Construction of Symmetric Balanced Squares with
Blocksize More than One

PALASH SARKAR* paitlashiaisicalac.in
Applied Statitics Unit, Indian Statisticad Institwte, 203, 8.7, Road, Kolkata 70008, India

FALUL ). SCHELLEMNBERG pischellie math.uwaterloo ca
Department af Combinatorics and Optimization, University of Waterlao, 200 University Avenue West,
Waterlon, Ontario, Canada N2L 361

Communicated by: P, Wild
Received Judy 16, 201 Revised April 5, X002, Accepied May 21, 20602

Abstract. In this paper we study a generalization of symmetric latin squares. A symmetric balanced square
of order v side s and blockstze & i1s an 5 = 5 symmetri array of f<lement subsets of {12, ... v} such that

every element ocours in [ks/v] or [&s/v] cells of each row and column.
every element oceurs in [k (v or [ke7/¢] cells of the array.

Depending on the values 5, & and v the problem naturally divides into three subproblems: (1) v = ks (2)
g v < ke {3 v £ 5 We completely solve the hirst problem and we recursively reduce the third problem Lo
the first two. For 5 < 4 we provide direct constructions For the second problem. Moreover, we provide a
seneral constructon method For the second problem ublizing flows in a network, We have been abk to
show the correctness of this construction for & < 3. For & > 4, the problem remains open.

Kevwords: symmetric Latin square, combinatorial design, symmetric balanced square, min cut-max Qow
theorem
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I. Introduction
By a symmetric balanced square with blocksize &, order v and side s we mean an s x5
array in which every cell contains a subset of cardinality &k from a set of elements I of

cardinality v satisfying the following properties:

. Every element occurs in |ks/v| or [ks/v] cells of each row or column.

I

. Every element occurs in |ks*/v| or [ks*/v] cells of the array.

3. The array is symmetric.

*The work was done while the author was with the Department of Combinatorics and Optimization,
University of Waterloo,
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Note that it is inherent in our definition that k < v. Let, m = |ks/v] (ie., the integer
part of ks/v) and n = |ks* /v|. We shall use the notation SBSy(s, v) to denote such a
symmetric balanced square. Observe that an S 85(s, 5) i1sa symmetric Latin square of
order 5. We will use the notation S85(s.v) to denote an S85;(s,v) when k= 1.
Dutta and Roy [1] have completely resolved the existence problem when k= 1.
{The case k=1 15 also a special case of Theorems 25 and 55, which we prove
later.)

Clearly there is an S85;(1, v) for every positive integer k& and every integer v = k.
Suppose A is an §BS; (s, v). Dividing ks* by v, we obtain unique nonnegative integers
n and r such that

k' =wm+r, whereO0=r< v,
or equivalently,
ks* =r(n+1) + (v —r)(n).

This implies that 4 has relements of frequency n + | and v — r elements of frequency
n Let d, ¢, 6 and & be integers such that

kst = r(n+1) + (v — 1) (n) = 8(d) +2(e), W

where ¢ is an even integer, {d,e} = {n,n+1}, and {d.&} = {r,v —r}. Then A has &
elements of odd frequency o and ¢ elements of even frequency ¢. An element of odd
frequency d is defined to be an odd element, and an element of even frequency ¢ is
defined to be an even element. Since A4 is symmetric, every odd element is contained
in an odd number of cells of the main diagonal. Thus, the number of odd elements
cannot exceed ky; that is, 6 < ky. This observation is recorded in the following
lemma.

LemMMa 1. A necessary condition for the exivtence of an SBS; (s, v), where k& < v, iy
that the number of odd frequency elements in the arvay i at most ks,

LEMMA 20 There iv an SBSp(s,v) i and endy if there v an SBS,_ (s, v).

Proaf.  Let A be an SBSg(s, v). Il we replace the k-subset 4, ; in row { and column j
of A, for 1 <4,j < s, by its complement, the result is an SBS, (s, v). [ |

Lemmas 1 and 2 motivate the following definition.
Definition 3. We say that an SBS;(s,v) is feasible if & < v/2 and there exist
nonnegative integers o, e, d, & satisfying equation (1), such that  1s odd, {d,e} =

{non+ 1} {d.e}={r.v—r}and 6 < ks

Remark 1. In light of Lemma 2, we assume throughout this paper that k < |v/2].
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The following result i1s an immediate application of Lemma 1.
Lemma d I < s, 1 <k < vand SBS;(s,v) iy feasible, then v < ks{s + 17/2.

