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Abstract Lot NV be a H-type group and ket § = NA be an one dimensional
solvable extension of N. For the Helgason Fourier transform on § we prove the fol-
lowing analogue of Hardy s theorem. Let f'{)-., ¥, Z)stand for the Helgason Fourer
transformof f and leth, denote the heat kernel associated to the Laplace-Beltrami
OPETILOr.

Suppose a function f on § satisfies the conditions | fix)] = ¢ b, (x) and

fgfu. Y, Z)P( + 1ZP) dY dZ < c e Y
N

forallx € 5. & € B where y > 5!, k being the dimension of the centre of N.
Then f = Dor f = chy depending on whethero < f or o = f.

We also establish a stronger version of Hardy's theorem and a Paley-Wiener
theorem. These are generalisations of the comesponding resulis for rank one sym-
metric spaces of noncompact Lype.

1 Introduction and the main resulis

Let 7 be a connected, noncompact semi-simple Lie group with finite center. Let
G = NAK be an Dwasawa decomposition and G/ K the associated symmetne
space which is assumed o be of rank one. Let M be the centraliser of A in K and
consider an orthonomal basis

(Yaj:l<j<ds & €Ky (1.1)

of L2{K /M) consisting of K -finite functions of type § on K /M . For a function f
onG/K let f{l. b)), be, b e K/M bethe Helgason Fourer transform of f.
Let Ay be the Laplace-Beltrami operator on &/ K with the associated heat kemel
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hi]{.r}l and et Q5040 be the Kostant polynomials associated to 8. In [20] we have
established the following analogue of Hardy's theorem.

Theorem 1.1 Let | be a function on G /K which satisfies the estimate | f(x)] =
¢ hy(x) forall x € GJK. Further assume that forevervd € Kyand 1 = § = dj
the functions

Fy () = Qa0 f F. B)Y; (b)db (1.2)
KM

satisfyv the estimates }F;]_J.U-_}i =5 .-.'_-'r‘:"z forall ). € B Then either f{ = 0 or
F = chy depending on whethero < foroe = fi.

We refer to [20] for the analogous result for the Euclidean Fourier transform
and for the original version of Hardy's theorem proved in [ 11] by Hardy. Our aim
in this paper is to prove an analogue of Theorem 1.1 for N A groups.

Note that G/ K = N A can be considered as the one dimensional extension of
N by A The group N, called the Iwasawa N group, is an example of a H -lype
group. In recent tmes, such H-type groups and their one dimensional extensions
have received considerable attention. See the works of Damek-Ricei [8] and Cowl-
ing et al [5]. Given such a group N, the one dimensional extension N A gives an
example of a nonsymmetric hammonic manifold. This class, called hammonic N A
groups, contains all the noncompact rank one symmetne spaces. Hamonic analysis
on such groups has been studied by Damek-Ricen [8], Anker etal [1] and others.
Helgason Fourier transform on N A groups has been studied by Astengo et al [2]
and they have proved inversion and Plancherel theorems. In this paper we prove
analogues of Hardy and Paley-Wiener theorems.

In the context of nonsymmetric N A groups, there is no analogue of K which
acts transitively on the spheres in W A. Therefore, we do not have analogues of
the sphencal harmonics ¥ ;. To remedy this shorteoming, consider the case G =
SU0n + 1, 1), n = 1 which gives nse o the complex hyperbolic space. Here
N = H", the Heisenberg group and the symmetric space can be naturally identi-
fied with the unit ball B, ., in €', Using the Cayley transform C which takes
B+ onto the Siegel’s upper half space T,5 | we can also identify N A with Ty, .
We refer to Section 3 for all this and more.

The restriction of the Cayley transform to the boundary 52! of B, maps
it onto the boundary of 70, which is identified with H". If Cj stands for this
restiction then ¥ ;o Cb_l are functions on H" denoted by 53 ;. The image of the
Haar measure on K under the Cayley transform is o, Pf]{;‘, wid & du where

—ln+11
Pﬂ{{, ) =a ! ({ﬂ + }1_16,‘11}2 + Euiz) ; (1.3)

Then {55 :1 = j < d;. 8 € K} forms an orthonormal basis for L2(H" ¢,
PO, u)du di). Let PY(z, u) be the kernel defined by

Pl u) = '[Pf]'[{.n}}é_éi" (1.4
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where Qo = n + 1. Then it is clear the PP (¢, u) = PP wyPY, (£, u). Let
f{)-., Y. Z)y, A e, (¥, Z) e N be the (nonnormalised) Helgason Fourier rans-
form of a function f on NA. Let ¢ = m + k be the homogeneous dimension
of the H-type group N. Let A be the Laplace-Belrami operator on N A with the
associated heat kernel fi;(x) . Let By, ¢ () be the meromorphic function given by

(&) T (54 —ia)

By plh) = I {-’E;:"k — f.:"-.}

(1.5)

With these preparations we now state our first version of Hardy's theorem,

In the following theorem, K = S{L/(m) = U{1))is the K par of the Iwasawa
decomposition of G = SUim + 1, 1). M, FE'M ete. are all related o this group.
f{)-., Y, Z), (¥, Z) € N stands for the Helgason Fourier transform of f on N A (o
be defined in the next section).

