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Abstract. The aim of this article is to obtain a lower bound for the variance of a nor-
malisedZ? function on the Heisenberg group under the assumption that its Fourier transform
is small along a sequence of well distributed rays in the Heisenberg fan. This is achieved by
proving an uncertainty inequality for Laguerre series which is analogous to the one obtained
by Strichartz for spherical harmonic expaomss. Applications to Hermite and special Hermite
expansions are also given.

1. Introduction. The classical Heisenberg-Weyl uncertainty inequality for the Fou-
rier transform orR” says that

2 2
(1.1) (/ lezlf(x)lzdx) (/ Iélzlf(é‘)lzdé)z%(/ |f(x)|2dx>
R" R R"

This means that for a normalisgde L2(R") the variance off (x)|2dx has to be large if (¢)
is small. There are many other situations where we have analogues of the Fourier transform
but the perfect symmetry between the function and its Fourier transform is something very
special to the Euclidean case. Rather thanitoplfor a perfect analogue of (1.1) we can ask
the question of finding suitable conditions on the Fourier transform which will ensure that the
variance is large.

This point of view has been taken in Strichartz [5], where he has formulated and proved
new uncertainty inequalities for the Euclidean Fourier transform and spherical harmonic ex-
pansion. For example, it was shown that for a normaliged L2(R),

2
2 2 ce
(1.2) /x [f(x)|dx = 3
if the Fourier transform is small in the sense that
00 . 1/2 1—¢
1.3 (@) 2) < :
(L.3) (% 1@ =

j=—00

whereq; is a well distributed sequence with, 1 —a; < b. More interesting is the uncertainty
inequality obtained for spherical harmonic expansions.
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If f; are the spherical harmonic components of a normaliged L2(s"~1), then
Strichartz has obtained the lower bound

(1.4) inf / |'sind(x, y)|?| f(x)|?dx > cb™?
yesn=1 Jon-1

under a suitable smallness assumption on the comporfgnidore precisely, lefa;} be an

increasing sequence of even numbers @nd an increasing sequence of odd numbers such

thataji 1 —a; <b, bjy1—bj <b, ap < bandbg < b. Then the lower bound (1.4) is valid

whenever

(.¢]
S ol fasl5+ 1 fo; 15 < cb™t
j=0

with ¢ sufficiently small.

In [5] Strichartz mentions several interesting open problems. One among them is to find
an analogue of (1.4) for eigenfunction expansions associated to Schrodinger operators. In this
article we prove analogues of (1.4) for Hermite, special Hermite and Laguerre expansions. A
simple minded analogue of (1.2) can be proved for the Fourier transform on the Heisenberg
group. By writing down the Plancherel theorem for the Heisenberg group in terms of certain
representations of the Heisenberg motion group, we formulate an uncertainty inequality for
the Fourier transform on the Heisenberg group.

There is a vast literature on various generalisations of the uncertainty principle. We refer
the reader to the survey of Folland arith&am [1] and references given there.

The first author wishes to thank the Indidcademy of Sciences for the Summer Re-
search Fellowship during which period thisearch was started. She also wishes to thank
the Indian Statistical Institute for the hospitality and facilities provided during several visits.
Both authors wish to thank Ms. Ashalata for her incredible efficiency in typing the manu-
script. They also thank the referee for his careful reading of the manuscript and pointing out
some errors in the previous version.

2. Hermite expansions. Normalised Hermite functions on the real line are defined
by
k —1/2 12/2 d* —12
(2.1) hi (1) = (2%k!m) Y% prAGRE
The n-dimensional Hermite functions are thegfithed by taking tensor products. For each
a € N" andx € R", we define

By (x) = [ [ o (x) -
j=1

These functiong®,; @ € N”} form an orthonormal basis fat2(R"). Moreover, they are
eigenfunctions of the Hermite operatir= —A + |x|2 as well as the Fourier transform. We
refer to [6] for more information about Hermite functions and expansions in terms of them.
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SinceH &, = (2|a|+n) Py, thek-th eigenspace corresponding to the eigenvédie-n)
is spanned by®,; |a| = k}. Let P, be the orthogonal projection @f2(R") onto thek-th
eigenspace. TheR; is an integral operator whose kernel is

Bp(x,y) = Y Po(x)Pu(y).

lo|=k

The Plancherel theorem for the Hermite expansions reafilg @: Yo ||Pkf||§.
In this section we are interested in proving the following uncertainty inequality for the
Hermite expansions. Givest C N, we define

2.2) Ea(H)?=> 1P f13.

