we have used Proposition 3.2 in the last but one equality above. From the same
proposition, it follows that

Qo+ —Bl+d)"Cia g sa

are uniformly bounded in £ for |a| + |8 = 2m and the second inequality in (a) follows.



328 B Rajeev and § Thangavelu

(b) Since | fllw = | H™ f||lo and clearly H™ = ZIHI+IJEIE’-’JH Capx® 3% the first inequality
follows. To prove the second inequality, note that

1 -
54— A7)

| 4 P
J.’J'ZE{AJ"FAJ'L d.."z
Hence, using [A;, AE'I =dd,
_rﬂa,l-"-: - Z E,'k_ﬁﬂk{A-F}E
[k[+1E] = e |+ 5]

and hence by part (a) we get

Yo k" fla=C YD 1AMAD fllg = CoH™ fllg-

|ee|+| 8] =2m |k 4+ €] =2m

Proaf of Theovem 2.1, We first show that for an integer m = (),

lzxiellm = Prmlxl) e im.

where Pay,it) is a polynomial in t € B of degree 2m with non-negative coefficients. This
follows from Proposition 3.3:

leeflm =C D 15 fllg

lee|+{ [ =2m

=€ ) I+ f o

Jee|+| ] =2
The last sum is clearly dominated by Pa (||| f || for some polynomial Py, I m =
p =m + 1, where m = 0is an integer, we prove the result using the 3-line lemma: for
f.g 8, let
F(z) = (H't,H £, gho.

Then from the expansion in L7 for the RHS it is verified that F(z) is analytic inm =
Be z = m+ 1 and continuous in m =< Re z <= m + 1. We will show that

|F{m+ 1'_1;}[ = Payllx]) ”.-IF ”H] ”g”E]
[Fim+1+iv)] = PymanUxDIFlollgllo (3.1)

for —oo = v = oo. Hence from the 3-line lemma [12], it follows that

|Fip+ivi| = {P’_rmﬂ-rﬂ'"f||t]||£||:]}'m+l_p{ Py (xDI f llollgllo)® ™™
= FllxD A lollglo.

where Py(t) is a polynomial in ¢ of degree & = 2([p]+ 1). It follows that

lzxfllp = FellxDILF ] p-
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Using the fact that 5_, = S;,J weget |t fll-p = PellxD I Fll-pform= p=m+ 1
The following chain of inequalities establish the inequalities (3.1):
|F(m+iy)| < |H" o H=" flolgllo
< |H" e H™" ) f o]l gllo
= lzH ™" f lnligllo
Pon () IH ™" f |l gllo
Pan (1xDIH™" fllolgllo
Paw (Jx D)L £ ol 2 lo-

1A

This completes the proof of Theorem 2.1, L]
Proof of Theorem 2.4, (a) Let ¢ € &p, p € . From Theorem 2.1 we have

lzx.@llp = PellX: el p.

where Py is a polynomial. Since E Py X;|) = oo, Bochner integrability follows. For
eSS pes,

(‘ﬁﬁ f Tyl p,{x}dx) = fty!r, 7o) pr (x )dx
=fP:'[ﬂdxfﬁ{_r}fﬁ{_r—x}d_v
=fM_r}d_rffp{_v—x}p,{x}ux

= f Wiyhe * pelyidy
= {W. @ * pr}.

The result for ¢ € 5, follows by a continuity argument: Let g € 8. — @ in Sp.
Hence @, # py — @ # p; weakly in 8. Hence,

(W@ % pr}y = lm (Y, gn % pi}
= lim f V(¥ * pe(y)dy
= lim f (W, Tagn} prlx)dx
=f{y!f. T} prlx)dx

:{1,{:',[1’_,,-@ p,{.r}ld.r),

where we have used DCT in the last but one equality. That T, © 5, — S, is a (uniformly)
bounded operator follows:
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ITiellp = o pellp = | Exx, el p
= " f Ty p:l[r}dx" = f lzxiell ppeixddx
il Il
= Ilfﬁllpfﬁ{;'rf}.ﬂ:{x}dxs Cllellp.
where C = sup_‘.{-l,-f Pellxl) ps(x)dx = oc.

(b) Let (X;) be the standard Brownian motion so that (X', X/} = 0 for i # j. Equa-
tion (2.1) then reads, forg e Sp.op e B,

T 1 I
X0 = _./:; Viry, @) - dX; + ;L ATy, @lds. (3.2)

The stochastic integral is a martingale in Sp_ -

| A

I
CLE [ ol ids
0

Cl ./t; (f ”H;{l’.r@} ||i_| P,&'{I}dx) dy

C:./:; (f ||1'.|;¢}||i F.-.-{.r}ld_r) e

= EA”‘P"ﬂf (f Pg{ExF}p_,'.{_r}dx) i
0

= O,

i 2
e | [atexmra]
Il fo llp—1

| A

Let ¢ = Ety,¢. Taking expected values in (3.2) we get eq. (2.4). Hence gy is the solution
to the heat equation with initial value ¢ € S, The uniqueness of the solution is well-known
and also follows from the remarks preceeding the statement of Theorem 2.4,

To complete the proof of the theorem, we need to show that ¢ — @ in Sy as ¢ | 0
Let F denote the Fourier ransform, 1e. Ff(£) = Jr'c—"[-l"-'c']_f'{.r}dx for f € & Then F
extends to & by duality, where we consider 8 as a complex vector space. Since Fih,) =
{(—+/—1)"h, ([10]. p. 5, Lemma 1.1.3), F acts as a bounded operator from S, 0 5, for
all p. Letg € Sp.

¢ —p=Te—p=F ' (5(Fe).

Sip(x) = F(T: — DF 'p(x) = 9P _ ho(x).
Clearly, §; : &5 — &p is a bounded operator and
ler —@llp = I1SHF @l p-
The following proposition completes the proof of the theorem.

PROPOSITION 3.4
Letwe Sy, pe . Then |Spllp — Oast —
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Proof. We prove the proposition by showing that (i) §; : §p — &, are uniformly bounded,
0=t =Tand(ii) |Sglp — 0 for every ¢ € &, ast — 0. Let us assume these results
for & moment and complete the proof.

Let € = O be given. By (i), there is a constant C = 0 such that

sup |5 fllp =C "_f”.n‘_fESﬂ_

O=r=T
Choose ¢ € 8, so that | f — ¢l p = (55). Then,

15 Fllp = 1SCF —@lp + ISl p
=e/24 |5 p.
Now choose § = Osuch that ||Siellp, = /2 forall0 =t < &, toget |5 Fllp < € forall
0=t =4
Since 8, = F(T; — FL () follows from the fact that T; 18 — &p are uniformly
bounded (Theorem 2.4a) and F : 8y — &, is a unitary operator. The proof of (i) is by a
direct calculation when p = m is a non-negative integer.

ISi@lm = 1H"S@lo =€ Y 123" Sgllo.
lex+| £ =2m

Since S;@(x) = (e~ "2 _ 1o(x), by Leibniz rule

8% Sglo = ) Cuyla®d* (@ P — Da¥plo.
el +1¥ =18

When g £ 0, we have
2% e — 1Y gllo < Cot™ g

and when g = 0, using the elementary inequality |1 —e™| = Can, > 0 we get
5% (e~ — 137 pllo < Cat @l 1.

Therefore, |5 ¢llm = C t]@|mer for some constant C, which shows that || 8¢ ||, — Oas
t — 0. If p is real and m is & non-negative integer such that p < m, we have

|5l = 152l = Ctllglms

and so | 5@l p — Oasr — 0 in this case as well. L]
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