Theorem 1.2. Let | be a function on the N A group which satisfies the estimate
| fix)] = ¢ halx) forall x € NA. Further assume that forevervd € Ky, 1 =
j < ds and w € §*~! the functions

Fj jld, w)
= Buu(2) ' Qa(a)™! f FY, )85 (Y. Z- 0P, (Y, Z - w)d Z dY
N

satisfyv the estimate | F5 j{h. )| =c5; L'_"":J‘E forall b € B Then either { =0 or
[ = chy depending on whether o = fora = f.

We also have the following Paley-Wiener theorem for the Helgason Fourier
transform. Let ¢ = (0, 0, 1) denote the identity of N A and letd(x) = dix, ) stand
for the geodesic distance between yand e. If v = (X, Z a), d(x, ¢) can be wrilten
down in terms of [X|, [Z] and a. Let S{N A) denote the space of Schwarz class
functions. Any f € SINA) is & C™ function which satisfies the conditions

sup e T +d(x))" UV f(x)] < oo (1.6)
reNA

for all n = Oand left (right) invariant vector field U7 (resp. V). In the next theorem
we consider functions which have more decay than Schwanz class functions.

Theorem 1.3. Let | = S{NA) be very rapidly decreasing in the sense that
[f(x)] =, e ™) x e NA

forall n = 0. Then | iv compactly supported ind(x) = B if and only if for every
deKy, 1 =jf=diandwm € gE-t the functions Fz j{A, w) defined in the
previons theorem extend to entive functions of L € C satisfving the estimates

|F3 (A, @) < s (1 + )" B1mdl

foralld e Candn = 0.
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Retwrning to Hardy's theorem for rank one symmetric spaces, consider the
following version which is weaker than Theorem 1.1

Theorem 1.4. Let a function f on G/K satisfv the condition | f(x)] = ch®(x).
Fuirther assume that

f If (. B)Pdb < c(1+ |A])"e”
KiM

or saome n = (L Theneither f =0 or | = ch® depending on whether o < A ar
. e GEPE g

o= f.

The case n = 0 of this theorem is due to Narayanan-Ray [17]. We indicate
a proof of the case n = 0 in Section 3 which requires the stronger version, vie.
Theorem 1.1. In this paper we prove the following result which is the analogue of
Theorem 1.4 for N A groups.

Theorem 1.5, Let | be a function on the N A group which satisfies the estimate
| fix)] = ch,(x). Further assume that

f%fu. Y, Z)P(1 + |1ZP) dY dZ < c e~V
N
Jorall ). € B and some y = *5=. Then the conclusions of Theorem 1.2 hold.

This theorem should hcunmpa.n:d with the following result of Astengo et al [3].
They have shown that if | f{x)] = chg (x) and if

fi.fl[l, Y, Z)PdY dZ < ce— 2P
N

with @ = fthen f = 0. The equality case was left open and the above theorem
treats that case. When f = hy we have

F(A Y, Z) = Pie, (¥, Z))e ¥ (1.7)

where Py is apower of the Poisson kemel on N A and so it can be shown that the
hypothesis on f in Theorem 1.5 is satisfied if y = #3% Thus the hypothesis in
our theorem 15 only but natwral. In order to prove Thm}er 1.5, we need o use the
stronger result, viz Theorem 1.1 whereas the case n = 0 of Theorem 1.4 can be
proved without appealing to Theorem 1.1 as was done in Namyanan-Ray [17].

This paper is organised as follows. In Section 2 we recall the definition of
the Helgason Fourer ransform on N A groups. In Section 3 we consider Hardy's
theorem for the complex hyperbolic space and restate Theorem 1.1 in the non-
compact picture. We also give a proof of Theorem 1.4, In Section 4 we inroduce
the partial Radon transform and show how it can be used to reduce matters from
general N A groups to the case of complex hyperbolic space. Finally, in Section 5
we prove all our main results.

We take great pleasure in acknowledging with thanks the help received from
Ms. Asha Lata in geting the manuscript typed.
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2 Fourier transform on N A groups

The aim of this section is to recall the definition of the Helgason Fourier transform
on N A groups. We begin with the definition of H-type groups and their solvable
exlensions. Using the Poisson kernel, we define the Helgason Fourier ransform as
in Astengo et al [2] and collect some important properties of the same.

