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Abstract

The Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) is a population-based epidemio-
logic study carried out in Southern Wisconsin during the eighties of the last century. The resulting data
were analyzed by different statisticians and ophthalmologists during the last two decades. Most of the
analyses were carried out on the baseline data, although there were two follow-up studies on the same
population. In this present paper we provide a Bayesian analysis of the first follow-up data which were
taken four years after the baseline study. Our Bayesian analysis provides estimates of the associated
covariate effects. Choice of the best model in terms of the covariate inclusion is also done. The baseline
data was used to set the prior for the parameters. Extensive numerical computations illustrate our present
methodology.

Some Key Words and Phrases: bivariate ordinal data; latent variable; global odds ratio;
bias-variance tradeoff; sensitivity analysis; Bayesian model selection.

AMS 2000 subject classification: Primary 62J12; Secondary 62F15, 62-07.





1 Introduction

In different studies related to biomedical and social sciences, bivariate or multivariate ordinal data is a common out-
come. Ordinal scales for measurement are often used in the absence of well defined non-invasive direct measurements.
The response of each component is measured in an ordinal scale, for example, mild, moderate, severe, etc. (cf. Ash-
ford [1]; Cox [2]; Macullagh [3] and Snell [4]). Eversince Dale [5] proposed the analysis of bivariate ordinal categorical
data, a considerable studies have been done in this fascinating research area in statistics to develop a flexible model
which describes the relationship between bivariate ordered categorical responses and the various available covariates.

Historically such a study was important to psychometricians. For example, Arminger and Kusters [6] assumed
that each observed ordinal categorical outcome is a manifestation of an underlying continuous variable that is linearly
related to a normal latent trait, and the set of latent traits is assumed to be multivariate normal with expectation
potentially dependent on covariates. In different situations dealing with pain, tenderness, post-operative conditions,
(multivariate) ordinal data structure are quite common. Perhaps the most natural example of bivariate ordinal data
structure is the retinopathy levels of two eyes. In the present paper we discuss such a much used and much cited
retinopathy study where measurements on both eyes are in an ordered categorical fashion with some person specific
(which are demographic, clinical and laboratory information) and some eye specific (which are clinical and laboratory
information) covariates. The study is called the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR).

In a population-based study in Southern Wisconsin between 1980 and 1982, a total of 996 insulin-taking, younger
onset diabetic persons were examined using standard protocols to determine the prevalence and severity of diabetic
retinopathy and associated risk variables. The population of the study consisted of a probability sample selected
from 10135 diabetic persons who received primary care in an 11-county area in southern Wisconsin from 1979 to
1980. A detailed description of the population is given by Klein et al. [7]. Of the younger-onset persons (less than
30 years of age), 996 participated in the baseline examination (1980 to 1982). The baseline and the two follow-up
examinations (after 4 and 10 years) were performed in a mobile examination van in or near the city where the
participants lived. The ocular and physical examinations included taking stereoscopic color fundus photographs of
seven standard fields. The basic goal of the study (cf. Klein et al. [8]) was to find the associated risk factors which
are important in planning a well-coordinated approach to the public health problem posed by the complications of
diabetes (cf. Hamman [9]; Rand [10]). Identifying the patients who may be at high risk of severe retinopathy is
important in advising ophthalmologic care. Such data and the related analysis are also helpful in planning future
studies such as controlled clinical trials of treatment of diabetes and diabetic retinopathy (cf. Rand, [10]; Palmberg
et al. [11]). There were 4-year and 10-year follow-up examinations (cf. Klein et al. [12-[13]). In this present paper,
we analyze the 4-year follow-up data only. But we use the baseline data to fix the priors for different parameters in
our Bayesian study. It is, of course, an interesting task to look at the 10-year follow-up data in this connection. But
we could not access that raw data.

In the present paper our objective is to look into the 4-year follow-up data of the well known WESDR study and
analyze the dataset in a Bayesian view point using the concept of underlying latent continuous variable, in some
sense. In Section 2, we describe the nature of the data available from the WESDR experiment and provide a brief
review on some of the past analyses of this dataset available in statistical and medical literature. In Section 3, we
provide our model and the proposed Bayesian technique of analysis of such a data. In Section 4, the problem of
model selection in terms of inclusion of covariates is discussed. In Section 5, the detailed computational results are
given and discussed. The results are then compared with some of the earlier analyses. Finally Section 6 ends with a
discussion.

2 A Review

In the first part of this section we discuss the WESDR data structure and in the subsequent part we make a brief
review of the available literature.