JjeA
With this notation we have

THEOREM 2.1. Let A be the union of two sequences {«;} and {b,}, where a; are all
even and b; odd and they satisfy aj11 —a; < b, bjy1 —b; < b. Also, assume that ag <
b,bo < b. Let f € L(R"). Then

/lezlf(x)lzdxz:—éb’zf | f(x)|%dx
R}’l Rll

whenever E4(f)? < (1/4)b~2 f |2 holds.

This theorem will be proved by reducing it to an uncertainty inequality for the Laguerre
expansions. We pause for a moment to make the following observation. The above inequality
can be thought of as a refinement of the Heisenberg-Weyl uncertainty inequality. &ince
are eigenfunctions of the Fourier transform with eigenvatug)!l, it follows that P; f =
(—i)fR,f and thereforeE 4 (f) = EA(f). Thus for normalised functiong € L2(R") for
which E4(£)2 < (1/4)b~1, each of the factors in (1.1) has the lower bouhgB)b—2.

Given f e L?(R"), we consider the spherical harmonic expansioryofLet S,, be
the space of spherical harmonics of degree Writing x = |x|x’,x’ € "1, we expand
fx) = f(lx|x") in terms of spherical harmonics g&x) = Y, ¢ fm(x) wWith f,, € Sy
when restricted t¢” 1. Thesef,, can be expressed in terms of certain representations of the
orthogonal group (n).

The natural action 0® (n) on §”~1 defines a unitary representation bA(S”~1). The
restrictions of this to each,, defines an irreducible unitary representation denotet},by et
xm be the character ant), the degree oé,,. Then we have

) = doy / (@) (o - x)do
0(n)

A proof of this can be found in Helgason [3]. The kernélg(x, y) of the projectionsPy
satisfy the propertyp, (ox, oy) = @ (x, y) for everyo € O(n). This follows from the fact
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that®; are given by the generating function

> k@, y) =P - ) 2 exp((—1/2) (L + D) /(L= ) (24 [y17)
k=0

+ (2r/(1— rz))x -y)
valid for |r| < 1.
In view of the above observations we infer thatf,, = (Pxf)m. Since the spheri-
cal harmonic spaceS,, give an orthogonal decomposition 6£(5"~1), we have||f||§ =
>0 ol fnll3. Therefore,

Ea(f)?=) Z 1P; fnll3 = Z Ea(fn)?

jeAm=0
Let{S,.x;k=0,1,2,...,d,} beanorthonormal basis f&, so that

fun(x) = mekm mekuxnsmk(x ).
k=1
Now, each piece,x(x) = fmk(|x|)Smk(x/) is left invariant by the Hermite projections. In
fact, we have the following result.
Let LY (¢) be the Laguerre polynomials of type > —1,k = 0,1,2,.... Given a

functiong € L2(R*, r2*+1dr), we define

'k+1

Ir'k+1 / G(ILEPD)e r2/2,20+1 g,

F@+a+b
Functions of the fornP (x) = |x|™ S(x) whereS € S,, are called solid harmonics.

(2.3) R (9) =

PROPOSITION 2.2. Let f(x) = g(]x]|)P(x), where P isa solid harmonic of degree m.
Then P f (x) = R;j(g)P(x)Lg(|x|2)e—|Xlz/2 wherea = n/2+m — 1. P; f = O for all
other valuesof ;.