Let i be a two step nilpotent Lie algebra equipped with an inner product {, }.
Let z be the center of n and v its orthogonal complement so that n = v § 2.
Following Kaplan [15] we say that n is a H-type algebra if for every Z € z the
map Jz - 0 — v defined by

{(fzX. ¥} ={[X,¥].Z}), X, Yep (2.1)

satisfies the condition J’% = —|Z|*1, I being the identity on b. A connected and
simply connencted Lie group N is called a H -type group if its Lie algebra is a
H-type algebra. Since 1 1s nilpotent, the exponential map 1s surjective and hence
we can parametrise elements of N = expn by (X, Z) where X € v, Z € z. By
Campbell-Hausdorff formula, the group law is given by

1
{X,Z}{X’,Zr}={X+X’,Z+2'+;[X,Xrl}- 2.2)

The Haar measure on &V 1s given by dX dZ where dX and 47 are Lebesgue
measures on U and z.

The best known example of a H-type group is the Heisenberg group H". The
Lie algebra of H" is B" » " » | with the Lie bracket

(x50, ¥ N=00(0G-x"—x-¥))

where v - y stands for the standard inner product on B, For Z = (0, 0, 1) in the
center we define Jz by Jzi{x. v) = t{—y, x). Then

(Jz(x, ), (", ¥ =H—y, %) - (&, ) = ([(x,5,0), (', ¥, 0], 1)
and J% = —|Z|*I. The group law on H" takes the form

¥

P f r r r r ]' r
(x,y.01)x, ¥y, f)=(x+x, v+ y.t+¥ +E{r -¥— ¥ -x))

Identifying B » B with " and writing z = v + iy we can identify H" with
" % | and the group law takes the form

1
2.0, Y=(z+z .+ + 5 im(z 2.

We return o the Heisenberg group in Section 3.
Given a H-type group N let § = NA be the semidirect product of N with
A = BT with respect to the action of A on N given by the dilation (X, Z) —
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{ﬂiX, aZ), a € A We write (X, Z, a) to denote the element exp{ X + Z)a. The
product law on N A 15 given by

F F F F P ]' F ¥
(X, 2 e, s X ar Y 2y ;ai[x, lagd). 03

Forany £ € zwith |Z| = 1, J’% = —I and hence Sz defines a complex strucure

on . Consequently v is even dimensional. Let 2m be the dimension of v and & the

dimension of z. Then ¢ = m+k iscalled the homogeneous dimension of §. The ket

Haar measure on § is (up to a multiplicative constant) given by a= 2~ 'd X dZ da.
The Lie algebra s of § is simply n & E equipped with the inner product

(X, Z. 0 (X, Z N =X, XY +{Z,Z') + 1.

This makes § into a Riemannian manifold which is a harmonic space. Rank one
symimelric spaces of noncompact Lype constitute a subelass of N A harmonic spaces.
As proved in Cowling et al [5], the geodesic distance between v = (X, Z, a) and
the identity ¢ = (00, 0, 1) is given by

1 V!
O T o mado (2.4)
1 —rix)
where rix) s given by the expression
2 1 2.2 ¥y o5
1 —rix) =4ﬂ”1+ﬂ+11X'.- Y+ (2.5)

A function f on § is called radial if f{x) depends only on d{x). In [8] Damek
and Ricei proved that the subalgebra of L'(8) consisting of radial functions is
commutative. They also have studied the spherical Fourier transform on §.

An analogue of Helgason Fourer transform on § was introduced and studied
by Astengo et al in [2]. This was done in terms of the Poisson kernel associated 1o
the Laplace-Beltami operator A on 8. If f is a bounded harmonic function on §,
Le. Af = Othen as proved by Damek [7] § can be represented as

fix)= f’?—"{x,n}F{n}dn, rTES
N

where F is the restrdction of f w N. Here P(x, n) is the Poisson kemel which is
defined as follows. Fora € BT andn = (X, Z) define

]- F.F
Pyin) = Py(X.Z) = cppa((a+ X+ |1ZpP)~¢ (2.6)

where o = P10, 0). Then Pix.n) = B, {nl_ln}l if ¥ =na € 5. For a complex
number A define

Palxon) = (P(x,n)? € = (Palny'n))2 0. @7

The Helgason Fourier transtorm is defined using this kernel.
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Given a CF° function f on §, its Helgason Fourier transform f is the function
onC x N given by

flh.n)= f Flx)Pilx, n)dx. (2.8)

In [2] the authors have proved the following inversion formula for f e C3F(5):

Crak

Flx)= -»«wff P_six, n}lf{)-. ::}lfc'{)-.}li_jdn dk

where the c-function is given by

2020 (2T ((2m + k + 1},0}

A
clh) = l—'{ﬂ +1)L}1—'{JH+|. + ik

(2.9)

They have also proved the Plancherel formula

f,f{x};;{x}dx— i ffju m)g(k, m)|c(h)| " 2dn di
5

valid for all f, g € C3(5).