The retinopathy scale (RS) provided in the dataset is a more current one than the one used in some earlier works.
Both the right and left eye retinopathy severity levels are recorded as two components of the bivariate response.
Possible values are 10, 21, 31, 37, 43, 47, 53, 60, 61, 65, 71, 75, 85 corresponding to increasing levels of severity
of retinopathy within an eye. A commonly used grouping is 10, 21-37, 43-53, and 60-85 which corresponds to no
retinopathy, mild nonproliferative retinopathy, moderate to severe nonproliferative retinopathy, and proliferative
retinopathy, respectively. Although such a grouping is used to reduce the computational burden, in this present
paper we do not consider this grouping, instead we consider the original 13 ordered values.

Three eye-specific covariates are recorded. These are right and left eye macular edema (ME) (present/absent),
right and left eye refractive error (RE) in diopters (the values can be negative or positive, negative values represent
myopia (nearsightedness), and positive values represent hyperopia (farsightedness)), right and left eye intraocular
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pressure (IOP) in mmHg.
In addition 8 person-specific covariates are recorded. The first one is the duration of diabetes (DuD) in years. The

second one is glycosylated hemoglobin (GH) in percent, which is a measure of control of blood sugar. Lower values
are considered better. Systolic and diastolic blood pressures (SBP & DBP) are measured in mmHg. Body mass
index (BMI) in kilograms per meter squared, using weight and height, and pulse rate (PR) in beats per 30 seconds
are also observed. Further urine protein (UP) (present/absent), doses of insulin (DI) per day are also recorded.

A lot of statisticians looked at the analysis of the WESDR data, primarily because it is a nice real life dataset of
bivariate ordinal structure with a number of covariates, on a large number of individuals. But, unfortunately most
of the available analyses were done using the baseline data only, and only a few papers dealt with the follow-up
datasets.

Some of the early analyses were done by Klein et al. [14] and by Klein et al. [15]. Klein et al. [15] studied
the scenario with a concatenated score that incorporates data from the severity levels of both eyes into one score
for a person. Williamson et al. [16] considered the generalized estimating equations approach as an alternative to
computationally expensive likelihood methods of Dale [5] and Molenberghs and Lessafre [17]. They considered 720
subjects of the WESDR dataset with complete response and covariate data, and fitted cumulative probit margins
and a global odds ratio association model. While analyzing the WESDR data, Kim [18] extended the concept of a
continuous normally distributed latent variable to the bivariate set up. He obtained the maximum likelihood estima-
tors of the underlying parameters including the typically unknown cut off points of the latent variables employing
Newton-Raphson iteration method. Williamson and Kim [19] considered the bivariate latent variable regression
model and modeled the dependency between the fellow eyes with the global odds ratio, where no specific choice of
underlying latent distribution is needed except its continuity, and one assumes no specific structure of the correlation.
Recently Williamson et al. [20] discussed the applicability of their computer program GEEGOR (generalized esti-
mating equation using global odds ratio) through the WESDR dataset once again. Das and Sutradhar [21] developed
an approach to model the association between the bivariate responses by a Pearson type correlation. Biswas and Das
[22] considered a model using normally distributed latent variables similar to that of Kim [18], but the analysis has
been carried out in the Bayesian paradigm. The merit of the approach of Biswas and Das [22] is that through the
well known Gibbs sampler one may easily arrive at a consistent solution of the underlying regression parameter and
may draw inference based on that. Note that all the above mentioned works were done using the baseline data only.

As mentioned earlier, not much work has been done with the follow-up data. Wahba and her colleagues ([23]-
[31]) have done some works in this direction. Primarily they looked at the disease progression and the role of
different covariates on it. Smoothing spline ANOVA (SS-ANOVA) models are endowed with some useful features
like adaptively controlling the complexity or degrees of freedom of the model (sometimes called the bias-variance
tradeoff) and for comparing different candidate models in the same or related families of models. Wahba et al.
[26] worked on case for exponential families and demonstrated its usefulness by analyzing data from the WESDR.
They built an SS-ANOVA model to estimate the risk of progression of diabetic retinopathy, an important cause of
blindness, at follow-up, given values of the predictor variables GH, DuD, BMI and the age at diagnosis at baseline,
and the response (progression of retinopathy or not) at follow-up. Then Wahba et al. [25] carried out their analysis
on a subgroup of the younger onset population, consisting of 669 subjects with no or nonproliferative retinopathy.
Some exploratory GLIM modeling using the SAS procedure LOGISTIC [SAS Institute [32]] were carried out and
after some exploratory considerations they took the model. Bayesian confidence intervals were also obtained. See
also Wahba et al. [26] and Wang et al. [27] in this connection.