A proof of this proposition can be found in [6, Theorem 3.4.1]. From the proposition it
follows that

oo dpy
Ea(f)* = Z Ea(fm)? =YY Ea(fm)?.
m=0 m=0k=1

A similar decomposition is true fof £ 15 as well as for/ |x|?| f(x)[?dx. In view of these
remarks, in order to prove Theorem 2.1, it is enough to establish

(2.4) / X 1] fouk () 2dx > (1/H)b2 / | ke (0)2dx — (1/2)b L EA(fr)? -

Then, by adding all these inequalities, we obtain Theorem 2.1.

By the proposition, all the integrals in the above inequality are expressible in terms of
Laguerre coefficients. Thus everything boils down to establishing an uncertainty inequality
for Laguerre series. This will be stated and proved in Section 5.
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3. Special Hermite expansions. In this section we are interested in proving an un-
certainty inequality for expansions in terms of special Hermite functions which are eigenfunc-
tions of the operator

1 - 3 3
L=-A+ lelz—i;(xjgj —ngj> .
For each pair of multiindice&x, 8) we have the function orC” defined by
Dup(z) = @) "1 [ SEADD0 1 )06
wherez = x + iy. These are eigenfunctions bfwith eigenvalues2|8| + n) and they form
an orthonormal basis fdt2( C"). For more about this expansion we refer to [6].

The special Hermite expansion of &R function f on C”" can be written in a compact
form. Define

1
(31) (Pk(Z) — Lz—l <§|Z|2) e*(l/4)‘2|2 ’

whereLZ‘l are Laguerre polynomials of tyge — 1). Let

Fx9@ = [ £ wget 2Dy,
Cn
be the twisted convolution of two functiorfsandg. Then it can be shown that
DD Pap)Pup(z) = 1) f X pr(2)
|Bl=k «

so that the special Hermite expansionfofeads

o0

(3.2) f@O=@D)™" Y fx@(2).

k=0

Note that(27) ™" f x ¢ (z) is the orthogonal projection df2( C") onto thek-th eigenspace.
The following is the analogue of Theorem 2.1 for the special Hermite expansions.

THEOREM 3.1. Let A = {a;} be a sequence of natural numbers such that ap < b and
ajr1—a; <b.letfe L2( C"™) besuchthat || f||2 = 1. Then we have the lower bound

1
/ 212 f(2)%dz = Zb72,
cr 8
whenever the condition

1
DI <oz < g7t
keA

is satisfied.
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As in the case of Hermite expansions this theorem will be proved by reducing it to an
inequality for Laguerre series. We williefly indicate how this reduction is done.

The reduction is achieved by using a Hecke-Bochner type identity for the Weyl transform
proved by Geller [2]. For each pair of non-negative integeesdg, let P, , be the space of
all polynomialsP in z andz of the form

P()= ) Y capz®?.

lal=p |Bl=q

LetH,, = {P € Ppy: AP = 0}, whereA is the standard Laplacian o€". Elements of
Hpq are called bigraded solid harmonics.8f, are the restrictions of elements Hf,, to
5271 thenL?(52'~1) is the orthogonal direct sum &,

Given a functionf on C”", consider the expansion

(3.3) Fow)y=Y"3" foglrw),

k=0 p+g=k

wherez = rw, w € $?~! and f,, € S,,. The functionsf,, can be represented in terms
of certain unitary representations of the unitary grdag:). For each(p, ¢) there is an
irreducible, unitary representatiép, of U(n) onS,,. Then

Foa(D) = d(M)/w (@) f 2o

wherey,, is the character andi(p, ¢) the degree o8, see [4].

We first note that the special Hermite projections commute with the above decomposi-
tion. Indeed, using the above expression, recalling the definitigh-of; and noting that the
symplectic form Infz-w) is preserved by (n), we getf,, x ¢r(z) = (f X @) pq(z). Aresult
of Geller [2] says that elements of the forfp, have simple special Hermite expansions.