We fix an onthonormal basis {H, Ey, E5, ... E3,,, T, Ta, ... T} adapled 1o
the decomposition of & as v 4 z & B Then the kefl invariant vector fields on
Sextending thevectoss H, By, ... Exy. N, T2,. .. T} a.n:givunbyﬂéil,,.,ﬂiEl, SR
ﬂéEzm,ﬂT[,ﬂTz, cowo o aTy respectively. It was shown by Damek [7] that the
Laplace-Beltrami operator A on § is given by

m k

a—aZEfHEZTJ + (ade)® — Qad,. (2.10)
i=1 i=

We denote by iy (x) the heat kemel associated 1o A which is a radial function,
it depends only on o(x). This kemel is characterised by the requirement that

£

f(h, n) =Pile, n}lf‘”‘-‘z’*%ez]. (2.11)

By abuse of nottion we sometimes wrile fiy (r) in place of i (x) when dix) = r.
In [1] Anker et al have obtained good estimates on the heat kemel By (r).
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3 Complex hyperbolic spaces

As we have already remarked, if G = NAK is the lwasawa decomposition of a
semisimple Lie group of real rank one, then & becomes a H -type group and the
symmelric space G/ K is naturally identified with the solvable group N A. The Hel-
eason Fourier transform on G /K can be writlen in terms of the Helgason Fourier
transform on N A. In this section, our aim s o restate Theorem 1.1 which will
serve as a motivation for Theorem 1.2, As we need Theorem 1.1 for the group
G o= SU{m + 1, 1) we restrict ourselves to this case though whatever we say in
this section is true for all rank one symmeltric spaces.

The Heisenberg group H™ is the most well-known example of a H -type group.
Consider now the solvable extension 5 = H™A where A = B7 as before. Let
Op = (m + 1) be the homogeneous dimension of §;. The objects on 5y such
as Poisson kernel, heat kernel ete. will be denoted by PP, 4Y ete. For example, if
(C.u) € H" = " % R,

T
F:E']{': u) = leﬂl?u ({ﬂ + 1[;‘?2}' + I!') 3.0
and '?-"E is defined in terms of PP, In particular, we note that
X

ih—=0

|-
Ple. (£.4)) = cm ({1 + ZIe P +u3)
The Helgason Fourier transform on 5 is defined in werms of this kernel.
To bring out the connecton between Sp and the group U (m + 1, 1) conswder
the Siegel’s upper half space
- i+ 1 2
Dy ={it,r+is)eC ::.'::-15.{,: :
Then Sp acts on Dy,2 as follows. Let
]
hiC.t,s) = (.:,r +is+ 35.;&3) (3.2)
so that T, is the image of Sg under h. The action of S on Dy,. is given by
L) =h(x-h7'(y), x€ 8. y€Dpsi.
More explicitly, if v = {z,r,5)and vy = (£, u + iv) then

1
Liivy=h ( . hoalEu, v — :1-h:; }l) .

From this it is clear that L,.{0, i) = h{x). Note that when v = (£, u + _%.5{'[:} S
D, and x = (z,8, 1) & H",

Liy) = (z +ot+u+ jIEz 4 ;‘[1) e a1,

Thus (z.1, 1) = (2.t + §lzI?) identifies H™ with 9D, ,,.
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Let By, o1 be the unit ball in C"! defined by
By ={lw, wys) e B ImfI + |+ P 1}.
We define the generalised Cayley transform C : By o) — Do by

2w 4w )

)
l —wpyr 1 —wpmy

Ciw, wya) = ( (3.3
The Cayley transform maps the odgin in B, into the base point (0, i) € T, 4.
We can identify functions on B, . with functions on D, via Cayley transform.

Let 7 be the group of all biholomorphic automorphisms of 5, 4. Then Gy =
CGC ™! gives all biholomorphic automaorphisms of D, 4 . There is a natural iden-
tification of S5y = H™A with (. Moreover, every element of 7 arises as a frac-
tional linear transformation defined by an element of the semisimple group G| =
SU(m 4+ 1, 1). ldentifying G and G, let G = NAK be the lwasawa decomposi-
tion of & and let M be the centraliser of A in K. Then the usual Helgason Fourier
transform of a function g on G/K is gid, b)) where L € Rand b € K/M. If we
identify G/ K with B,,. |, K /M is identified with the unit sphere §2"+1,

Let f be a function on Sy whose (nonnommalised) Helgason transform is
fir.e.0). Then g = foh~! o C is a function on B, and (A, b) is related
to f(i. ¢, 1). In fact,