3 Methodology

Let yLi and yRi denote the bivariate ordered categorical responses for the ith individual corresponding to left and
right eye respectively. Note that, yLi, yRi ∈ {10, 21, 31, 37, 43, 47, 53, 60, 61, 65, 71, 75, 85}. Let yL and yR be the
vectors combining yLi’s and yRi’s for all the individuals. In order to assume normality of the error terms, we add
zLi and zRi to yLi and yRi, where (zLi, zRi)T ∼ N2(0, σ2

ZIρ) with Iρ is the 2 × 2 correlation matrix with unknown
correlation ρ, and σ2

z is such that yLi ± 3σz will not change categories. Let zL (zR) be the vector combining all the
zLi’s (zRi’s).

Let uL = yL + zL and uR = yR + zR and these uL and uR are the true values and we observe yL and yR in place
of them. We model uL and uR as follows:

uL = X0β0 + X1β1 + εL,

uR = X0β0 + X2β2 + εR,

where εL ∼ Nn(0, σ2I) and εR ∼ Nn(0, σ2I), independently of each other, if there are n individuals. Here β0 is the
vector of parameters associated with the covariates common to both uL and uR, and X0 is the related design matrix;
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β1 is the covariate effects for the left eye only and X1 is the associated design matrix; and β2 and X2 are the same
for the right eye.

Write

u =
(

uL

uR

)
, X =

(
X0 X1 0
X0 0 X2

)
,

θ = (βT
0 , βT

1 , βT
2 )T , ε = (εT

L, εT
R)T .

Then we represent
u = Xθ + ε.

If the dependence on z = (zT
L , zT

R)T has to be made explicit, we will write

u(z) =
(

yL + zL

yR + zR

)
.

Now we need to set some suitable prior for the parameters under consideration. Suppose θ is a p-component
vector. We consider

θ ∼ Np

(
θ0,

σ2

κ
V

)
, (3.1)

where the hyperparameters θ0 and κ (κ ≤ 1) are assumed to be known and σ2 is unknown. It is assumed that the prior
of σ2 is an inverted gamma with parameters α/2 and γ/2. Note that γ = 0 would lead to standard noninformative
prior on σ2. The prior of ρ is chosen to be an uniform density on the interval (−1, 1). We use the baseline data in
this context to estimate θ0. To denote the baseline data we just put “*” to yL, yR and X. Thus θ0 is estimated using
y∗L, y∗R and X∗ as follows:

θ̂0 = (X∗T X∗)−1X∗T y∗,

where y∗ = (y∗TL , y∗TR )T . We also need to do a sensitivity analysis on κ (see Section 5).
Using standard technique, after some routine steps, it can be shown that the posterior of θ, σ2 and ρ are

θ|u, σ2, ρ ∼ Np((κV −1 + XT W−1X)−1(κV −1θ0 + XT W−1XθLS(ρ)),
σ2(κV −1 + XT W−1X)−1),

σ2|ρ, u ∼ I|G
(

n− 2
2

, rT W−1r + (θLS(ρ)− θ0)T [κ−1V + (XT W−1X)−1]−1

× (θLS(ρ)− θ0)) ,

π3(ρ|u) ∝ 1
|D − ρE + (1− ρ2)κV −1|1/2

×
(

(1− ρ2)
rT r − 2ρt + (1− ρ2)[r + h(ρ)]

)α+n
2

, (3.2)

where

r = u−XθLS(ρ) = (rT
L , rT

R)T ,

θLS(ρ) = (XT W−1X)−1XT W−1u,

W =
(

I ρI
ρI I

)
,

D = 2XT
0 X0 + XT

1 X1 + XT
2 X2,

E = 2XT
0 X0 + XT

1 X2 + XT
2 X1,

t = rT
LrR,

h(ρ) = (θLS(ρ)− θ0)T (κ−1V + (1− ρ2)(D − ρE)−1)−1(θLS(ρ)− θ0).

Hence, given a fixed value of ρ, we can estimate θ by

θ̂(ρ) = (κV −1 + XT W−1X)−1(κV −1θ0 + XT W−1XθLS(ρ)).
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Note that θ̂(ρ) does not depend on σ2. Thus, even if σ2 is unknown, we will obtain the same estimator. However,
θ̂(ρ) depends on ρ. Under the squared error loss, the estimator of θ is given by

θ̂ = Eπ3(ρ|u)[θ̂(ρ)].