PROPOSITION 3.2. Suppose f € L2( C")isof theform f(z) = g(z) P(z), where g is
radial and P € H,. Then

-1 1 B 2
fx o2 = c'kP(z)LL;”*q <§|Z|2) —W/A?

wherecy = Ofor k < pandfork > p

= 7 7 L Z z P+ g,
T hHgrn—D cng(Z) k=p 21<%) | ‘

A proof of this can be found in [2]. In [4] the above formula has been used in the
study of twisted spherical means 6. In view of the preceding remarks, in order to prove
Theorem 3.1 it is enough to consider functions of the fgfts) = ¢(z) P(z) with ¢ radial
andP € H,,. Then by the proposition we are reduced to proving an uncertainty inequality
for Laguerre expansions. Theorem 3.1 thus follows from Theorem 5.1.
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4. Heisenberggroup. Consider the Heisenberg gro#fy = C”" x R equipped with
the group law

1
(z,)(w,s) = (Z+w,t+s + Elm(z.w)) .

All the infinite dimensional irreducible unitary representationgidfare given, up to unitary
equivalence, by the Schrodinger representatigns. € R, A # 0. All these representations
are realised oi.2(R"); explicitly, they are given by

(2, D@ (E) = eH M ETI2xV g 4y

for ¢ € L2(R"). The Fourier transform of an integrable functighis defined to be the
operator valued function

A

(4.1) f@) = [z, )m(z, H)dz dt .
Hll

We refer to the monograph [7] for more about Heisenberg group and the Fourier transform.

A simple minded extension of the inequality (1.2) to the Heisenberg group set-up is the
following. Let{a;} and{b;} be two sequences,®a; — oo, 0> b; - —0o0, aji1—a; <
bandb; — b1 < b. Then, forf e L2(H") normalised so thatf |2 = 1, the condition

00 A A 1—
(4.2) ]X:c:](llf(aj)llils R ACHIDE= ﬁs

for somee > 0 implies the lower bound

2
(4.3) / 2|z 0)2dz di = 85
H)‘l b

The proof of this is almost the same as the prio(1.2). In fact, an easy calculation shows
that

(4.4) A If W ls = @) fcn FACRAIES

where

fz, 0 = / fz, e de

and hence the argument given[#} proves the above estimate.

In this section we are interested in establishing a lower bound fdrdimerm of|z| f (z, t).
In order to do this we are going to view the Fourier transform not as a function of the single
variablex but as a function ofr, k), k = 0,1, 2, ... . This can be compared with the point of
view taken by Helgason [3] in considering the Euclidean Fourier transfaigmas a function
of (A, w), whereé = rw, w € §" 1. The best way to do this is to go to a bigger group,
namely the Heisenberg motion group and look at the group Fourier transform there.
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The Heisenberg motion group denoted®y is the semi-direct product @f (n) and H"
with the group law

1
(o,z,)(t,w,s) = (ar, Z+ow,t+5— Elm(ow -Z)) .

Consider the set iR? given by
{(h, 2k +n)|A)); 2 #0,k=0,1,2,...},
which is called the Heisenberg fan. To each pa@nt(2k + n)|A|) on the Heisenberg fan
there is an associated representapgrof G". Let @2 (x) = ||"/4®, (|1|Y/?x), and define
Egﬁ(z, 1) = (m(z, )DL, qbg). Let H} be the Hilbert space for which
{Ejgia. peN" || = k)
is an orthonormal basi:p,ﬁ are realised omﬁ and the action is given by

pi(o, 2,0 f(w,s) = f(x((o, 2, H(w,s)),
wherern (o, z, t)(w, s) = (z,t)(cw, s) is the action ofG" on H". We refer to [7] for more
about these representations.
Given a functionf on G, we can define;o,f(f) as an operator owﬁ. When f €
LN L2(H™), we can show that](f) is a Hilbert-Schmidt operator and

Kin = DY s
(k+n—1)!/cn'f .0} (W) *dw.