Proof.  Suppose S85;(s.v) is feasible. We use Definition 3 to show that this
necessarily implies v < ks(s+ 1)/2. Let the parameters r.d and n be as defined in
Definition 3. By the feasibility condition, we must have 8 < k.

If d=r thenniseven and ke —wn =r < ks Since s > 1, 0 < k? — ks < vn and
hence n = 0. Since n is even,

This gives v < ks?/2 < ks(s +1)/2.
If d=v—r, then n is odd and v(n + 1) — ks* = v —r =& < ks. Since » is odd,
n= 1 and

W< (n4 1) < ks® + ks = ks{s + 1).

Therefore, v < ks(s + 1)/2.
This completes the proof. [ |

It is possible o prove Lemma 4 directly by counting the maximum number of
distinct elements possible in a symmetric s %y square where each cell can
accommaodate at most & elements. However, the proof we have provided shows
that Lemma 4 is dependent on Lemma 1. Thus Lemma 1 1s an independent necessary
condition and along with Lemma 2 provides the definition of feasibility for an
SBSp(s, v). The rest of the paper is devoted to providing evidence that it is possible to
construct an SBS; (s, v) whenever it is feasible.

2. Basic Results

LemmA 5. For any positive integer s and for 1 =01 or 2, there exists an

SB8 (s, 5 + ) whenever the necessary condition of Lemma T iy satisfied.

CONSTRUCTION 6. Suppose there exists an SBSi(s,v) and an SB5; (s, 1) such that
ks <2 v By < w and every element occurs with frequency n — 1 or n. Then there exists an

SBS s, v+ u).

Proof.  Let 4 be an 585, (s, v) and let 8 be an SBS;(s, u). Without loss of generality,
we may assume the elements of 4 are distinet from those of 8. Since ks < v and
fy = u, any element occurs at most once in any line of 4 or B. Since each element
occurs with frequency n — 1 or n, it follows that the superposition of 4 and B is an
SBS s, v+ ). | |
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CONSTRUCTION 7. If there is an B85, v}, then, for any positive integer ¢, there iy
an SBS; (s ve).

Proof. Let 4 be an §85;(s,v). For | <i < ¢, let 4; be the SBS; (s, v) obtained by
replacing each element a in A by the ordered pair (o, {). Let B be the array obtained
by superimposing 4, 4s, ..., 4, Then B is an SBS; (s, vf). | ]

LEMMA B, For positive integers &, s and ¢, 1 < ¢ <k, there exivis an SBS(s, sk + ).

Proaf.  Since there exists an SBS{s.s+ 1), there exists an SBS (v, &y +¢). Since
there exists an SBS5(s.s), there exists an SBS,_ (s, (k— t)y). Since every
elerment of an §85(s, 5) has frequency v and every element of an S85(s, 5+ 1) has
frequency & — 1 or &, it follows that every element of the SBS. (s, s+ ¢) and the
SBS;_ (s, (k — £)5) has frequency s — 1 or 5. Therefore, by Construction 6 there is
an S8 (s, ky+ 1. [ |

We now study the relationship among the parameters 5, & and v with respect to the
feasibility conditions for the existence of S85; (s, v).

LEMMA 9. [ 8BS, (5. v) i feasible and 2k < v, then SBSag(s,v) is alvo feasible.

Proof.  We show that the feasibility condition on the number of elements with odd
frequency is satisfied. Write

ks =nv+r=rin+1)+(v—rn (2
and

2ks® = 2nv+ 2r. (3)
Mow two cases can occur.

Case 1. 2r < v: There are two subcases to consider. If s is odd, then the number of
elements of odd frequency in (2) is v — r. Since SBS; (s, v) is feasible, we must have
v—r < ks. Since 2r < v, the number of elements with odd frequency in (3) 15 2r. So it
is enough to show that 2r < 2Ly, Since 2r < v, we have r < v —r < kv and hence
2r = 2ks.