This expectation can be computed using Monte Carlo integration technique. Since u depend on z, which is random,
we use EM algorithm (see Dempster et al. [33]) to find θ̂ as

θ̂ = θ0 + Eπ3(ρ|u)[(κV −1 + XT W−1X)−1XT W−1](ū−Xθ0), (3.3)

where

ū =
1
m

m∑
i=1

u(zi) = y +
1
m

∑
i=1

mzi = y + z̄.

4 Model Selection

In this section we carry out Bayesian model selection in the term of keeping only the relevant covariates in the model
and analysis. Note that, although a lot of covariates were collected in the WESDR study, the inclusion of covariates
in the study models in different studies were mostly done in an ad hoc manner without much statistical justification.
Only Wahba [25] have done some studies for the model selection and variable inclusion. Here our object is to choose
the “best” model given the data in hand.

Let θ = (θT
(1), θ

T
(2))

T , and we are interested to test

H0 : θ(2) = 0 against H1 : θ(2) 6= 0,

to decide whether we would include the covariates corresponding to θ(2) in the model or not. It is a well-known result
that if

V =
(

V1

V2

)
∼ Np

((
µ1

µ2

)
,

(
A B

BT C

))
,

with V1 is of p1 dimension, then

V1|V2 ∼ Np1(µ1 + BC−1[V2 − µ2], A−BC−1BT ).

Hence, if the above H0 is true, then

θLS(ρ) =
(

θLS(1)(ρ)
θLS(2)(ρ)

)
∼ Np

((
θ(1)

θ(2) = 0

)
, σ2(XT W−1X)−1

)
.

If we represent (XT W−1X)−1 as

(XT W−1X)−1 =
(

A B
BT C

)
,

we have
θLS(1)(ρ)|θLS(2)(ρ), ρ, σ2 ∼ Np1(θ(1) + BC−1θLS(2)(ρ), σ2F ),

where F = A−BC−1BT . One need to take expectation with respect to σ2 and ρ, and that can be tackled by Monte
Carlo integration technique. Using standard technique, if θ(1) ∼ Np1

(
θ0(1),

σ2

κ V(1)

)
, the distribution of θLS(1) given

σ2 and ρ is
θLS(1)(ρ)|σ2, ρ ∼ Np1(θ0(1) + BC−1θLS(2)(ρ), σ2G),

where G = F−1 − F−1(κV −1
(1) + F−1)−1F−1.

Let
m0(u) = Eπ3(ρ|u)[m0,1(θLS(1)(ρ)|θLS(2)(ρ)).m0,2(θLS(2)(ρ))]

be the marginal density of u under the null hypothesis. Then

m0(u) = Eπ3(ρ|u)

[
1

(2πσ2)p/2|G|1/2|C|1/2
exp

{
− 1

2σ2
[θT

LS(2)(ρ)C
−1θLS(2)(ρ)

+(θLS(1)(ρ)− θ0(1) −BC−1θLS(2)(ρ))T G−1 (4.1)

×(θLS(1)(ρ)− θ0(1) −BC−1θLS(2)(ρ))]
}]

.
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Write the marginal of u under the alternative hypothesis as

m1(u) = Eπ3(ρ|u)

[
|XT W−1X|1/2

(2πσ2)r/2

× exp
{
− 1

2σ2
(θLS(ρ)− θ0)T XT W−1X(θLS(ρ)− θ0)

}]
.

Then we accept H0 if m0(u)/m1(u) > 1 and accept H1 otherwise.
In our present work, we have tried several models starting from one component equal to zero to all but one equal

to zero. To implement we ordered the standardized Bayesian estimates in the following way. Writing Q(i) as the ith
diagonal element of the square matrix Q, we write

µi =
|θ̂i|

Eπ3(ρ|u)[σ2(κV −1 + XT W−1X)−1](i,i)
,

and suppose µ(1) ≤ µ(2) ≤ · · · ≤ µ(p) be the ordered arrangement. The different possible models are then Ml : µ(1) =
· · · = µ(l) = 0 for l = 1, 2, · · · , p−1. If ml denotes the marginal probability of Ml, and if Bl = ml/m0, with m0 being
the marginal probability of the full model, then we accept Ml∗ as the correct model for our purpose if

Bl∗ = max
0≤l≤p−1

Bl.