Here f*(z) = f(z, ), ¢} (w) = g(Ix|Y?w) and thex-twisted convolution off* andy} is
defined by

(4.5) log (H)lizs = A"

P @) = /Cn Pz — wygh (w)el HAMED gy,

Note that when. = 1, this is just the twisted convolution used in Section 3. In terme;(‘t@”)
we have the Plancherel theorem

k 1
(4.6) I1£15 = (271)*2"*1/ (Zupk(f)ui,s(k:” 1),) )I)\I”d)\.

We are now ready to state our uncertainty inequality.

THEOREM 4.1. Let A = {a;} be anincreasing sequence of natural numbers such that
apo<b, ajy1—aj <b.Let f € L2(H™) with || f|l2 = 1. Then there are constants C, ¢ > 0
such that

/ 212 f (z, )|?dz dt = C b2,
H}l
whenever the inequality

(k+n—D11\ .
/ (ank(f)n%{s prr— >|x|dx5cb1

keA
is satisfied by the operators o (f).
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In view of the above observations we need to establish the following inequality:
f @I

2cn? [ ip@ta - Y [ 15 e eor:.

keA

This is just an analogue of Theorem 3.1 and can be proved in a similar fashion. Indeed, we
have an analogue of Proposition 3.2. Wh&@) = ¢ (z) P(z) as in Proposition 3.2,

_1 1 _ 2
f o9k @ = P@LE, (§|x||z|2> e~ A/

(4.7)

wherec; are given by
A (k — P)'(n — 1)' / n l+p+q 1 2 —(1/4)|KHZ|2 2Ap+q)
= —A . pTq dz .
“ T hk+q+n—D @)L SIMIz" ) e M 2

It is now clear that as in the case of Theorem 3.1, everything boils down to the uncertainty
inequality of Theorem 5.1.

5. Laguerreexpansions. Laguerre polynomials of type > —1 are defined by the
equation

(5 1) €7tl‘aLa(t) _ i d* (e —t k+ot)
' k k! drk
forr > 0andk =0, 1, 2,... . They satisfy the orthogonality relations
00 _ ITk+a+1)
5.2 L2y 2o gy = - T T
(5.2) /O “(2)L% (12)e ]

Suitably normalised, they form an orthonormal basislf&R ™, 122t1dr). In this section we
establish the following result.

THEOREM 5.1. Let A = {a;} be an increasing sequence of natural numbers such that
ao <b,ar+1—ar <b.Leta > —1/2andlet

oo

FO) =Y L) e M

j=0

be the Laguerre seriesof f € L2(R™, r2**1dr). Then we have the inequality

o 1 5 [* 'G+a+1
O122+34r > = 2/ P22 gy — Sp S e el et D
/0 7o 7 Z YT+

Once this theoremis established, Theorems 2.1, 3.1 and 4.1 all follow immediately. Note
that we get the lower bound

o0 1
/ |f ()22 F3dr > Zh~2,
0 8
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whenever the Laguerre coefficients katisfy the condition

1 - .
=~ TG+ 40

We now proceed to the proof of the above result.
If fis given as in the theorem, ifs> norm is given by

* 22041 2P +a+1
(5.3) /Olf(t)lt dt = Z|,| T D

Let us writeA; = ¢;(I'(j +« + 1)/ T'(j + 1))%/2. By making use of the recursion relation
(see [6])

tL(t) = 2j +a+ DLG(®) — (G + DLG () — G+ o) LG 41 ()
valid for j > 1, we get

th(t) — COIZLa (t2)67(1/2)12

+Zc,((2j o+ DLAP) — (+ DL (D) — (G + ) LY, (¢t 2y)e= (1217
j=1

Using the orthogonality properties of the Laguerre functions, we calculate that
o0 00 L
/ 12 f () [Pr*dt =c0/ L&(12)e~ Y222 1y 22y
0 0

1 Lk +a+1)
+§;(|ck| — (k4 a+1l)

Fk+1)
I'k 2 'k
— Ck5k+l(l.,(—]i;7a_|_—2i_))(k +1) — Ckfkfl(l_‘(i—]t)a)(k + Ol))

