On Paley-Wiener and Hardy theorems for NA groups

S. Thangavelu

Stat-Math Division, Indian Statistical Institute, 8th Mile, Mysore Road,

Abstract Let N be a H-type group and let S = NA be an one dimensional solvable extension of N. For the Helgason Fourier transform on S we prove the following analogue of Hardy's theorem. Let $\hat{f}(\lambda, Y, Z)$ stand for the Helgason Fourier transform of f and let h_{α} denote the heat kernel associated to the Laplace-Beltrami operator.

Suppose a function f on S satisfies the conditions $|f(x)| \le c h_{\alpha}(x)$ and

$$\int_{V} |\hat{f}(\lambda, Y, Z)|^{2} (1 + |Z|^{2})^{\gamma} dY dZ \le c e^{-2\beta \lambda^{2}}$$

for all $x \in S$, $\lambda \in \mathbb{R}$ where $\gamma > \frac{k-1}{2}$, k being the dimension of the centre of N. Then f = 0 or $f = ch_{\alpha}$ depending on whether $\alpha < \beta$ or $\alpha = \beta$.

We also establish a stronger version of Hardy's theorem and a Paley-Wiener theorem. These are generalisations of the corresponding results for rank one symmetric spaces of noncompact type.

1 Introduction and the main results

Let G be a connected, noncompact semi-simple Lie group with finite center. Let G = NAK be an Iwasawa decomposition and G/K the associated symmetric space which is assumed to be of rank one. Let M be the centraliser of A in K and consider an orthonormal basis

$$\{Y_{\delta,j}: 1 \le j \le d_{\delta}, \ \delta \in \hat{K}_M\}$$
 (1.1)

of $L^2(K/M)$ consisting of K-finite functions of type δ on K/M. For a function f on G/K let $\tilde{f}(\lambda,b)$, $\lambda \in \mathbb{R}$, $b \in K/M$ be the Helgason Fourier transform of f. Let Δ_0 be the Laplace-Beltrami operator on G/K with the associated heat kernel

 $h_t^0(x)$ and let $Q_{\delta}(\lambda)$ be the Kostant polynomials associated to δ . In [20] we have established the following analogue of Hardy's theorem.

Theorem 1.1. Let f be a function on G/K which satisfies the estimate $|f(x)| \le c h_{\alpha}(x)$ for all $x \in G/K$. Further assume that for every $\delta \in \hat{K}_M$ and $1 \le j \le d_{\delta}$ the functions

$$F_{\delta,j}^{0}(\lambda) = Q_{\delta}(\lambda)^{-1} \int_{K/M} \tilde{f}(\lambda, b) Y_{\delta,j}(b) db$$
 (1.2)

satisfy the estimates $|F_{\delta,j}^0(\lambda)| \le c_{\delta,j} e^{-\beta \lambda^2}$ for all $\lambda \in \mathbb{R}$. Then either f = 0 or $f = ch_{\alpha}$ depending on whether $\alpha < \beta$ or $\alpha = \beta$.

We refer to [20] for the analogous result for the Euclidean Fourier transform and for the original version of Hardy's theorem proved in [11] by Hardy. Our aim in this paper is to prove an analogue of Theorem 1.1 for NA groups.

Note that G/K = NA can be considered as the one dimensional extension of N by A. The group N, called the Iwasawa N group, is an example of a H-type group. In recent times, such H-type groups and their one dimensional extensions have received considerable attention. See the works of Damek-Ricci [8] and Cowling et al [5]. Given such a group N, the one dimensional extension NA gives an example of a nonsymmetric harmonic manifold. This class, called harmonic NA groups, contains all the noncompact rank one symmetric spaces. Harmonic analysis on such groups has been studied by Damek-Ricci [8], Anker et al [1] and others. Helgason Fourier transform on NA groups has been studied by Astengo et al [2] and they have proved inversion and Plancherel theorems. In this paper we prove analogues of Hardy and Paley-Wiener theorems.

In the context of nonsymmetric NA groups, there is no analogue of K which acts transitively on the spheres in NA. Therefore, we do not have analogues of the spherical harmonics $Y_{\delta,j}$. To remedy this shortcoming, consider the case G = SU(n+1,1), $n \ge 1$ which gives rise to the complex hyperbolic space. Here $N = H^n$, the Heisenberg group and the symmetric space can be naturally identified with the unit ball \mathcal{B}_{n+1} in \mathbb{C}^{n+1} . Using the Cayley transform C which takes \mathcal{B}_{n+1} onto the Siegel's upper half space \mathcal{D}_{n+1} we can also identify NA with \mathcal{D}_{n+1} . We refer to Section 3 for all this and more.

The restriction of the Cayley transform to the boundary S^{2n+1} of \mathcal{B}_{n+1} maps it onto the boundary of \mathcal{D}_{n+1} which is identified with H^n . If C_b stands for this restriction then $Y_{\delta,j} \circ C_b^{-1}$ are functions on H^n denoted by $S_{\delta,j}$. The image of the Haar measure on K under the Cayley transform is $c_n P_1^0(\zeta, u) d\zeta du$ where

$$P_a^0(\zeta, u) = a^{n+1} \left((a + \frac{1}{4}|\zeta|^2)^2 + |u|^2 \right)^{-(n+1)}. \tag{1.3}$$

Then $\{S_{\delta,j}: 1 \leq j \leq d_{\delta}, \delta \in \hat{K}_{M}\}$ forms an orthonormal basis for $L^{2}(H^{n}, c_{n})$ $P_{1}^{0}(\zeta, u)du d\zeta$. Let $\mathcal{P}_{\lambda}^{0}(\zeta, u)$ be the kernel defined by

$$\mathcal{P}^{0}_{\lambda}(\zeta, u) = (P^{0}_{1}(\zeta, u))^{\frac{1}{2} - \frac{i\lambda}{Q_{0}}}$$
(1.4)

where $Q_0 = n + 1$. Then it is clear the $P_1^0(\zeta, u) = \mathcal{P}_{\lambda}^0(\zeta, u)\mathcal{P}_{-\lambda}^0(\zeta, u)$. Let $\hat{f}(\lambda, Y, Z)$, $\lambda \in \mathbb{R}$, $(Y, Z) \in N$ be the (nonnormalised) Helgason Fourier transform of a function f on NA. Let Q = m + k be the homogeneous dimension of the H-type group N. Let Δ be the Laplace-Beltrami operator on NA with the associated heat kernel $h_I(x)$. Let $B_{m,k}(\lambda)$ be the meromorphic function given by

$$B_{m,k}(\lambda) = \frac{\Gamma\left(\frac{k-1}{2}\right)\Gamma\left(\frac{m+1}{2} - i\lambda\right)}{\Gamma\left(\frac{m+k}{2} - i\lambda\right)}.$$
 (1.5)

With these preparations we now state our first version of Hardy's theorem.

In the following theorem, $K = S(U(m) \times U(1))$ is the K part of the Iwasawa decomposition of G = SU(m+1,1). M, \hat{K}_M etc. are all related to this group. $\hat{f}(\lambda,Y,Z)$, $(Y,Z) \in N$ stands for the Helgason Fourier transform of f on NA (to be defined in the next section).