Note that here B0 = 1.

5 Numerical Calculations

In this section, the data for the first follow-up are analyzed. The data set contained information described in Section
2 on 629 subjects.

It is to be noted that with the chosen a priori model, only numerical integration with respect to ρ is needed. In
order to evaluate equation (3), the Monte Carlo method with importance sampling is used. The importance sampling
function used to generate the ρ values is

g(ρ) ∝ (1− ρ2)(α+n)/2,

and 5000 iterations were made. For each value of ρ, the z is computed using 1000 iterations. In practice, it is
generated from z ∼ N2(0, σ2

ZIρ/1000).
In Table 1, we present the posteriors corresponding to the full model (i.e. the model with all the covariates) for

several values of κ (cf. equation (1)). The posterior standard deviation are given in parenthesis. Note that RSRBR
(RSRBL) correspond to the retinopathy scale of the right eye from the baseline study while RSLBR (RSLBL)
correspond to the one of the left eye. These covariates were used in both X1 and X2 in order to measure their
influence separately on the retinophaty scale of each eye. From Table 1, it can be seen that the coefficient of RSRBR
(RSRBL) is similar to the one of RSLBL (RSLBR). Hence it can be concluded that the retinophaty scale of the right
eye in baseline study has a similar effect of the retinopathy scale of the right eye in the current study than the RS of
the left eye in both studies. It can also be seen from this table that the estimated values for the covariates are not
influenced by the choice of κ. This is due to the fact that the large dataset is quite large. For the full model, the
correlation coefficient between the observation on both eyes and the predicted values is 0.786 for all values of κ.

In Table 2, the estimated values of the covariates for the “best” model are given. The values of the correlation
between the observations and the predicted values are also given. The“best”model is defined as the model maximizing
the marginal probability of the observations. Since it is quite difficult to compare all models, the models tested are
obtained in the following way:

1. Compute the posterior mean and variance for all covariate in the model;

2. Compute the ratio of the posterior mean over the posterior standard deviation;

3. Delete the covariate with the smallest ratio from the model and repeat steps 1 to 3.

Applying this algorithm we obtain the numerical figures in Table 2. From this table, it can be seen that the choice of
the best model depends heavily on the choice of κ. However, the covariates RSRBL, RSLBL and GH are included in
almost all model. Based on the results obtained from several models, we decided to fit our model with the covariates
RSRBL, RSLBL, GH and a constant term. This model is adjusted in Table 3 for several values of κ. From this table,
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Table 1: Results for the full model.

Parameter κ = 1 κ = 0.75 κ = 0.5 κ = 0.25 κ = 0.1
Constant -19.280 -19.664 -20.100 -20.450 -20.700

(6.76e-3) (6.06e-3) (3.30e-3) (5.28e-4) (6.67e-3)
Right ME 11.777 11.786 11.800 11.791 11.800

(7.61e-3) (1.00e-2) (2.88e-3) (1.11e-3) (3.26e-3)
Right RE -0.172 -0.173 -0.172 -0.174 -0.174

(1.42e-4) (4.53e-4) (7.71e-5) (1.53e-5) (1.43e-4)
Right IOP -0.006 -0.003 0.001 0.003 0.004

(1.23e-4) (3.27e04) (1.08e-4) (1.95e-5) (8.63e-5)
RSRBR 0.366 0.366 0.366 0.366 0.366

(1.03e-4) (1.33e-4) (1.32e-5) (4.93e-6) (3.86e-5)
RSLBR 0.278 0.278 0.278 0.277 0.277

(2.93e-5) (2.09e-4) (2.01e-5) (3.89e-6) (8.30e-5)
Left ME 13.399 13.399 13.300 13.403 13.500

(2.10e-2) 2.20e-2) (1.10e-2) (3.47e-3) (2.13e-2)
Left RE 0.126 0.125 0.127 0.124 0.123

(3.96e-4) (2.17e-4) (2.05e-4) (3.66e-5) (3.62e-4)
Left IOP -0.013 -0.011 -0.007 -0.004 -0.003

(1.6e-4) (3.87e-4) (8.76e-5) (1.37e-5) (1.43e-4)
RSRBL 0.293 0.292 0.293 0.292 0.292

(1.79e-4) (1.21e-4) (2.73e-5) (1.11e-5) (1.17e-4)
RSLBL 0.361 0.361 0.360 0.360 0.360