Pl 7 f 60 = g0, b) (3.4)

if (£. 1) = h~' o C(b). Thus we can restate Theorem 1.1 in the noncompact picture
as follows. Recall that K b is the setof all class- 1 representations of K and for each
de fi',u we have cerlain spherical harmonies ¥ ;. 1 = § = ds. The family {¥az;:
l=j=ds.de ,‘E',q} forms an orthonormal basis for L2(K /M) = L2 (57,
Using Cayley transform we can define ;L. t)=¥; ;0 C'a fig, t). Then
{85.;:1 < j < ds. 8 € Ky} formsan orthonormalbasis for L2 (H™, PP(c, nd di)
where P} is given in (1.3). Therefore, Theorem 1.1 takes the following form.
Theorem 3.1. Let | be a function on S5y = H™ A which satisfies | f(x)] = c'hﬂ (x).

Further assume that for everyd € Ky, 1 = j = d; the function

Fy i) = Qs () f.f“u, £, 08 (&, P, nde dr
HM-

satisfies the estimate | F; (0| = o3 ‘__,—;sﬁﬁ”ﬂf”_ eR Then f =0or f = c'hg
according aso < f ore = f.

The proof of Theorem 1.1 given in [20] uses the fact that F;]J.UL} defined in
(1.2) reduces to the Jacobi transform of a function related w f. To be more precise,

cach § & Ky is associated with a pair of integers (p, g) (see Johnson-Wallach
[14]) 5o that

Fi(h) = f S i P (P W p g (r)dr (3.5)
0
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where fi j(r) isthe sphercal harmonic coefficient of f associated to ¥ ; and q-:-;_a'ﬁ]
is the Jacobi function of type (o, f). We refer 1o Helgason [13], Koomwinder [ 16]
and [20] for details.

We conclude this section by indicating a proof of Theorem 1.4 which we prom-
sed in the introduc ion. On the one hand the defimtion of Fé]_j (&) and (3.5) shows
that

F, BYY; j(BYdb = Q5(A)F; ;j(3)

K/M

is divisible by the polynomial Q5. On the other hand if f(1) denotes the group
Fourier transform of the right K-invariant function f on & comesponding Lo the
spherical principal series representations my, then it is well known that _fh'{)-., b =
f(2)¥a(b) where Yy(b) = 1. Thus

(f (W) Yo, Ya j) = Qa(h) Fs (M) (3.6)

Writing down the definition of f{i) in terms of 7; and using the estimate on f
one can show that (f(A) ¥, ¥; ;) extends to an entire function of order 2. Under
the hypothesis on f{)-., By we apply a suitable complex analyte lemma o conclude
that

(FM) Y0, Yz ) = B (M) 3.7

where P j(4) isa polynomial of degree < n.

Now, as the parameter p associated 104 ends o infinity, degree of (5 also goes
w infinity. Therefore (3.6) and (3.7) are not compatible unless f; ; = 0 for all but
finitely many 4. This means that f is a finite linear combination of functions of the
form

Y5 j(k)sinh r)? (cosh r)9 Ps j{As }lhi{r}l

where Aj is a Jacobi differential operator and A2 is the associated heat kernel. We
can now use the method of Anker et al [1] to get a lower bound for P il }lhi .
We can show that the estimate | flx)| = chy{x) 15 compatible with the expression
for f5 ; only if f5 ; = O forall § other than the wivial representation. This simply
means that f = ohy proving the theorem.

We refer o [20], [21] for more details of this argument. By going through the
heat kemel estimates given in Anker et al [ 1] the reader can wnle down the precise
estimates on the derivatives of the heat kernels also.

Stated in terms of the Helgason Fourer transform on Sy, Theorem 1.4 takes the
following form.

Theorem 3.2 Let f be a function on Sy which satisfies | f(x)| = ch®(x). Further
assime that

f [FL 0P PR AL dt < el + |27 e

HM’
Jorall b € B Then the conclusions of Theorem 1.4 hold.
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We use this theorem in the proof of our main result viz Theorem 1.5,

4 The hyperbolic reduction

In the next section we prove our main results by reducing them o the case of com-
plex hyperbolic spaces. This is achieved by means of a partial Radon transform.
Or gim in this section 15 o introduce this and hst some important kemmas which
are very crucial in the proof of Hardy's theorem.

Let f be a function on B and let $"~' stand for the unit sphere in B, The
Radon transform of f is a function on B x §7~! defined by

Rf(t, w) = f Flta + y)dy @.0n

P
where d v is the Lebesgue measure on . This transform is a very useful tool in
reducing problems on B" into problems on E. For example, see the solution of
the Cauchy problem for the wave equation on B* given in Folland [10]. In [19]
the same transform has been used o deduce Hardy's theorem for B from the one
dimensional result.