Theorem 1.2. Let f be a function on the NA group which satisfies the estimate $|f(x)| \le c \ h_{\alpha}(x)$ for all $x \in NA$. Further assume that for every $\delta \in \hat{K}_M$, $1 \le j \le d_{\delta}$ and $\omega \in S^{k-1}$ the functions

$$F_{\delta,j}(\lambda,\omega)$$

$$= B_{m,k}(\lambda)^{-1} Q_{\delta}(\lambda)^{-1} \int_{N} \hat{f}(\lambda, Y, Z) S_{\delta,j}(Y, Z \cdot \omega) \mathcal{P}_{-\lambda}^{0}(Y, Z \cdot \omega) dZ dY$$

satisfy the estimate $|F_{\delta,j}(\lambda,\omega)| \le c_{\delta,j} e^{-\beta\lambda^2}$ for all $\lambda \in \mathbb{R}$. Then either f = 0 or $f = ch_{\alpha}$ depending on whether $\alpha < \beta$ or $\alpha = \beta$.

We also have the following Paley-Wiener theorem for the Helgason Fourier transform. Let e = (0, 0, 1) denote the identity of NA and let d(x) = d(x, e) stand for the geodesic distance between x and e. If x = (X, Z, a), d(x, e) can be written down in terms of |X|, |Z| and a. Let S(NA) denote the space of Schwartz class functions. Any $f \in S(NA)$ is a C^{∞} function which satisfies the conditions

$$\sup_{x \in NA} e^{\frac{Q}{2}d(x)} (1 + d(x))^n |UVf(x)| < \infty$$
 (1.6)

for all $n \ge 0$ and left (right) invariant vector field U (resp. V). In the next theorem we consider functions which have more decay than Schwartz class functions.

Theorem 1.3. Let $f \in S(NA)$ be very rapidly decreasing in the sense that

$$|f(x)| \le c_n \, e^{-nd(x)}, x \in NA$$

for all $n \ge 0$. Then f is compactly supported in $d(x) \le B$ if and only if for every $\delta \in \hat{K}_M$, $1 \le j \le d_\delta$ and $\omega \in S^{k-1}$ the functions $F_{\delta,j}(\lambda,\omega)$ defined in the previous theorem extend to entire functions of $\lambda \in C$ satisfying the estimates

$$|F_{\delta,j}(\lambda, \omega)| \le c_{\delta j} (1 + |\lambda|)^{-n} e^{B|Im\lambda|}$$

for all $\lambda \in \mathbb{C}$ and $n \geq 0$.

Returning to Hardy's theorem for rank one symmetric spaces, consider the following version which is weaker than Theorem 1.1.

Theorem 1.4. Let a function f on G/K satisfy the condition $|f(x)| \le ch_{\alpha}^{0}(x)$. Further assume that

$$\int_{K/M} |\tilde{f}(\lambda, b)|^2 db \le c (1 + |\lambda|)^n e^{-2\beta \lambda^2}$$

for some $n \ge 0$. Then either f = 0 or $f = ch_{\alpha}^{0}$ depending on whether $\alpha < \beta$ or $\alpha = \beta$.

The case n=0 of this theorem is due to Narayanan-Ray [17]. We indicate a proof of the case n>0 in Section 3 which requires the stronger version, viz. Theorem 1.1. In this paper we prove the following result which is the analogue of Theorem 1.4 for NA groups.

Theorem 1.5. Let f be a function on the NA group which satisfies the estimate $|f(x)| \le ch_{\alpha}(x)$. Further assume that

$$\int_{N} |\hat{f}(\lambda, Y, Z)|^{2} (1 + |Z|^{2})^{\gamma} dY dZ \le c e^{-2\beta \lambda^{2}}$$

for all $\lambda \in \mathbb{R}$ and some $\gamma > \frac{k-1}{2}$. Then the conclusions of Theorem 1.2 hold.

This theorem should be compared with the following result of Astengo et al [3]. They have shown that if $|f(x)| \le ch_{\alpha}(x)$ and if

$$\int\limits_{N} |\hat{f}(\lambda, Y, Z)|^{2} dY dZ \le c e^{-2\beta\lambda^{2}}$$

with $\alpha < \beta$ then f = 0. The equality case was left open and the above theorem treats that case. When $f = h_{\alpha}$ we have

$$\hat{f}(\lambda, Y, Z) = \mathcal{P}_{\lambda}(e, (Y, Z))e^{-\alpha\lambda^2}$$
(1.7)

where \mathcal{P}_{λ} is a power of the Poisson kernel on NA and so it can be shown that the hypothesis on \hat{f} in Theorem 1.5 is satisfied if $\gamma < \frac{m+k}{2}$. Thus the hypothesis in our theorem is only but natural. In order to prove Theorem 1.5, we need to use the stronger result, viz Theorem 1.1 whereas the case n=0 of Theorem 1.4 can be proved without appealing to Theorem 1.1 as was done in Narayanan-Ray [17].

This paper is organised as follows. In Section 2 we recall the definition of the Helgason Fourier transform on NA groups. In Section 3 we consider Hardy's theorem for the complex hyperbolic space and restate Theorem 1.1 in the non-compact picture. We also give a proof of Theorem 1.4. In Section 4 we introduce the partial Radon transform and show how it can be used to reduce matters from general NA groups to the case of complex hyperbolic space. Finally, in Section 5 we prove all our main results.

We take great pleasure in acknowledging with thanks the help received from Ms. Asha Lata in getting the manuscript typed.

2 Fourier transform on NA groups

The aim of this section is to recall the definition of the Helgason Fourier transform on NA groups. We begin with the definition of H-type groups and their solvable extensions. Using the Poisson kernel, we define the Helgason Fourier transform as in Astengo et al [2] and collect some important properties of the same.

Let n be a two step nilpotent Lie algebra equipped with an inner product \langle , \rangle . Let z be the center of n and v its orthogonal complement so that $n = v \oplus z$. Following Kaplan [15] we say that n is a H-type algebra if for every $Z \in z$ the map $J_Z : v \to v$ defined by

$$\langle J_Z X, Y \rangle = \langle [X, Y], Z \rangle, \quad X, Y \in \mathfrak{v}$$
 (2.1)

satisfies the condition $J_Z^2 = -|Z|^2 I$, I being the identity on v. A connected and simply connencted Lie group N is called a H-type group if its Lie algebra is a H-type algebra. Since v is nilpotent, the exponential map is surjective and hence we can parametrise elements of $N = \exp v$ by (X, Z) where $X \in v$, $Z \in \mathbf{z}$. By Campbell-Hausdorff formula, the group law is given by

$$(X,Z)(X',Z') = (X+X',Z+Z'+\frac{1}{2}[X,X']).$$
 (2.2)

The Haar measure on N is given by dX dZ where dX and dZ are Lebesgue measures on v and z.

The best known example of a H-type group is the Heisenberg group H^n . The Lie algebra of H^n is $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ with the Lie bracket

$$[(x, y, t), (x', y', t')] = (0, 0, (y \cdot x' - x \cdot y'))$$

where $x \cdot y$ stands for the standard inner product on \mathbb{R}^n . For Z = (0, 0, t) in the center we define J_Z by $J_Z(x, y) = t(-y, x)$. Then

$$(J_Z(x,y),(x',y')) = t(-y,x) \cdot (x',y') = ([(x,y,0),(x',y',0)],t)$$

and $J_Z^2 = -|Z|^2 I$. The group law on H^n takes the form

$$(x, y, t)(x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(x' \cdot y - y' \cdot x)).$$

Identifying $\mathbb{R}^n \times \mathbb{R}^n$ with \mathbb{C}^n and writing z = x + iy we can identify H^n with $\mathbb{C}^n \times \mathbb{R}$ and the group law takes the form

$$(z,t)(z',t') = (z+z',t+t'+\frac{1}{2}Im(z\cdot\bar{z}')).$$

We return to the Heisenberg group in Section 3.