If 1 is even, then the number of elements of odd frequency in (2) is r and by the
feasibility condition of S85;(s.v) we must have r < ks, Again since 2r < v, the
number of elements with odd frequency in (3) is 2r < 2sk.

Thus in this case SBSx (s, v) is feasible.

Case 2. 2r =1 This is similar to Case 1 and hence we do not provide the
details. | |



COMSTRUCTION OF SYMMETRIC BALANCED SQUARES 239

CORDLLARY 10, If SBS(s.v) ix feasible and 2 < v, then so iy SBSy (s, v).

Using Corollary 10 we know that whenever S8S5(s,v) is feasible S85:(s,v)
must also be feasible. The following example shows that the converse does not
hold.

EXAMPLE.. fet s=5v=9 Then 8 =25=703)+2(2), ic., 7 elements have
frequency 3 and 2 elements have frequency 20 Since the number of odd frequency
elements iy greater than 3, we infer that SBS(3,9) is not feasible and hence does not
exist.

On the other hand SBS-(5,9) does exist and one such sguare is given below.

4.8 3.7 1.5 B9 26
37 5.9 18 2.6 1.4
1.5 ik 6.9 1.4 27
b 26 1.4 .9 35
6 1.4 21 35 9

LEmna 11, For any s,v.k =0, we have that SBS; (s, v) is feasible §f and only if
SB53 (5, 2v) iy feasible.

Prooft Il an SB5;(s.v) is feasible, then & < v and there exist nonnegative integers
o, e, d, 8 such that

ks® = dd + £,

where {d. e} = {n.n+ 1}, ¢ is even, d+2=v and § < ky. Therefore, 2k < 2v and
there exist nonnegative integers o, ¢, 24, 22 such that

2ks® = (28)d + (2e)e,

where {d, e} = {n,n+ 1}, ¢is even, 2d 4+ 2e = 2v and 2d < 2ks. Hence, an §BSy; =
{,2v) is feasible.
In a similar manner we can establish the converse result. | |

For k = 1, we know that, whenever S85(s, v) is feasible, it exists [1]. Hence we get
the following corollary.

COROLLARY 12, For any s = 0, 88515, 2v) exists if and only i B8 (s, v) exises.
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FProof.
d 5885:(x,2v) = SBS:(s.2v) is feasible (by definition)
= SB8(s,v) is feasible (by Lemma 11)
= 3 §5BS(s,v) [1]
= 1 §8855(s, 2v) (by Construction 7) | ]

Later we show that for &k =23, whenever SBS;(s v) is feasible it can be
constructed (Theorems 25, 46, 50, 55).

3. Caseks < v < ks(s+1)/2

When v = ks, we have to construct SBS;(s ks). Since an S85(s, ) exists, by
Construction 7, an S85; (s, ks) exists. Thus we consider the case v > ks

We approach the construction problem in parts. The three main parts are the
following.

1. [k:rl/'vj =45 — 1. This holds T ks < v < ks + ks/(s — 1).

2 [ka‘lfvj =5 — 2. This holds iff ks + s/ (s — 1) < v < ko + 2ks /{5 — 2).

3 [k:.-lfvj <y — 2. This holds iff ks +2ks/{s — 2) < v < ksl + 1) /2.

The last two cases are further subdivided into different cases which will become clear

as we go into the details of the construction. The case ks < v < &y + & is settled by
Lemma 8 above. So for the rest of this section we only consider the case v = ks + 1.

3.1. Subcase |ks'lv | =5 —1
First we prove the following result which we require later.

LEMMA 13, For any odd positive integer s, there exists an SBS, \(s,5") in which
every element has frequency s — 1.