Givenafunction f{X, Z, a)on § define its partial Radon transform f (X, 1, a),
telR, we s by

.f'm'[X.r,ﬂ}=f_f'{X.r-w+u,n}::u_ (4.2)

I'.I.IJ'

In [18] Ricei introduced this transform and used it to show that the subalgebra
LJ'_M{S}I of L'{§) consisting of radial functions is commutative. He also used it to
deduce the inversion formula for the spherical Fourier transform on § from the cor-
responding result for rank one symmetric spaces. The following lemmas indicate
how this reduction is achieved.

Givenw € 5! ket Z,, = expw™ which is a subgroup of §. The following
lermma has been proved in Ricer [18].

Lemma 4.1. The guotient group §,, = 8/ Z,, with the guotient metric is a symmet-
riC Space.

In fact, as we have already observed, J, defines a complex structure on v and
we can equip it with the Hermitian product

{o, v}y, = {u, v} + S 0, v}, woveED

Then n becomes isomorphic to the Heisenberg group H™ (if v is of dimension 2m )
and 5, is isomorphic 1o S5y = H™A. The map (X, r,a) — (X, tw, a)Z,, gives an
isomorphism between Sy and S, Another important property of the Radon trans-
form is given in the next lemma. We let f #,, g to stand for the convolution on §,,.



494 8. Thangavelu

Lemma 4.2, Let f and g be continuous functions on § with compact support. Then

for evervm € 551 (f % g)o = fu *w g and f = g if and only if f, = g for
every w € 5\, Moreover, f is radial if and only if f., is independent of w and

i
ﬂ_l_zﬁfw{X, t.a) is radial on 8.,

It is instructive 1o go through the proof of this lemma given in Ricei [18]. The
partial Radon transfomm also gives a useful relation between the spherical functions
gy on & and q-:-_i] on &, comesponding to the same parmeter A,

Lemma 4.3, For — 2 < Im) < 0 we have

(X, 1 a) _a{)-.}lﬂ fpl{X t,a)

where o (L) is the meromophic function

n*f*r{m#“}r{imur{f— ir)
Fom+ DTS +inrg —in)

ald) =

The above lemma is also proved in Ricei [ 18], Let Ay be the Laplace-Beltrami
operator on Sg which is isomorphic to §,. Let hY be the heat kernel associated to
Ag. In the next lemma we oblain a relation between f, and hi.].

Lemma 4.4. For everym € §¢ !

k
(hs)a(X.1,a) = cuh®(X,t,a)a T .
Proof The heat kemel A” is given by the inversion formula

oo
ﬂ.
X, ta) = ¢, fe‘“‘ 10X, 1, @) o (W) | 2dA

—og
where cp(d) is the o-function for & and is given by

@U-”‘r{zmrigm
1"{ QR :)L}l"{ + r)L}

cpld) =

We can wrile the above as

o]
h{(X.1.a) = ¢, lim f e~G—ies-3005 0 (X £, a@)|co(h — i€)|~2dA.
£
— 0
As in [18] we can verfy that
k-2 k+1
T ) e L 227 Ir(m+ ) n
———a(A) o) = k)
hry JN+T

T
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Therefore,
WXt a)
]
= Co Iirr:] f e-“'*-"flz-f—igz_,-uu—fc-}@jj_‘.e{x,r, a)le(r — i€)| " dx.
E—
—o0

Using the result of Lemma 4.3 we oblain

WX, 1, a)

oo

2 x2o 2 1k
= ¢, lim f e i -1 @ (L (X, tada" T |c(h —i€)|2dA.
e— )

—aa
Interchanging the limit and integrating over w— we get
i
a'T WX 1, a) = culh)ul(X 1. @)
which proves the lemma. |

We conclude this section with the following result known as the suppon theo-
rem for the Radon transform which is needed in the proof of Paley-Wiener theorem.
From the definition (4. 1) it is clear that if the function § on E* is supported in the
ball |x| = B then for every @ € 5!, Rf(r, w) is supported on |t] = B. The
converse 15 also roe.

Theorem 4.5. Let f be a continuous finction on B" such that |x|* f(x) is bounded
forevery k = 0. Assume that for evervm € 5", Rf (-, w) is supported in|t| < B.
Then f issupported in x| = B.

This theorem is due to Helgason and a proof can be found in [12]. We make
use of this result in Section 5.