Given a H-type group N let S = NA be the semidirect product of N with $A = \mathbb{R}^+$ with respect to the action of A on N given by the dilation $(X, Z) \rightarrow$

 $(a^{\frac{1}{2}}X, aZ), a \in A$. We write (X, Z, a) to denote the element $\exp(X + Z)a$. The product law on NA is given by

$$(X, Z, a)(X', Z', a') = (X + a^{\frac{1}{2}}X', Z + aZ' + \frac{1}{2}a^{\frac{1}{2}}[X, X'], aa').$$
 (2.3)

For any $Z \in \mathbf{z}$ with |Z| = 1, $J_Z^2 = -I$ and hence J_Z defines a complex structure on v. Consequently v is even dimensional. Let 2m be the dimension of v and k the dimension of \mathbf{z} . Then Q = m + k is called the homogeneous dimension of S. The left Haar measure on S is (up to a multiplicative constant) given by $a^{-Q-1}dX \ dZ \ da$.

The Lie algebra s of S is simply $\mathfrak{n} \oplus \mathbb{R}$ equipped with the inner product

$$\langle (X, Z, t), (X', Z', t') \rangle = \langle X, X' \rangle + \langle Z, Z' \rangle + tt'.$$

This makes S into a Riemannian manifold which is a harmonic space. Rank one symmetric spaces of noncompact type constitute a subclass of NA harmonic spaces. As proved in Cowling et al [5], the geodesic distance between x = (X, Z, a) and the identity e = (0, 0, 1) is given by

$$d(x) = d(x, e) = \log \frac{1 + r(x)}{1 - r(x)}$$
(2.4)

where r(x) is given by the expression

$$1 - r(x)^{2} = 4a\{(1 + a + \frac{1}{4}|X|^{2})^{2} + |Z|^{2}\}^{-1}.$$
 (2.5)

A function f on S is called radial if f(x) depends only on d(x). In [8] Damek and Ricci proved that the subalgebra of $L^1(S)$ consisting of radial functions is commutative. They also have studied the spherical Fourier transform on S.

An analogue of Helgason Fourier transform on S was introduced and studied by Astengo et al in [2]. This was done in terms of the Poisson kernel associated to the Laplace-Beltrami operator Δ on S. If f is a bounded harmonic function on S, i.e. $\Delta f = 0$ then as proved by Damek [7] f can be represented as

$$f(x) = \int_{N} \mathcal{P}(x, n) F(n) dn, \ x \in S$$

where F is the restriction of f to N. Here $\mathcal{P}(x, n)$ is the Poisson kernel which is defined as follows. For $a \in \mathbb{R}^+$ and n = (X, Z) define

$$P_a(n) = P_a(X, Z) = c_{mk} a^Q ((a + \frac{1}{4}|X|^2)^2 + |Z|^2)^{-Q}$$
 (2.6)

where $c_{mk} = P_1(0, 0)$. Then $\mathcal{P}(x, n) = P_a(n_1^{-1}n)$ if $x = n_1a \in S$. For a complex number λ define

$$P_{\lambda}(x, n) = (P(x, n))^{\frac{1}{2} - \frac{i\lambda}{Q}} = (P_a(n_1^{-1}n))^{\frac{1}{2} - \frac{i\lambda}{Q}}.$$
 (2.7)

The Helgason Fourier transform is defined using this kernel.

Given a C_0^{∞} function f on S, its Helgason Fourier transform \hat{f} is the function on $\mathbb{C} \times N$ given by

$$\hat{f}(\lambda, n) = \int_{S} f(x) \mathcal{P}_{\lambda}(x, n) dx. \tag{2.8}$$

In [2] the authors have proved the following inversion formula for $f \in C_0^{\infty}(S)$:

$$f(x) = \frac{c_{mk}}{4\pi} \int_{\mathbb{R}} \int_{N} \mathcal{P}_{-\lambda}(x, n) \, \hat{f}(\lambda, n) |c(\lambda)|^{-2} dn \, d\lambda$$

where the c-function is given by

$$c(\lambda) = \frac{2^{Q-2i\lambda}\Gamma(2i\lambda)\Gamma((2m+k+1)/2)}{\Gamma(\frac{Q}{2}+i\lambda)\Gamma(\frac{m+1}{2}+i\lambda)}.$$
 (2.9)

They have also proved the Plancherel formula

$$\int_{S} f(x)\overline{g}(x)dx = \frac{c_{mk}}{4\pi} \int_{R} \int_{N} \widehat{f}(\lambda, n)\overline{\widehat{g}(\lambda, n)}|c(\lambda)|^{-2}dn \ d\lambda$$

valid for all $f, g \in C_0^{\infty}(S)$.

We fix an orthonormal basis $\{H, E_1, E_2, \dots E_{2m}, T_1, T_2, \dots T_k\}$ adapted to the decomposition of S as $v \oplus z \oplus \mathbb{R}$. Then the left invariant vector fields on S extending the vectors $H, E_1, \dots E_{2m}, T_1, T_2, \dots T_k$ are given by $a\partial_a, a^{\frac{1}{2}}E_1, \dots, a^{\frac{1}{2}}E_{2m}, aT_1, aT_2, \dots, aT_k$ respectively. It was shown by Damek [7] that the Laplace-Beltrami operator Δ on S is given by

$$\Delta = a \sum_{j=1}^{2m} E_j^2 + a^2 \sum_{j=1}^k T_j^2 + (a \partial_a)^2 - Qa \partial_a.$$
 (2.10)

We denote by $h_t(x)$ the heat kernel associated to Δ which is a radial function, i.e. it depends only on d(x). This kernel is characterised by the requirement that

$$\hat{h}_{t}(\lambda, n) = P_{1}(e, n)e^{-t(\lambda^{2} + \frac{1}{4}Q^{2})}.$$
 (2.11)

By abuse of notation we sometimes write $h_t(r)$ in place of $h_t(x)$ when d(x) = r. In [1] Anker et al have obtained good estimates on the heat kernel $h_t(r)$.

3 Complex hyperbolic spaces

As we have already remarked, if G = NAK is the Iwasawa decomposition of a semisimple Lie group of real rank one, then N becomes a H-type group and the symmetric space G/K is naturally identified with the solvable group NA. The Helgason Fourier transform on G/K can be written in terms of the Helgason Fourier transform on NA. In this section, our aim is to restate Theorem 1.1 which will serve as a motivation for Theorem 1.2. As we need Theorem 1.1 for the group G = SU(m+1,1) we restrict ourselves to this case though whatever we say in this section is true for all rank one symmetric spaces.

The Heisenberg group H^m is the most well-known example of a H-type group. Consider now the solvable extension $S_0 = H^m A$ where $A = \mathbb{R}^+$ as before. Let $Q_0 = (m+1)$ be the homogeneous dimension of S_0 . The objects on S_0 such as Poisson kernel, heat kernel etc. will be denoted by \mathcal{P}^0_{λ} , h^0_t etc. For example, if $(\zeta, u) \in H^m = \mathbb{C}^m \times \mathbb{R}$,

$$P_a^0(\zeta, u) = c_{m1}a^{Q_0}\left(\left(a + \frac{1}{4}|\zeta|^2\right)^2 + u^2\right)^{-Q_0}$$
 (3.1)

and $\mathcal{P}_{\lambda}^{0}$ is defined in terms of P_{a}^{0} . In particular, we note that

$$\mathcal{P}_{\lambda}^{0}(e,(\zeta,u)) = c_{m1} \left((1 + \frac{1}{4}|\zeta|^{2})^{2} + u^{2} \right)^{i\lambda - \frac{Q_{0}}{2}}.$$

The Helgason Fourier transform on So is defined in terms of this kernel.