Using the recursion relation once again and simplifying, we get
(e.¢]
/ 2| £(0) 22+ s
0

1 _
=52 (AP @k +a +1) — 2 RaA AL D) K + o + D2k + DY),
k=0

Since we also have the equality

o0 1 o
| 1rwea = 537 A,
k=0
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we need to establish
o

D 1Ak + o + 1) — 2 Re(Ar A1) (k + @ + DYk + Y2
k=0

=

Al

b*zimuz—b*lDAuz.
k=0

keA
Writing 2k + « + 1 = (k + @) + (k + 1) and changing into k + 1,
o o
DUIAP@k+a+ 1) =) APk + o+ 1) + [Ad®(k + 1) + | Aol
k=0 k=0

and therefore the above inequality becomes

o0
Y IG+a+DY2A5 0 — G+ DY24,12 + el Aol

(5.4) /=0

e

N

o0
b2y AP = b7y AR
j=0

JjEA
Casel:«a > 0. Definingp; by the equation

o \12
140)=(1+ ,
A+ ( j+1>

1 [« s —1/2
oo =5 [ (1+j+1> s,

is an increasing function ipand converges t®/2 asj — oo. Further define a functioR ()
as

(5.5) F(j)=a—jpj—1— (G +Dpj,

which is a decreasing function gfand tends to 0 ag — oo. Let J be the first integer such
thatF(J) < b~2/4andletL < J < M be integers iM which are nearest td.
Now we have

we see that

J-1
DoIG+a+DY2A0 - G+ D242
j=0
J-1 _
=Y (G+a+DIAjalP + G+ DIAjIP =20 + o+ DY?( + DY?Re(4;411))
j=0

which is bounded below by
J-1

Y oG +a+ DAl + G+ DIAR = (A P+ 14,115 G + DY2( + o + DY2.
j=0
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This can be written as

J-1
DG +a+ D= G+ DA +a+ DYHA P - G+ DYA;P)
j=0
J-1
=Y (L+p; = D@+ ppIAj111* = 14, + 1)
j=0
J-1
=Y ((PF+20)1Aj1117 = pj (141117 + 14,1 + D)
j=0
J-1
=Y (@lAj111* = pi (G + DA j41” +14;1%)
j=0
J-1
=Y F(DIA;I>—alAof® + (@ — Jps-DIA .
j=0

Recalling the fact thaF (j) > (1/4)b=2for0< j < J — 1 we have

J-1

DG +a+DY2A500 - (G + D24,
j=0
(5.6) !
1 J-1
> 2672 ) A7 —alAo® + (@ — Jps 1) A7
j=0

Next we estimate the sum taken frgin= J to co. Letm and/ be natural numbers such that
[ < m. From the definition of;, we can see that

m—1 m—1
YlG+a+DY2 A1 - G+DY2A;17 =) 1A+ ppAjin— ARG+ D),
Jj=l j=l

which can be written as

m—1
> (Ajr1— AjPG + D +alAjal) + R,
j=l

whereR = —2 Zj:ll p;(j +1) Re(A;A;+1). Using the estimate

m—1
IRI< D piG+DUAIP+14541),
j=l
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we get
m—1
YU +a+ DA - (G + DY2AP
j=l
m—1
(5.7) > Y lAj+1— APG+D +alAjal? = pi G+ DUA 1l +14;)]
j=l
m—1

=Y lAj1—AjPG+D+E,
j=l

where the error tern’ is given by

m—1
E =Y (A1’ —pj(j + DA+l +14,1) .
j=l

Itis easy to get a lower bound for the main termin (5.7). Since

k—1
A=A+ (Ajr1—A)
j=l

forl <k <m — 1, we get the estimate
1 m—1 2
SIA? < 14117 + (Z |Aj41— A,,~|> :
j=l
Applying Cauchy-Schwarz inequality and noting that- [ < b, we get the estimate
m—1