(3.29e-5) (1.46e-4) (3.34e-5) (9.46e-6) (5.07e-5)
DuD 0.156 0.157 0.158 0.159 0.159

(1.51e-4) (8.91e-5) (2.64e-5) (5.63e-6) (7.72e-5)
GH 0.942 0.947 0.956 0.962 0.966

(3.15e-4) (5.45e-4) (1.76e-4) (3.22e-5) (2.37e-4)
SBP 0.006 0.006 0.006 0.007 0.007

(4.75e-5) (9.93e-5) (6.38e-6) (1.97e-6) (4.52e-5)
DBP 0.123 0.124 0.125 0.125 0.126

(4.68e-5) (2.45e-5) (8.80e-6) (2.81e-6) (5.74e-5)
BMI 0.340 0.342 0.344 0.347 0.349

(1.18e-4) (2.47e-4) (3.79e-5) (5.51e-6) (1.62e-4)
PR 0.061 0.062 0.063 0.064 0.065

(8.99e-5) (1.29e-4) (3.11e-5) (8.83e-6) (5.02e-5)
UP -0.268 -0.290 -0.306 -0.327 -0.345

(1.89e-3) (1.64e-3) (4.16e-4) (1.67e-4) (8.62e-4)
DI -0.004 0.017 0.041 0.063 0.078

(2.64e-4) (1.47e-3) (2.70e-4) (3.29e-5) (6.01e-4)

Table 2: Results for the best model chosen using the maximum marginal probability.

Parameter κ = 1 κ = 0.75 κ = 0.5 κ = 0.25 κ = 0.1
Constant — — — — 2.165

(2.45e-3)
RSRBR 0.732 — — — —

(1.72e-5)
RSLBR 0.377 — — — —

(3.04e-4)
RSRBL — — 1.090 1.090 0.741

(5.48e-5) (1.37e-5) (6.39-5)
RSLBL 0.372 — 1.100 1.100 0.746

(3.38e-4) (5.01e-5) (3.32e-5) (5.97e-5)
GH — 2.890 — — 0.977

(1.04e-5) (2.17e-4)
DBP 0.156 — — — —

(1.85e-5)
Correlation 0.734 0.098 0.712 0.712 0.721
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Table 3: Results for the chosen model.

Parameter κ = 1 κ = 0.75 κ = 0.5 κ = 0.25 κ = 0.1
Constant 1.873 1.963 2.023 2.115 2.166

(2.74e-3) (2.73e-3) (6.18e-3) (1.72e-3) (1.89e-3)
RSRBL 0.742 0.742 0.742 0.742 0.741

(5.58e-5) (4.65e-5) (1.22e-7) (1.45e-5) (9.01e-6)
RSLBL 0.747 0.747 0.747 0.747 0.746

(5.02e-5) (5.41e-5) (1.30e-7) (1.62e-5) (1.37e-5)
GH 1.003 0.994 0.989 0.981 0.977

(1.46e-4) (2.27e-4) (1.66e-6) (1.19e-4) (2.60e-4)

it can be seen that the constant term is a decreasing function of κ, while the coefficient of GH is an increasing one.
The estimated values of the coefficients of RSRBL and RSLBL do not depend on the choice of κ. The correlation
between the observations and the predicted values is constant as a function of κ and is equal to 0.721.

In Figure 1, we provide the boxplot of the simulated values for the coefficient parameters of the covariates in the
model fitted in Table 3 when κ = 0.1. It can be seen that, even if the boxplots have several outlying values, the
simulated covariates are quite stable.

6 Concluding remarks

The present paper is an attempt to analyze bivariate ordinal data using a general linear model in a Bayesian
framework. The model proposed in this paper is very general and flexible. In fact, the prior used to model the
covariates can be made as noninformative (or informative) by choosing suitable values for the hyperparameters κ, α
and γ. The observations from the baseline study was used to elicit the prior mean θ0 of the covariates.

In Section 5, noninformative prior for σ2 is used (α = 1 and γ = 0), sensitivity analysis for the choice of κ is
conducted in this section. From this study, it can be seen that κ does not have a significant influence the resulting
estimates. The model selection approach provides an opportunity to deal with the significant covariates only. It
is observed that although a lot of covariates were recorded, only a few of them have significant contribution to the
retinopathy levels. Note that any other suitable standard criterion like the Bayes information criteria (BIC) could
be used for model selection.

In the perspective of the WESDR study it could be of interest to analyze the 10 year follow-up data also by a
similar technique. But we could not access the data in the form of raw data.
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