To bring out the connection between S_0 and the group SU(m + 1, 1) consider the Siegel's upper half space

$$\mathcal{D}_{m+1} = \left\{ (\zeta, t+is) \in \mathbb{C}^{m+1} : s > \frac{1}{4} |\zeta|^2 \right\}.$$

Then S_0 acts on D_{m+1} as follows. Let

$$h(\zeta, t, s) = \left(\zeta, t + is + \frac{i}{4}|\zeta|^2\right) \tag{3.2}$$

so that \mathcal{D}_{m+1} is the image of S_0 under h. The action of S_0 on \mathcal{D}_{m+1} is given by

$$L_x(y) = h(x \cdot h^{-1}(y)), x \in S_0, y \in D_{m+1}.$$

More explicitly, if x = (z, t, s) and $y = (\zeta, u + iv)$ then

$$L_x(y) = h\left((z,t,s)(\zeta,u,v-\frac{1}{4}|\zeta|^2)\right).$$

From this it is clear that $L_x(0,i) = h(x)$. Note that when $y = (\zeta, u + \frac{i}{4}|\zeta|^2) \in \partial \mathcal{D}_{m+1}$ and $x = (z, t, 1) \in H^n$,

$$L_x(y) = \left(z + \zeta, t + u + \frac{i}{4}|z + \zeta|^2\right) \in \partial \mathcal{D}_{m+1}.$$

Thus $(z, t, 1) \rightarrow (z, t + \frac{i}{4}|z|^2)$ identifies H^m with $\partial \mathcal{D}_{m+1}$.

Let B_{m+1} be the unit ball in C^{m+1} defined by

$$\mathcal{B}_{m+1} = \{(w, w_{m+1}) \in \mathbb{C}^{m+1} : |w|^2 + |w_{m+1}|^2 < 1\}.$$

We define the generalised Cayley transform $C : \mathcal{B}_{m+1} \to \mathcal{D}_{m+1}$ by

$$C(w, w_{m+1}) = \left(\frac{2iw}{1 - w_{m+1}}, i\frac{1 + w_{m+1}}{1 - w_{m+1}}\right).$$
 (3.3)

The Cayley transform maps the origin in \mathcal{B}_{m+1} into the base point $(0, i) \in \mathcal{D}_{m+1}$. We can identify functions on \mathcal{B}_{m+1} with functions on \mathcal{D}_{m+1} via Cayley transform.

Let G be the group of all biholomorphic automorphisms of \mathcal{B}_{m+1} . Then $G_0 = CGC^{-1}$ gives all biholomorphic automorphisms of \mathcal{D}_{m+1} . There is a natural identification of $S_0 = H^m A$ with G_0 . Moreover, every element of G arises as a fractional linear transformation defined by an element of the semisimple group $G_1 = SU(m+1,1)$. Identifying G and G_1 , let G = NAK be the Iwasawa decomposition of G and let G be the centraliser of G in G. Then the usual Helgason Fourier transform of a function G on G/K is G in G where G and G is an G with G is identified with the unit sphere G identified with the unit sphere G is G in G in G in G is identified with the unit sphere G is G in G is identified with the unit sphere G in G in G is identified with the unit sphere G in G in G is identified with the unit sphere G in G in G in G is identified with the unit sphere G in G in G in G in G is identified with the unit sphere G in G

Let f be a function on S_0 whose (nonnormalised) Helgason transform is $\hat{f}(\lambda, \zeta, t)$. Then $g = f \circ h^{-1} \circ C$ is a function on \mathcal{B}_{m+1} and $\tilde{g}(\lambda, b)$ is related to $\hat{f}(\lambda, \zeta, t)$. In fact,

$$\mathcal{P}^{0}_{\lambda}(\zeta, t)^{-1}\hat{f}(\lambda, \zeta, t) = \tilde{g}(\lambda, b)$$
 (3.4)

if $(\zeta, t) = h^{-1} \circ C(b)$. Thus we can restate Theorem 1.1 in the noncompact picture as follows. Recall that \hat{K}_M is the set of all class-1 representations of K and for each $\delta \in \hat{K}_M$ we have certain spherical harmonics $Y_{\delta,j}$, $1 \le j \le d_{\delta}$. The family $\{Y_{\delta,j} : 1 \le j \le d_{\delta}$, $\delta \in \hat{K}_M\}$ forms an orthonormal basis for $L^2(K/M) = L^2(S^{2m+1})$.

Using Cayley transform we can define $S_{\delta,j}(\zeta,t) = Y_{\delta,j} \circ C^{-1} \circ h(\zeta,t)$. Then $\{S_{\delta,j}: 1 \leq j \leq d_{\delta}, \delta \in \hat{K}_M\}$ forms an orthonormal basis for $L^2(H^m, P_1^0(\zeta,t)d\zeta dt)$ where P_1^0 is given in (1.3). Therefore, Theorem 1.1 takes the following form.

Theorem 3.1. Let f be a function on $S_0 = H^m A$ which satisfies $|f(x)| \le ch_\alpha^0(x)$. Further assume that for every $\delta \in \hat{K}_M$, $1 \le j \le d_\delta$ the function

$$F_{\delta,j}^{0}(\lambda) = Q_{\delta}(\lambda)^{-1} \int_{H^{m}} \hat{f}(\lambda,\zeta,t) S_{\delta,j}(\zeta,t) \mathcal{P}_{-\lambda}^{0}(\zeta,t) d\zeta dt$$

satisfies the estimate $|F_{\delta,j}(\lambda)| \le c_{\delta,j} e^{-\beta \lambda^2}$ for all $\lambda \in \mathbb{R}$. Then f = 0 or $f = ch_{\alpha}^0$ according as $\alpha < \beta$ or $\alpha = \beta$.

The proof of Theorem 1.1 given in [20] uses the fact that $F^0_{\delta,j}(\lambda)$ defined in (1.2) reduces to the Jacobi transform of a function related to f. To be more precise, each $\delta \in \hat{K}_M$ is associated with a pair of integers (p,q) (see Johnson-Wallach [14]) so that

$$F_{\delta,j}^{0}(\lambda) = \int_{0}^{\infty} f_{\delta,j}(r) \varphi_{\lambda}^{(m+p,q)}(r) W_{m+p,q}(r) dr$$
 (3.5)

where $f_{\delta,j}(r)$ is the spherical harmonic coefficient of f associated to $Y_{\delta,j}$ and $\varphi_{\lambda}^{(\alpha,\beta)}$ is the Jacobi function of type (α,β) . We refer to Helgason [13], Koomwinder [16] and [20] for details.

We conclude this section by indicating a proof of Theorem 1.4 which we promised in the introduction. On the one hand the definition of $F^0_{\delta,j}(\lambda)$ and (3.5) shows that

$$\int_{K/M} \tilde{f}(\lambda, b) Y_{\delta, j}(b) db = Q_{\delta}(\lambda) F_{\delta, j}(\lambda)$$

is divisible by the polynomial Q_{δ} . On the other hand if $\hat{f}(\lambda)$ denotes the group Fourier transform of the right K-invariant function f on G corresponding to the spherical principal series representations π_{λ} then it is well known that $\tilde{f}(\lambda, b) =$ $\hat{f}(\lambda)Y_0(b)$ where $Y_0(b) = 1$. Thus

$$(\hat{f}(\lambda)Y_0, Y_{\delta,j}) = Q_{\delta}(\lambda)F_{\delta,j}(\lambda).$$
 (3.6)

Writing down the definition of $\hat{f}(\lambda)$ in terms of π_{λ} and using the estimate on f one can show that $(\hat{f}(\lambda)Y_0, Y_{\delta,j})$ extends to an entire function of order 2. Under the hypothesis on $\hat{f}(\lambda, b)$ we apply a suitable complex analytic lemma to conclude that

$$(\hat{f}(\lambda)Y_0, Y_{\delta,j}) = P_{\delta,j}(\lambda)e^{-\beta\lambda^2}$$
(3.7)

where $P_{\delta,j}(\lambda)$ is a polynomial of degree $\leq n$.