5 Hardy and Paley-Wiener theorems

In this section we prove our main results stated in the inroduction. We begin with
the following proposition which is crucial in proving both Hardy and Paley-Wiener
theorems. The proposition relates the Helgason Fourier transform on § and the
inormalised) Helgason Fourer transform on §,,, which we identify with the com-
plex hyperbolic space S = H™A for all @ € §*'. We write P,(Y, Z) in place
of Pyie (¥, Z)) and I‘f{ ¥, 1) in place of 'f-"‘;]{f, (¥, 1)) for the sake of simplicity.
Recall that the (nomalised) Helgason Fouder transform of a function g on 5 is
denoted by g{k, ¥, 1),

Propaosition 5.1. For each w € 5~

f FOL Y, 1w+ wddu = cg B g RYPYY, DEwlA, Y, 1)

o

where g (X, 5, a) = a” - ol X, 5, a)and B, (L) is defined in (1.5).
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Proaf Recalling the definition of P,(X, Z) a simple calculation shows that

I 20 I 2\ ¢
Pal(X, Z)7' (¥, £)) = cme a2 ({a b =R e Z 5 I ru-) ;
From this we get
Pil(X. Z.a). (Y. L))

—B+ix

3 . 1 3.1 1
TP o ({a + 71X - YF)Y +[§ - Z - 51X, ?’III)
Therefore,

f Fir, Y. tw+ wdu

I'.IJJ'

=fff{X. Z.a)YPu(X.Z,a), (Y. to+u)a C 'dudadX dZ.
5ol
We can write
[X.¥] ={[X.¥],who+ v = {LX, Vie+
where v € wb and Z = sw + v, v € w™ so that
1 2 1 4
It —Z—s[X, Y =@ —s— 5{uX. V) +lu—v— v
2 2 3
This givis us
f..l'?{)-., Y.t + udddn :c'kffff_f'{X,;,-m+l.1ﬂ},ﬂ—;£—Il—l
at A b ol al
1 2.2 1 5
x| lat+ EEX —¥PP 4+t —s — Z{LX. Y

1 —¥+J'J;
+§u_]_|—i:|_l'rfz) diudv da dX dx.

Making a change of variables the inner integral becomes

1 1.7 1 2 2 —¥+L\
f ({ﬂ + EEX — Yy 4+(—s5— F—){JL,,X, ¥irr+ Eui‘)

I'.IJJ'

= f 1+ Eu[z}l_’:—’!'““"‘dn
Rk -1

1 1 —%HH'J\
X ({n = YPPP +(t—5— 5 wX, r}}z)
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The integral appearing on the nght hand side of the above equation can be
evaluated. Indeed,

f (1 + )~ +2du = ¢ f{l + )~ FHA -2,

' _Qgy kel
=y f{l +r) §+id -1,
We have the fommula (see [6])

b o] r{ﬂ}r{b—ﬂ}l
f{1+1.} ds e

using which we obtain

rireed —i
T(®FE — k)

f {1+ Euiz}l_g"'”‘dn =y
B
= g Bypld).

We also note that

1 - 1 g —%‘—'-!-Il
({ﬂ + EEX —¥Irr+i—s- E{JLX, ¥i )

—a ¥ HAPO((X, 5, a), (¥, 1)) 5.1

and therefore,

ff{)-., ¥, teo + 1 dd =c'gBmg{)-.}f ff{X,aw+u}ldu

k
x a”CTOPY(X, 5, a), (¥, 1))a~ 2" da dX ds.
Since

Fald, Y1) ='f-‘=§3{r,r}-lfgm{x, 5, a)PYX.5,a). (Y.0)a 9 da dX ds

Sil

wi obtain the proposition. |

We are now ready to prove Theorem 1.2, Since we are assuming that | f{X, Z, a)|
= chel(X, Z, a), Lemma 4.4 gives us the estimate

lg, (X, 5, a)] = chE{X, a0,
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Consider now

Bue(W) ™' Qs (07! f FO Y, 2)85 (Y, Z- )P (Y, Z - w)dY dZ
N

=3Mm-lgam-1f ffu, Y, ter + uddu | S5 (¥, )P_y (Y, )Y dr.
Hw N L

In view of Proposition 5.1 we get

Bm.xii}‘lﬂam“ff{i, Y, Z)S3 j (¥, Z - )P_y (Y, Z - )dY dZ
N

= Qs()~! fﬁmu, Y, 1)8s, (Y, DPNY, )dY dt
HM’

where we have made use of the relation
Py, Py, n = PRy,

The hypothesis on f{)-., ¥, Z) gives the estimate

rQa{A}“fﬁwu, Y, )83 (Y, DPP(Y, )dY di| < ce P,
HM’

We can now appeal to Theorem 3.1 o conclude that g, = 0 whenever o = f. As
this is true for all @ € §5~! we get f = 0 as desired.
In the case when o = § we obtain the equation

EaulX,5,8) = c'{m}lhﬂ{x,s, al
which means that

f X, s+ u, alde = c'{w}:al_’—‘_JhE{X, 5,4,

I'.I.IJ'

Integrating over Sg we have

c{w}fﬁﬂ{){,:.',ﬂ}ﬂ_e'-'_ldﬂ dX ds

i
=f ff{X,ﬁw+u,ﬂ}ldu a Ejfl_g_lﬂ'ﬂ dX ds

I'.I.IJ'

= f FiX,Z, aa o3 a P ldadX dZ.
g
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This shows that e () 15 a constant. Hence
i
JulX.s,a)=rca _E_Jhi:{X, s.a) = clhg) X, 5, a).