Proof. Let A be the addition table for Z,, and let 8 be the SBS, (s, {s— 1)5)
obtained from A4 by Construction 7. Observe that the cells of the main diagonal of B8
partition the s{s — 1) elements of 8 since s is odd. Now consider v new elements,
a1l < i<s For 1l <i<y, let C; be the set of elements
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Replace the s — 1 elements in cell (i, i) of 8 by C;. The result is an SBS,_(s,5%). It
can be shown that every element of this SB5 has frequency v — 1 [ |

Lemnia 14 I s, & and v oare positive integers such that v = ks + 1) and
n= |k /v|=35—1, then there exists an SBSi(s,v) whenever the necessary
condition of Lemma 1 iv satisfied.

Proof. Since n =5 — 1,
kit =vs— 1) 4+r=ris)+(v—r){s—1), where0<r <. (4

When +1s an even integer, the necessary condition of Lemma 1 for the existence of an
SB5;(s,v) implies that v —r < Ly, or equivalently, that r = v — ks. Therefore,

k' = vis—D4+r=vis— 1+ v—he=w —ks

from which it follows that v < k(s + 1). Hence, when s is even, there are no positive
integers &, k and v that satisly the necessary condition of Lemma | for the existence
of an 85, (s, v) and the hypotheses of this Lemma.

Now let us consider odd integers s. Equation (4) implies that ks* > v{s — 1), from
whence it follows that

ks k)4

. { .
"EE-n g1

Since k{s+ 1) < v < k(s + 1) +k/{y— 1), there exists an integer p such that

s—1

Let g=k—p(s—1). Then k = p(s — 1) + g and v= ps* +g(s + 1).

Since there exists an SBS, (s,s°) (from Lemma 13), there exists an
SBS, i, 1y(s, ps?). Since there exists an  SBS(s,s+1), there exists an
SBS,(s.q(s +1)). In these two 5BSs, each element has frequency s—1 or s
Therefore there exists an SBSy(s, ps® +gls +1)) = SBS; (s, v). (]

v=Kk{s+ 1)+ p,  wherel < p <

3.2. Subcase |ks*/v| =52
Lemma 150 I v, &k and v oare povitive integers such that s iy even and

n=|ks*/v|=5—2, then there exists an SBSi(s,v) whenever the necessary
condition of Lemma [ s satisfied.

FProof. Since n=s5— 2,

ks =v(s =2 4+r=rs—1)+(v—ri{(s—2), where0<r<v. (5
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Since s 1s even, the necessary condition of Lemma 1 for the existence of an S85;(s, v)
implies that r < ks. Therefore, ks = v(s —2) + r < v(s — 2) + kx; that is,
k(s —1) ks

Pu .l e

P>

From equation (5) it follows that ks* > v(s — 2) which is equivalent to

kst 2k
= G=9) =JL'.*|'+JI__ 5
Therefore
ks 2ks
Bk S e

We now construct an S85; (s, v) for all v in this range.

Let v = ks + p where ks/(s —2) < p< 2ks/{s —2). Let A be the addition table of
7.1 where the rows and columns are labeled with the symbols 0,1, ..., 5 in their
natural order. For 1 <17 < &, let A; be the array obtained by replacing each element x
in 4 by the ordered pair (x, ), and let B be the superposition of 4, 42, ..., 4dg. Let C
be the array obtained by deleting row and column 0 from B The result is an
SB5;(s. k(s +1)) in which every pair of {1,2,... s} =x{1,2,..., k} occurs with
frequency s — 1 and every pairof {0} = {1,2,... .k} occurs with frequency s. Observe
that every pair of {1,2,...,5} = {1,2,....k} occurs in precisely one cell of the main
diagonal; furthermore, each cell of the main backward diagonal (i.e., the cells (i,s +
1—1i) fori=12,....5) contains the set of the pairs {0} x {1,2,...,k}. Remove all
the pairs of {0} x{1.2,...,k} from C, leaving all cells of the main backward
diagonal empty. Call this array 0. We now add p new elements to D, namely the
elements oo for 1 <i < p

First we place k elements into each cell of the main backward diagonal so that the
following conditions are satisfied:

l. For 2 < i< p, element oo, 18 not to be placed in any cell of the main backward
diagonal of D until o0 has been placed in 5 — 2 distinct cells.

2. Whenever oo;, 1 <7 < p,is placed in cell { j,5+ 1 —j). itis also to be placed in cell
(s+1—47.

3. Never place an element oz, in a cell {j,s + 1 — f) having ¢ elements if there is a cell
(£.8+ 1 —£) with fewer than ¢ elements.