Now, as the parameter p associated to δ tends to infinity, degree of Q_{δ} also goes to infinity. Therefore (3.6) and (3.7) are not compatible unless $f_{\delta,j} = 0$ for all but finitely many δ . This means that f is a finite linear combination of functions of the form

$$Y_{\delta,j}(k)(\sinh r)^p(\cosh r)^q P_{\delta,j}(\Delta_{\delta})h_{\alpha}^{\delta}(r)$$

where Δ_{δ} is a Jacobi differential operator and h_{α}^{δ} is the associated heat kernel. We can now use the method of Anker et al [1] to get a lower bound for $P_{\delta,j}(\Delta_{\delta})h_{\alpha}^{\delta}$. We can show that the estimate $|f(x)| \leq ch_{\alpha}(x)$ is compatible with the expression for $f_{\delta,j}$ only if $f_{\delta,j} = 0$ for all δ other than the trivial representation. This simply means that $f = ch_{\alpha}$ proving the theorem.

We refer to [20], [21] for more details of this argument. By going through the heat kernel estimates given in Anker et al [1] the reader can write down the precise estimates on the derivatives of the heat kernels also.

Stated in terms of the Helgason Fourier transform on S_0 , Theorem 1.4 takes the following form.

Theorem 3.2. Let f be a function on S_0 which satisfies $|f(x)| \le ch_\alpha^0(x)$. Further assume that

$$\int\limits_{H^m} |\hat{f}(\lambda,\zeta,t)|^2 P_1^0(\zeta,t) d\zeta dt \le c(1+|\lambda|)^{2n} e^{-2\beta\lambda^2}$$

for all $\lambda \in \mathbb{R}$. Then the conclusions of Theorem 1.4 hold.

We use this theorem in the proof of our main result viz Theorem 1.5.

4 The hyperbolic reduction

In the next section we prove our main results by reducing them to the case of complex hyperbolic spaces. This is achieved by means of a partial Radon transform. Our aim in this section is to introduce this and list some important lemmas which are very crucial in the proof of Hardy's theorem.

Let f be a function on \mathbb{R}^n and let S^{n-1} stand for the unit sphere in \mathbb{R}^n . The Radon transform of f is a function on $\mathbb{R}^+ \times S^{n-1}$ defined by

$$Rf(t,\omega) = \int_{\omega^{\perp}} f(t\omega + y)dy \tag{4.1}$$

where dy is the Lebesgue measure on ω^{\perp} . This transform is a very useful tool in reducing problems on \mathbb{R}^n into problems on \mathbb{R} . For example, see the solution of the Cauchy problem for the wave equation on \mathbb{R}^n given in Folland [10]. In [19] the same transform has been used to deduce Hardy's theorem for \mathbb{R}^n from the one dimensional result.

Given a function f(X, Z, a) on S define its partial Radon transform $f_{\omega}(X, t, a)$, $t \in \mathbb{R}, \ \omega \in S^{k-1}$ by

$$f_{\omega}(X, t, a) = \int_{\omega^{\perp}} f(X, t \cdot \omega + u, a) du. \tag{4.2}$$

In [18] Ricci introduced this transform and used it to show that the subalgebra $L^1_{rad}(S)$ of $L^1(S)$ consisting of radial functions is commutative. He also used it to deduce the inversion formula for the spherical Fourier transform on S from the corresponding result for rank one symmetric spaces. The following lemmas indicate how this reduction is achieved.

Given $\omega \in S^{k-1}$ let $Z_{\omega} = \exp \omega^{\perp}$ which is a subgroup of S. The following lemma has been proved in Ricci [18].

Lemma 4.1. The quotient group $S_{\omega} = S/Z_{\omega}$ with the quotient metric is a symmetric space.

In fact, as we have already observed, J_{ω} defines a complex structure on v and we can equip it with the Hermitian product

$$\{u, v\}_{\omega} = \langle u, v \rangle + i \langle J_{\omega} u, v \rangle, \quad u, v \in v.$$

Then n becomes isomorphic to the Heisenberg group H^m (if v is of dimension 2m) and S_ω is isomorphic to $S_0 = H^m A$. The map $(X, t, a) \to (X, t\omega, a) Z_\omega$ gives an isomorphism between S_0 and S_ω . Another important property of the Radon transform is given in the next lemma. We let $f *_\omega g$ to stand for the convolution on S_ω .

Lemma 4.2. Let f and g be continuous functions on S with compact support. Then for every $\omega \in S^{k-1}$, $(f * g)_{\omega} = f_{\omega} *_{\omega} g_{\omega}$ and f = g if and only if $f_{\omega} = g_{\omega}$ for every $\omega \in S^{k-1}$. Moreover, f is radial if and only if f_{ω} is independent of ω and $a^{-\frac{(k-1)}{2}} f_{\omega}(X, t, a)$ is radial on S_{ω} .

It is instructive to go through the proof of this lemma given in Ricci [18]. The partial Radon transform also gives a useful relation between the spherical functions φ_{λ} on S and φ_{λ}^{0} on S_{ω} corresponding to the same parameter λ .

Lemma 4.3. For $-\frac{Q_0}{2} < Im\lambda < 0$ we have

$$(\varphi_{\lambda})_{\omega}(X, t, a) = \alpha(\lambda)a^{\frac{k-1}{2}}\varphi_{\lambda}^{0}(X, t, a)$$

where $\alpha(\lambda)$ is the meromorphic function

$$\alpha(\lambda) = \frac{\pi^{\frac{k-1}{2}} \Gamma(m + \frac{k+1}{2}) \Gamma(\frac{Q_0}{2} + i\lambda) \Gamma(\frac{Q_0}{2} - i\lambda)}{\Gamma(m+1) \Gamma(\frac{Q}{2} + i\lambda) \Gamma(\frac{Q}{2} - i\lambda)}.$$

The above lemma is also proved in Ricci [18]. Let Δ_0 be the Laplace-Beltrami operator on S_0 which is isomorphic to S_ω . Let h_s^0 be the heat kernel associated to Δ_0 . In the next lemma we obtain a relation between h_s and h_s^0 .

Lemma 4.4. For every $\omega \in S^{k-1}$

$$(h_s)_{\omega}(X, t, a) = c_m h_s^0(X, t, a) a^{\frac{k-1}{2}}$$
.