1m71
5 2 1A < bIAP + 67 ) 1A 1 — Al
k=l j=l

Thus we have

m—1 1 m—1

2, . -2 2 -1 2

(5.8 E 1 [Ajy1—AjI°G+D > Eb E z |Aj|%— b A"
J= j=

In order to estimate the error term in (5.7) we observe that

m—1

E=Y F(IAj? = (@—lo-0)|Al* + (@ — mpm—1)| A |?
j=l

> —(a — loi—DIAI1? + (@ — mpm—1)| Am|?,
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recalling the fact thaf'(j) is non-negative. Combining this with (5.8), we have

m—1
DoIG+a+ D240 - G+ Y24,

G9

e

NI

m—1
b2 AP = b AN — (@ — I D) AP+ (@ = mpm—1)|An]?
j=l

which leads to the estimate
o0
DG+t DY2A 50 - G+ DM,
j=J

1 e _
D IV ey D DIV VI CE VRNV VI
j=J M<jeA

From (5.6) and (5.10) we have
oo
DI +a+DY2A50 - (G + D247
j=0

e

o
b2 AP = by T |Aj P — alAgf?
j=0 jeA

N

which proves the estimate (5.4)if> 0.
Case2: —1/2 <a < 0. Definingp; by the equation

o 1/2
1+ i) = 1_7 )
( Pi) < j+0l+1>

we can see that,

1/ s —1/2
(]+Ol+1),0;=§/0 <1+m) ds

is an increasing function ifn and converges te-a/2 asj — oo. Also define a functiorF ()
as

F(j)=—-a—-(+a)pj-1—(+a+Dp;

which is a decreasing function gfand tends to 0 ag — oco. As in the case 1, choodg J
andM such thatF (J) < (1/4)b2.
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Arguing as in Case 1 we have

J-1
Dol +a+ DA - +DY?A;P2
j=0
J-1
>3 A=A+ p)Aj1lP = A+ pDIA;P G+ +1)
j=0
J-1
= (b5 +20)IA;17 = pj(Aj+1P + 14,1 + e+ 1)
j=0
(5.11) '
=Y (=l A;1? = pj(j +a+ DAl +14,%)
j=0
J-1
_ Z F()HA? — 2 _ 2
= DA = alAol® = (@ + T)ps-1lA/]
j=0
1 J-1
> 272 1A —aldol® — (o + D)psal Ayl
j=0

noting thato_1 = —1.
For estimating the sum taken froito co we consider the sum over blocksg j < m
wherel, m € A, asin Case 1.
We have
m—1 m—1
DG +a+ DA — G+ DY2A;17 =D 1A — A+ ppAj1PG +a+ 1),
Jj=l Jj=l

which can be written as
m—1
(5.12) Y lAj—AjlG+e+ D+ R,
J=l
whereR = Y71 (2p; + p?)IAj 12 — 20;Re(A ;A1) (j + o + D).
The main term in (5.12) can be estimated as in Case 1 and the errorRtexam be
bounded below as follows.

m—1

R = (pj+pD)IAj1P = pi(|A;1P+ 1A+ + 1)
=l

m—1
= Y (—alAjl® = pi(i +a+DUA; P+ A7)
j=I
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m—1

Y FDIAIP + @+ Dpr-1lAil? = (@ + m) pp-1]Anl?
j=l
> (@ +Dpr-1lAr® = (& + m) pm-1]Anl?,

sinceF (j) is non-negative.

(5.13)

Following the steps as in Case 1, we get

o0
oI +a+ D240 - (G + D24,
j=J

1

e

B

o
b2 AP =7 Y AP+ @+ Npsal AP
j=J M<jeA

Combining (5.11) and (5.13), we have

whic

o
Y oIG+a+DY2A 0 -+ DY24,)?
Jj=0

1 L, _
> b EXC1AP =71 1A 1P — alAol,
j=0 jeA

h proves the estimate (5.4), for the cast/2 < « < 0. Hence Theorem 5.1 is estab-

lished.
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