By the injectivity of the Radon transform we conclude that f = ch,.
MNext we prove Theorem 1.5, We are assuming that

f[.m. Y, Z)P(1 + |ZP)YdY dZ < c e~V
for some y > % Let g, be asin Proposition 5.1, We claim that

f 1Eulh, ¥, DP PP (Y, dY df < (1 + |Ap*te 288,
HM‘

In order o prove this, let ¢ be a function on B and consider the L? norm of ¢, on
E. By Minkowski’s inequality

|
f‘f{p{rw + ot el

R |u

[

F
I_

dr

1
¥

Ef (Rf'ﬁp{m)+u};1df di
< f{1+{utl}-?du f (Rf{:fp{fw-i-u}lizdf (14 |u)*) du

The first integral on the right hand side of the above ineguality is finite provided

n—1
|
f‘f{p{fn} + 0t el
L

y = *5 and hence
R o |

EE'ffifﬁ‘{fw+u}53{1+ruiz}l}'du dt
EI’JJJ'

<e fﬁw{z}slu + 1zP)dz.
R.\'

1
]

it

i
I_

dt

Applying this argument W f'{l. Y. Z) we get

flff(l. Y, tw + u)dul2dY dt

I'.I.IJ'

< c'f Ifh Y, 22 + | ZP)YdZ dY < ¢ e~ 20
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In view of Proposition 5.1 the above inequality gives the estimate
f |Gw(h, ¥, D PYY. Y di
< | B (V)| 27,
MNow, recall the definition of By, i (3):

5 g It —ia)
" T re —ir &y

If k is an odd integer, say & = 2d + 1,

M —i) m+1 m+1
z = —ii+d—1)...(—— —ik)
r —ia) 2 2

and therefore,

Bt~ <l + AT

We can prove the same estimate when k is even by using Stiding’s formula for the
samma function. Therefore, we get

(f |8w(h, Y. D2 PO(Y, )dY m) C<e(l4 DT,

This estimate together with |go (X, a) = ¢ hﬂ{X,r, a ) allows us o apply Theo-
rem 3.2 1o conclude that g, = 0 fore = fand g, = c'{w}lhﬂ for o = 8. As before,
this proves f =0or f = ch, according as ¢ = Soroe = f.

Finally, we take up Paley-Wiener theorem. For x € § we have defined d(x) =
dix, £) to be the geodesic distance between x and ¢. Similady, we define dyix) for
x € Sp. Then it s clear that £, X, 1, a) 15 supported in dol X, 1, @) = B whenever
FiX, Z a)issupportedin di X, Z, a) = B. The converse is also true: if f,(X. 1, a)
is supported in dp(X.t,a) = B forall w £ S5=1 then FUX, Z, a) supported in
diX, Z, a) = B. To see this, we use the support theorem for the Radon transform.

Let f be a Schwartz class function on § which satisfies the condition

IFix)] < ene™®, zxe8

forall m = 0. If rix) is given by (2.5) we have
N 2y—1 a2 1 dix]
(1 —rix)")"" = cosh ;d{x}l ~

as dix) — oo, Therefore, for fixed X and a

(4a)~! ({1 +a+ i;x;l}l e [2!2) s A0
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whichmeans | Z]~ exdln) .Therefore, the hypothesison f shows that |Z[* f(X, Z, a)
isbounded forevery n = 0. Hence Theorem 4.5 is applicable. Thus in order to prove
Theorem 1.3 we only need to show that (X, ra)issupported indp (X, r,a) = B
for every m e §¢1,

In view of Proposition 5.1 we have

F j(h, o) = Qa{l}'lfﬁmu, Y, )85 (Y, D PY(Y, )Y di

and this is assumed o have an entire extension satisfying the estimate
[F-S._,I'U-, @) = ol + E}_E}—J?fﬂlrmM_

As observedin Section 3, Fj (A, @) is the Jacobi ransform of a sphedcal harmonic
coefficient of g, Therefore, we can appeal to the Paley-Wiener theorem for Jacobi
transforms proved by Koornwinder [ 16] 1o conclude that all the spherical harmonic
coefficients of g, and hence g, itself, vanish outside do(X .1, a) = B. Thus, f,
is supported in dyp( X, 1, a) = B and by the previous remark f is supported in
diX, Z, a) = B proving Theorem 1.3,
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