Proof. The heat kernel h_x^0 is given by the inversion formula

$$h_s^0(X, t, a) = c_m' \int_{-\infty}^{\infty} e^{-(\lambda^2 + \frac{Q_0^2}{4})s} \varphi_{\lambda}^0(X, t, a) |c_0(\lambda)|^{-2} d\lambda$$

where $c_0(\lambda)$ is the c-function for S_0 and is given by

$$c_0(\lambda) = \frac{2^{Q_0 - i\lambda} \Gamma(2i\lambda) \Gamma(Q_0)}{\Gamma(\frac{Q_0}{2} + i\lambda) \Gamma(\frac{Q_0}{2} + i\lambda)}.$$

We can write the above as

$$h_s^0(X,t,a) = c_m' \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} e^{-(\lambda - i\epsilon)^2 s - \frac{1}{4}Q_0^2 s} \varphi_{\lambda - i\epsilon}^0(X,t,a) |c_0(\lambda - i\epsilon)|^{-2} d\lambda.$$

As in [18] we can verify that

$$\frac{\Gamma(m+1)}{\pi^{m+1}}\alpha(\lambda)^{-1}|c_0(\lambda)|^{-2} = \frac{2^{2k-2}\Gamma(m+\frac{k+1}{2})}{\pi^{m+\frac{k+1}{2}}}|c(\lambda)|^{-2}.$$

Therefore,

$$\begin{split} h_s^0(X,t,a) &= c_m'' \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} e^{-(\lambda - i\epsilon)^2 s - \frac{1}{4}Q^2 s} \alpha(\lambda - i\epsilon) \varphi_{\lambda - i\epsilon}^0(X,t,a) |c(\lambda - i\epsilon)|^{-2} d\lambda. \end{split}$$

Using the result of Lemma 4.3 we obtain

$$\begin{split} &h_s^0(X,t,a) \\ &= c_m'' \lim_{\epsilon \to 0} \int\limits_{-\infty}^{\infty} e^{-(\lambda - i\epsilon)^2 s - \frac{1}{4}Q^2 s} (\varphi_{\lambda - i\epsilon})_{\omega}(X,t,a) a^{-\frac{(k-1)}{2}} |c(\lambda - i\epsilon)|^{-2} d\lambda. \end{split}$$

Interchanging the limit and integrating over ω^{\perp} we get

$$a^{\frac{k-1}{2}}h_s^0(X,t,a) = c_m(h_s)_{\omega}(X,t,a)$$

which proves the lemma.

We conclude this section with the following result known as the support theorem for the Radon transform which is needed in the proof of Paley-Wiener theorem. From the definition (4.1) it is clear that if the function f on \mathbb{R}^n is supported in the ball $|x| \leq B$ then for every $\omega \in S^{n-1}$, $Rf(t,\omega)$ is supported on $|t| \leq B$. The converse is also true.

Theorem 4.5. Let f be a continuous function on \mathbb{R}^n such that $|x|^k f(x)$ is bounded for every $k \ge 0$. Assume that for every $\omega \in S^{n-1}$, $Rf(\cdot, \omega)$ is supported in $|t| \le B$. Then f is supported in $|x| \le B$.

This theorem is due to Helgason and a proof can be found in [12]. We make use of this result in Section 5.

5 Hardy and Paley-Wiener theorems

In this section we prove our main results stated in the introduction. We begin with the following proposition which is crucial in proving both Hardy and Paley-Wiener theorems. The proposition relates the Helgason Fourier transform on S and the (normalised) Helgason Fourier transform on S_{ω} which we identify with the complex hyperbolic space $S_0 = H^m A$ for all $\omega \in S^{k-1}$. We write $\mathcal{P}_{\lambda}(Y, Z)$ in place of $\mathcal{P}_{\lambda}(e, (Y, Z))$ and $\mathcal{P}_{\lambda}^0(Y, t)$ in place of $\mathcal{P}_{\lambda}^0(e, (Y, t))$ for the sake of simplicity. Recall that the (normalised) Helgason Fourier transform of a function g on S_0 is denoted by $\tilde{g}(\lambda, Y, t)$.

Proposition 5.1. For each $\omega \in S^{k-1}$

$$\int_{\omega^{\perp}} \hat{f}(\lambda, Y, t\omega + u) du = c_k B_{m,k}(\lambda) \mathcal{P}^0_{\lambda}(Y, t) \tilde{g}_{\omega}(\lambda, Y, t)$$

where $g_{\omega}(X, s, a) = a^{-\frac{(k-1)}{2}} f_{\omega}(X, s, a)$ and $B_{m,k}(\lambda)$ is defined in (1.5).

Proof. Recalling the definition of $P_a(X, Z)$ a simple calculation shows that

$$P_a((X,Z)^{-1}(Y,\zeta)) = c_{mk} \, a^{\mathcal{Q}} \left((a + \frac{1}{4}|X-Y|^2)^2 + |\zeta - Z - \frac{1}{2}[X,Y]|^2 \right)^{-\mathcal{Q}}.$$

From this we get

$$\begin{split} \mathcal{P}_{\lambda}((X,Z,a),(Y,\zeta)) \\ &= c_{mk} a^{\frac{Q}{2}-i\lambda} \left((a + \frac{1}{4}|X-Y|^2)^2 + |\zeta - Z - \frac{1}{2}[X,Y]|^2 \right)^{-\frac{Q}{2}+i\lambda}. \end{split}$$

Therefore,

$$\begin{split} &\int\limits_{\omega^{\perp}} \hat{f}(\lambda,Y,t\omega+u)du \\ &= \int\limits_{S} \int\limits_{\omega^{\perp}} f(X,Z,a) \mathcal{P}_{\lambda}((X,Z,a),(Y,t\omega+u)) a^{-Q-1} du \ da \ dX \ dZ. \end{split}$$

We can write

$$[X, Y] = \langle [X, Y], \omega \rangle \omega + v' = \langle J_{\omega} X, Y \rangle \omega + v'$$

where $v' \in \omega^{\perp}$ and $Z = s\omega + v$, $v \in \omega^{\perp}$ so that

$$|\zeta - Z - \frac{1}{2}[X,Y]|^2 = (t - s - \frac{1}{2}\langle J_\omega X, Y \rangle)^2 + |u - v - \frac{1}{2}v'|^2.$$

This gives us

$$\int_{\omega^{\perp}} \hat{f}(\lambda, Y, t\omega + u) du = c_k \int_{A} \int_{v} \int_{\omega^{\perp}} \int_{\omega^{\perp}} f(X, s\omega + v, a) a^{-\frac{Q}{2} - i\lambda - 1}$$

$$\times \left((a + \frac{1}{4}|X - Y|^2)^2 + (t - s - \frac{1}{2}\langle J_{\omega}X, Y \rangle)^2 + |u - v - \frac{1}{2}v'|^2 \right)^{-\frac{Q}{2} + i\lambda} du \, dv \, da \, dX \, ds.$$

Making a change of variables the inner integral becomes

$$\begin{split} & \int\limits_{\omega^{\perp}} \left((a + \frac{1}{4} |X - Y|^2)^2 + (t - s - \frac{1}{2} \langle J_{\omega} X, Y \rangle)^2 + |u|^2 \right)^{-\frac{Q}{2} + i\lambda} \\ & = \left(\int\limits_{\mathbb{R}^{k-1}} (1 + |u|^2)^{-\frac{Q}{2} + i\lambda} du \right) \\ & \times \left((a + \frac{1}{4} |X - Y|^2)^2 + (t - s - \frac{1}{2} \langle J_{\omega} X, Y \rangle)^2 \right)^{-\frac{Q_0}{2} + i\lambda} . \end{split}$$

The integral appearing on the right hand side of the above equation can be evaluated. Indeed,

$$\int_{\mathbb{R}^{k-1}} (1+|u|^2)^{-\frac{Q}{2}+i\lambda} du = c_k \int_0^\infty (1+r^2)^{-\frac{Q}{2}+i\lambda} r^{k-2} dr$$

$$= c_k' \int_0^\infty (1+r)^{-\frac{Q}{2}+i\lambda} r^{\frac{k-1}{2}-1} dr.$$

We have the formula (see [6])

$$\int_{0}^{\infty} (1+s)^{-b} s^{a-1} ds = \frac{\Gamma(a)\Gamma(b-a)}{\Gamma(b)}$$

using which we obtain

$$\int_{\mathbb{R}^{k-1}} (1+|u|^2)^{-\frac{Q}{2}+i\lambda} du = c_k \frac{\Gamma(\frac{k-1}{2})\Gamma(\frac{m+1}{2}-i\lambda)}{\Gamma(\frac{m+k}{2}-i\lambda)}$$

$$= c_k B_{mk}(\lambda).$$

We also note that

$$\left((a+\frac{1}{4}|X-Y|^2)^2+(t-s-\frac{1}{2}\langle J_{\omega}X,Y\rangle)^2\right)^{-\frac{Q_0}{2}+i\lambda}$$

$$=a^{-\frac{Q_0}{2}+i\lambda}\mathcal{P}^0_{\lambda}((X,s,a),(Y,t)) \tag{5.1}$$

and therefore,

$$\int_{\omega^{\perp}} \hat{f}(\lambda, Y, t\omega + u) du = c_k B_{mk}(\lambda) \int_{S_{\omega}} \left(\int_{\omega^{\perp}} f(X, s\omega + v) dv \right) \times a^{-(\frac{k-1}{2})} \mathcal{P}_{\lambda}^{0}((X, s, a), (Y, t)) a^{-Q_0 - 1} da dX ds.$$