It is easy to see that this requires precisely v = [ks/{sx —2)]| < p elements, and each
elerment oo, 1 <§ < w, has frequency s— 2. The element oo, has frequency
ks—{u—1){s—=2)<s5-2.

The second stage of this construction involves placing elements ooy, w < i < p, in
cells of the main diagonal of D. Since these cells already contain k& pairs of
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1,2, 00.8b % {1,2,... .k}, they will now contain more than & elements. This
problem is readily corrected as the last step in the construction.

Place oo, in wiy — 2) — ky cells of the main diagonal of D so that it is not contained
in more than one cell of any row or column. Continue to add elements to the cells of

the main diagonal according to the following procedure:

l. Foru< i< p,element oo; is not to be placed in any cell of D until oo, has been
placed in s — 2 distinet cells.

2. Never place an element co; in a cell {7, /) having ¢ elements if there is a cell (£, #)
with fewer than ¢ elements.

Finally. discard pairs of {1,2,...,5} x {1,2,.... &k} from cells of the main diagonal,
as necessary, so that each cell again has cardinality k.

The maximum number of new elements, having frequency s — 2, that can be
accommodated in the main backward diagonal and the main forward diagonal of D
is |2ks/(s —2)| = p. Hence, the resulting array is an SBSi(s, ks +p) = SBS; (s, v),
and each element has frequency s —2 or s — 1. [ |

We now prove the corresponding result for v an odd integer.

LEmna 16, §F s, &k and v are positive integers such that s & odd and
n=|ks*/v|=5—2, then there exists an SBSy(s,v) whenever the necessary
condition of Lemma i satisfied.

The proof of this Lemma is more complicated than the previous one. For this
reason, we approach it by way of several intermediate lemmas.

LEMMA 17, For s an odd positive integer and k an integer in the range 1 < K <5— 1,
theve exists an SBSg (s k(s + 11+ 1).

FProof.  This result follows for & =1 by Lemma 5.

Now consider the integers & in the range 2 <k <5 — 1. Let 4 = (a;) be the
addition table of Z,, |, the integers modulo s+ 1. Let 4;, i =1,2, be the array
obtained by replacing every element x of A by the pair (x, ). Let £ be the array
obtained by deleting row and column 0 from matrix A4y, Let £ be the array obtained
by deleting row and column {5+ 1)/2 from matrix 4. Label the rows and columns

of £, and £ with the integers 1,2,...,5 in their natural order.
Let &; be the set consisting of the elements in cell {i,{) of £ and £, Since each S;
has cardinality 2, and since each element of {0,1,2,...,5} x {1,2} is in at most 2 of

the S8;%s, the 8;°s have a system of distinct representatives, say R; furthermore, we
may assume that {0),0:} C R since (s is only in &) and O, is only in 8,412

Let B = (hy;) be the addition table of Z,, the integers modulo 5. Let C be the array
obtained by replacing each element on the main diagonal of 8 by an element y that is
notin Z; nor Z,,. Fori =3 4, . .k, let E; be the array obrained by replacing every
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elermnent x of C by the pair {x, 7). Let # be the array obtained by superimposing the
arrays Ey FEa o E,. This array F s an SBSp(s k{s+1)). The elements
0,04, w3, v, ...,y all have frequency s and all the other elements have frequency
s—1.

Introduce a new element, oo, to each cell of the main diagonal of F. Remove a
single occurrence of each of the elements oo, 0, 04, ¥y, ¥, .. ., ¥ from the cells of the
main diagonal, so that at most one element is removed from any single cell. (Recall
that & < s —1.) From the remaining s — & — 1 cells of the main diagonal (those
which still contain &+ 1 elements), delete the element of the system of distinct
representatives #. Since every element now has frequency s — 1 or 5 — 2, the result is
an SBS (s kis + 1)+ 1). [ |

Lemma 18 Lev s, & and v he positive integers such that s iy odd and
ke fls— 1) < v < k{s+2). Then there exists an SBSy(s,v) whenever the necessary
condition of Lemma [ i satisfied.