Since

$$\tilde{g}_{\omega}(\lambda,Y,t) = \mathcal{P}_{\lambda}^{0}(Y,t)^{-1} \int_{S_{0}} g_{\omega}(X,s,a) \mathcal{P}_{\lambda}^{0}((X,s,a),(Y,t)) a^{-Q_{0}-1} da \ dX \ ds$$

we obtain the proposition.

We are now ready to prove Theorem 1.2. Since we are assuming that $|f(X, Z, a)| \le ch_{\alpha}(X, Z, a)$, Lemma 4.4 gives us the estimate

$$|g_{\omega}(X, s, a)| \le ch_{\alpha}^{0}(X, s, a).$$

Consider now

$$\begin{split} B_{mk}(\lambda)^{-1}Q_{\delta}(\lambda)^{-1} & \int_{N} \hat{f}(\lambda, Y, Z)S_{\delta,j}(Y, Z \cdot \omega)\mathcal{P}_{-\lambda}(Y, Z \cdot \omega)dY dZ \\ & = B_{mk}(\lambda)^{-1}Q_{\delta}(\lambda)^{-1} \int_{H^{m}} \left(\int_{\omega^{\perp}} \hat{f}(\lambda, Y, t\omega + u)du \right) S_{\delta,j}(Y, t)\mathcal{P}_{-\lambda}(Y, t)dY dt. \end{split}$$

In view of Proposition 5.1 we get

$$B_{m,k}(\lambda)^{-1}Q_{\delta}(\lambda)^{-1}\int_{N}\hat{f}(\lambda,Y,Z)S_{\delta,j}(Y,Z\cdot\omega)\mathcal{P}_{-\lambda}(Y,Z\cdot\omega)dY\ dZ$$

$$=Q_{\delta}(\lambda)^{-1}\int_{M}\tilde{g}_{\omega}(\lambda,Y,t)S_{\delta,j}(Y,t)P_{1}^{0}(Y,t)dY\ dt$$

where we have made use of the relation

$$\mathcal{P}^0_{\lambda}(Y,t)\mathcal{P}^0_{-\lambda}(Y,t) = P^0_1(Y,t).$$

The hypothesis on $\hat{f}(\lambda, Y, Z)$ gives the estimate

$$|Q_\delta(\lambda)^{-1}\int\limits_{U^m}\tilde{g}_\omega(\lambda,Y,t)S_{\delta,j}(Y,t)P_1^0(Y,t)dY\,dt|\leq c\;e^{-\beta\lambda^2}.$$

We can now appeal to Theorem 3.1 to conclude that $g_{\omega} = 0$ whenever $\alpha < \beta$. As this is true for all $\omega \in S^{k-1}$ we get f = 0 as desired.

In the case when $\alpha = \beta$ we obtain the equation

$$g_{\omega}(X, s, a) = c(\omega)h_{\alpha}^{0}(X, s, a)$$

which means that

$$\int_{\omega^{\perp}} f(X, s\omega + u, a) du = c(\omega) a^{\frac{k-1}{2}} h_{\alpha}^{0}(X, s, a).$$

Integrating over S_0 we have

$$\begin{split} c(\omega) & \int h_{\alpha}^{0}(X,s,a) a^{-Q_{0}-1} da \ dX \ ds \\ & = \int \left(\int_{\omega^{\perp}} f(X,s\omega + u,a) du \right) a^{\frac{k-1}{2}} a^{-Q-1} da \ dX \ ds \\ & = \int_{S} f(X,Z,a) a^{\frac{k-1}{2}} a^{-Q-1} da \ dX \ dZ. \end{split}$$

This shows that $c(\omega)$ is a constant. Hence

$$f_{\omega}(X, s, a) = c a^{\frac{k-1}{2}} h_{\alpha}^{0}(X, s, a) = c(h_{\alpha})_{\omega}(X, s, a).$$

By the injectivity of the Radon transform we conclude that $f = ch_{\alpha}$. Next we prove Theorem 1.5. We are assuming that

$$\int |\hat{f}(\lambda, Y, Z)|^2 (1 + |Z|^2)^{\gamma} dY \, dZ \le c \, e^{-2\beta \lambda^2}$$

for some $\gamma > \frac{k-1}{2}$. Let g_{ω} be as in Proposition 5.1. We claim that

$$\int_{H^{m}} |\tilde{g}_{\omega}(\lambda, Y, t)|^{2} P_{1}^{0}(Y, t) dY dt \le c(1 + |\lambda|)^{k-1} e^{-2\beta \lambda^{2}}.$$

In order to prove this, let φ be a function on \mathbb{R}^n and consider the L^2 norm of φ_ω on \mathbb{R} . By Minkowski's inequality

$$\begin{split} &\left(\int\limits_{\mathbb{R}}\left|\int\limits_{\omega^{\perp}}\varphi(t\omega+u)du\right|^{2}dt\right)^{\frac{1}{2}}\\ &\leq\int\limits_{\omega^{\perp}}\left(\int\limits_{\mathbb{R}}|\varphi(t\omega+u)|^{2}dt\right)^{\frac{1}{2}}du\\ &\leq\left(\int\limits_{\omega^{\perp}}(1+|u|^{2})^{-\gamma}du\right)^{\frac{1}{2}}\left(\int\limits_{\omega^{\perp}}\left(\int\limits_{\mathbb{R}}|\varphi(t\omega+u)|^{2}dt\right)(1+|u|^{2})^{\gamma}du\right)^{\frac{1}{2}}. \end{split}$$

The first integral on the right hand side of the above inequality is finite provided $\gamma > \frac{n-1}{2}$ and hence

$$\begin{split} & \left(\int\limits_{\mathbb{R}} \left| \int\limits_{\omega^{\perp}} \varphi(t\omega + u) du \right|^{2} dt \right)^{\frac{1}{2}} \\ & \leq c \int\limits_{\mathbb{R}} \int\limits_{\omega^{\perp}} |\varphi(t\omega + u)|^{2} (1 + |u|^{2})^{\gamma} du \ dt \\ & \leq c \int\limits_{\mathbb{R}^{n}} |\varphi(z)|^{2} (1 + |z|^{2})^{\gamma} dz. \end{split}$$

Applying this argument to $\hat{f}(\lambda, Y, Z)$ we get

$$\begin{split} &\int |\int\limits_{\omega^{\perp}} \hat{f}(\lambda,Y,t\omega+u)du|^2 dY \; dt \\ &\leq c \int |\hat{f}(\lambda,Y,Z)|^2 (1+|Z|^2)^{\gamma} dZ \; dY \leq c \; e^{-2\beta\lambda^2}. \end{split}$$