Proof. Since ks*/(s —1) < v < k(s +2),

k
(s—1)

kls+ 1)+ <vEkis+ 1)+ £k

Therefore, v =4k{s+ 1)+ ¢ where k/{s— 1) <¢< k. Let p and g be the unique
nonnegative  integers such  that k=pt+g where 0<g<¢ Then
k=glp+ 1)+ {t—glip). Since kf{s — 1) < t and k = pt + g = pt, it follows that

k
p‘f_i?--::r—l.

Since p and s are both integers, it follows that p+1 <5 — 1. Then, by Lemma 17,
there exists an 8BS, (s (p4+1)s+1)+1) and an SBS (s pls+ 1)+ 1)
Therefore, there exists an  SBS, . (s,q(p+1)(s+1)+¢g) and an
SBE;_gpls, (t —glp(s+ 1)+t —g). Superimposing these two SBSs gives an
SBS (s, ks + 1)+ ) = SBS; (s, v). [ |

LEMMA 19, If 5 iy any odd positive integer, then there exists an SBS,_ (s, 5 »
(x4 11/2) in which s elements have frequency s — | and the remaining s(s — 1172 have
frequency 5 — 2.

Proof. Let A be the addition table of Z,. Let B be the SBS;_yj (s, s(y —1)/2)
obtained by Construction 7. Let C be the array obtained by deleting all the elements
from cells (24,2 + 1) and cells {2i +1,2¢) of 8 for all i e Z,. From the structure of
matrix A, it follows that each of the s{x — 1)/2 elements in C has frequency v — 2 and
C 18 symmetric.



COMSTRUCTION OF SYMMETRIC BALANCED SQUARES 245

For every ie Z,, introduce a new element o0,. For every ie Z,, define
D= {OCJ'+| R T PR 4 TH P |]."2}~

where the subscripts are determined by addition over Z,. For every i e Z,, place the
set of elements D; in cell (2§ + 1,24) and in cell (24,27 + 1), where arithmetic is over
Z,. 1t can be shown that each element ooy, for ie Z,, is absent from row and column
2i, but is contained in each other row and column precsely once. Hence, the new
elernents all have frequency s — 1 in C.

It follows that the result is an SBS;,_ 25 5(x + 1] /2), as required. [ |

Lemnia 200 Let s, & and v be positive integers such that s iy odd and
Ka+2)=v< ks +2) 4+ 2k/{s = 1). Then there exists an §BS; (s, v) whenever the
necessary condition of Lemma Ty satisfied.

Proof.  For any integer v in the range kis+2) < v < k{s +2) + 2k /(s — 1), there
exists an integer p such that v = k{s + 2) +p where 0 < p < 2k/(s — 1). Therefore,
there exists a nonnegative integer g such that

i—1
k= p(ﬂ—_’—) =+ 4.

By the previous Lemma, there exists an SBS |, a(s,s(s + 1) /2). By Construction 7,
there exists an SBSy,_ 120, ps(s+1)/2). By Lemma 5 and Construction 7, there
exists an 8BS, (s, g(+s + 2)). Every element in either of these 855 has frequency s — 1
or §—2. Hence, by Construction f, there exisis an

SBS (sogis+2) 4+ pals+ 11/2) = SBS (s, v). [ |
Proof of Lemma 16.  Since n = v — 2, there exists a unique integer r such that
kit =vs—2 4+r=rs— 1) +{r=r)(s=2), where 0 <r<rv.

Since v 1s odd, the necessary condition of Lemma 1 for the existence of an S85; (s, v)
mmphes that v —r < ks, or equivalently, that r = v — ks. Therefore,

ks =v(s—2) +r>vls—2)+ v— ks,

from whence it follows that

i 2

po BTl pe gy E
s—1 s—1

We also have that ks* = v(s —2) +r < v(s — 1), which implies that

ks?
s—1

< V.
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By Lemmas 18 and 20, there exists an SB5; (s, v) for all integers v in the range

ozl L.
8 cediisin it
s—1 s—1

whenever the necessary condition of Lemma 1 is satisfied. This establishes the
result. | |

3.3. Subcase |ks*/v| < 52

We are now in a position to establish the existence of an S85;(s.v) whenever
n= [k:rj,.-’vj < & — 2. However, before proceeding with this result, we digress to
consider a generalization of §B5s, called near symmeiric balanced squares. This
digression will allow us to introduce the construction used to prove this result.