In view of Proposition 5.1 the above inequality gives the estimate

$$\int |\tilde{g}_{\omega}(\lambda, Y, t)|^2 P_1^0(Y, t) dY dt$$

$$\leq c |B_{mk}(\lambda)|^{-2} e^{-2\beta \lambda^2}.$$

Now, recall the definition of $B_{mk}(\lambda)$:

$$B_{mk}(\lambda)^{-1} = \frac{\Gamma(\frac{m+k}{2} - i\lambda)}{\Gamma(\frac{m+1}{2} - i\lambda)\Gamma(\frac{k-1}{2})}.$$

If k is an odd integer, say k = 2d + 1,

$$\frac{\Gamma(\frac{m+k}{2}-i\lambda)}{\Gamma(\frac{m+1}{2}-i\lambda)}=(\frac{m+1}{2}-i\lambda+d-1)\dots(\frac{m+1}{2}-i\lambda)$$

and therefore,

$$|B_{mk}(\lambda)|^{-1} \le c(1+|\lambda|)^{\frac{k-1}{2}}.$$

We can prove the same estimate when k is even by using Stirling's formula for the gamma function. Therefore, we get

$$\left(\int |\tilde{g}_{\omega}(\lambda, Y, t)|^{2} P_{1}^{0}(Y, t) dY dt\right)^{\frac{1}{2}} \leq c(1 + |\lambda|)^{\frac{k-1}{2}} e^{-\beta \lambda^{2}}.$$

This estimate together with $|g_{\omega}(X, t, a)| \le c h_{\alpha}^{0}(X, t, a)$ allows us to apply Theorem 3.2 to conclude that $g_{\omega} = 0$ for $\alpha < \beta$ and $g_{\omega} = c(\omega)h_{\alpha}^{0}$ for $\alpha = \beta$. As before, this proves f = 0 or $f = ch_{\alpha}$ according as $\alpha < \beta$ or $\alpha = \beta$.

Finally, we take up Paley-Wiener theorem. For $x \in S$ we have defined d(x) = d(x, e) to be the geodesic distance between x and e. Similarly, we define $d_0(x)$ for $x \in S_0$. Then it is clear that $f_\omega(X, t, a)$ is supported in $d_0(X, t, a) \leq B$ whenever f(X, Z, a) is supported in $d(X, Z, a) \leq B$. The converse is also true: if $f_\omega(X, t, a)$ is supported in $d_0(X, t, a) \leq B$ for all $\omega \in S^{k-1}$ then f(X, Z, a) supported in $d(X, Z, a) \leq B$. To see this, we use the support theorem for the Radon transform.

Let f be a Schwartz class function on S which satisfies the condition

$$|f(x)| \le c_n e^{-nd(x)}, \quad x \in S$$

for all $n \ge 0$. If r(x) is given by (2.5) we have

$$(1 - r(x)^2)^{-1} = \cosh^2 \frac{1}{2} d(x) \sim e^{d(x)}$$

as $d(x) \to \infty$. Therefore, for fixed X and a

$$(4a)^{-1}\left((1+a+\frac{1}{4}|X|^2)^2+|Z|^2\right)\sim e^{d(x)}$$

which means $|Z| \sim e^{\frac{1}{2}d(x)}$. Therefore, the hypothesis on f shows that $|Z|^n f(X, Z, a)$ is bounded for every $n \geq 0$. Hence Theorem 4.5 is applicable. Thus in order to prove Theorem 1.3 we only need to show that $f_{\omega}(X, t, a)$ is supported in $d_0(X, t, a) \leq B$ for every $\omega \in S^{k-1}$.

In view of Proposition 5.1 we have

$$F_{\delta,j}(\lambda,\omega) = Q_{\delta}(\lambda)^{-1} \int \tilde{g}_{\omega}(\lambda,Y,t) S_{\delta,j}(Y,t) P_1^0(Y,t) dY dt$$

and this is assumed to have an entire extension satisfying the estimate

$$|F_{\delta,j}(\lambda,\omega)| \le c_n (1+|\lambda|)^{-n} e^{B|Im\lambda|}$$
.

As observed in Section 3, $F_{\delta,j}(\lambda,\omega)$ is the Jacobi transform of a spherical harmonic coefficient of g_{ω} . Therefore, we can appeal to the Paley-Wiener theorem for Jacobi transforms proved by Koornwinder [16] to conclude that all the spherical harmonic coefficients of g_{ω} , and hence g_{ω} itself, vanish outside $d_0(X,t,a) \leq B$. Thus, f_{ω} is supported in $d_0(X,t,a) \leq B$ and by the previous remark f is supported in $d(X,Z,a) \leq B$ proving Theorem 1.3.

References

- Anker, J-P., Damek, E., Yacoub, C.: Spherical analysis on harmonic AN groups. Ann. Scoula Norm. Sup. Pisa 23, 643–679 (1996)
- Astengo, F., Camporesi, R., Di Blasio, B.: The Helgason Fourier transform on a class of nonsymmetric harmonic spaces. Bull. Aust. Math. Soc. 55, 405–424 (1997)
- Astengo, F., Cowling, M., Di Blasio, B., Sundari, M.: Hardy's uncertainty principle on some Lie groups. J. London Math. Soc. 62, 461–472 (2000)
- Astengo, F., Di Blasio, B.: A Paley-Wiener theorem on NA harmonic spaces. Colloq. Math. 80, 211–233 (1999)
- Cowling, M., Dooley, A.H., Koranyi, A., Ricci, F.: An approach to symmetric spaces of rank one via groups of Heisenberg type. J. Geom. Anal. 8, 199–237 (1998)
- Cowling, M., Haagerup, U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96, 507

 –549 (1989)
- Damek, E.: A Poisson kernel on Heisenberg type nilpotent groups. Colloq. Math. 53, 239–247 (1987)
- Damek, E., Ricci, F.: Harmonic analysis on solvable extensions of H-type groups.
 J. Geom. Anal. 2, 213–248 (1992)
- Di Blasio, B.: Positive definite spherical functions on harmonic NA spaces. Boll. Unione Mat. Ital. 11, 759–767 (1997)
- Folland, G.: Introduction to partial differential equations. Princeton Univ. press, Princeton (1995)
- Hardy, G.H.: A theorem concerning Fourier transforms. J. London Math. Soc. 8, 227– 231 (1933)
- Helgason, S.: The Radon transform. Progr. Math. Vol. 5, Birkhauser (Boston), 1980
- Helgason, S.: Geometric analysis on symmetric spaces, Math. Surveys and monographs. Amer. Math. Soc. 39, (1994)
- Johnson, K.D., Wallach, N.: Composition series and intertwining operators for the spherical principal series I. Trans. Amer. Math. Soc. 229, 137–174 (1977)

 Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15, 35–42 (1983)

- Koornwinder, T.H.: A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, 145–159 (1975)
- Narayanan, E. K., Ray, S.K.: The heat kernel and Hardy's theoremon symmetric spaces of noncompact type. Proc. Ind. Acad. Sci. 112, 321–330 (2002)
- Ricci, F.: The spherical transform on harmonic extensions of H-type groups. Rend. Sem. Mat. Univ. Politec. Torino 50, 381–392 (1992)
- Sitaram, A., Sundari, M., Thangavelu, S.: Uncertainty principles on certain Lie groups. Proc. Ind. Acad. Sci. 105, 135–151 (1995)
- Thangavelu, S.: Hardy's theorem for the Helgason Fourier transform on rank one symmetric spaces. Colloq. Math. 94, 263–280 (2002)
- Thangavelu, S.: On theorems of Hardy, Gelfand-Shilov and Beurling for semisimple Lie groups. To appear in Publications of RIMS Preprint 2002