By a near symmetric balanced square with blocksize k, order v and side s, we mean
an s x s array in which every cell contains a subset of cardinality & from a set V of
cardinality v satisfying the following properties:

1. Every element occurs in m or m + 1 cells of each row or column.
2. Every element occurs in f— 1, for f 4+ 1 cells of the array.
3. The array is symmetric.

Again, we will assume throughout that & < v/2. We refer to such a design as an
NEBS (5, v). Clearly, every 8BS, (s,v) is an NSBS (s, v).

LEmMna 21 df s, k and v are positive integers such that v = ks, then there exisis an
NSBS (s,v).

Before we proceed with a proof of this fact, we need to introduce some
terminology. For any s xx array, say &, whose rows and columns are labeled with the
elements ge Z,, the g-th back-diagonal consists of the set of cells

{li,g—1) : ieZ}.

However, we wish to consider the cells of this back-diagonal in a specific order, as
prescribed in the following definitions.

Definition 22, Consider an s x s array, where s is an odd positive integer, say
#=2t+ 1. For any ge Z,, let i be such that 2k = g. Then the g-th back-diagonal is
defined to be the ¢ pairs of symmetrically situated cells {{# — i, h +1),(h+ i h — i)},
where § assumes the values ¢ f—1,..., 2.1 in that order, followed by the main
diagonal cell (A, 7). We denote this back-diagonal by D;.

The situation 18 more complex when s is a positive even integer.
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Definition 23.  Consider ans x5 array, where v is an even positive integer, say 5 = 24,
For any ge Zs,, define back-diagonal £, to be the ordered set of cells beginning with
cell (g, g), followed by the pairs of symmetrically situated cells {(g+ i, g—1i), (g —
i,g+i)} for i=1,2,...,¢— 1 in that order, and ending with the cell (g + ¢, g+ ¢).
Define back-diagonal £, to be the sequence of ¢ pairs of symmetrically situated cells
Hg+ig+1-il(g+1—ig+i)}lfori=12,..., tinthat order. Observe that this
defines 4¢ distinct diagonals; furthermore, diagonals £, and E, , consist of the same
cells, but in the reverse order, as do diagonals F, and F,,,.
We are now in a position to prove Lemma 21,

FProofof Lemma 21, Let A be an NSBS, (5, v) with v = ks, and let ¢; be the number
of elements in A of frequency i fori = — 1.1/ + 1. An even element is an element
of 4 whose frequency is an even integer: an odd element is an element of odd
frequency. Since 4 is an NS8S it follows that

v=c¢r-1 ter+ e,

ks* = e i(f — 1) +er(F) +ern(f + 1)

We now show that, given any positive integers s, & and v such that v = ks, these
equations always have a solution in nonnegative integers for £, er_i,er and ¢pp;
furthermore, there exisis a solution in which the number of odd elements is precisely
ks

By the division algorithm, there exist unique nonnegative integers n and r such
that

kit=wm+r, whermQ<r<r
As before, let o, e, d and £ be integers such that
ki =r(n+1) + (v —ri{n) = e(e) + 3(d),

where ¢ is an even integer, {e.d} = {n,n+ 1}, and {e, 8} = {r.v —r}. 113 = Ly, then
we can write

ki® = &le) + 3(d)

= cy_ld — 1)+ cqld) + eqn{d + 1),
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where cy_ | + ey + gy = v and ey = ks IF § < ks, then we can write

ks* = ele) + 8(d)

ks— 48 ki— 4

=,:1,_;ﬁ.;,.;¢.;.+( : ){e—lj+:ﬁ{a’j+( ; ){e+13

=cotle— 1) +eole) + copr (e + 1],

where co_| + oo + oo = v and co_| + oy = k.
We now consider the case when s is an odd integer. Suppose there exist
nonnegative integers [, er—y, ¢r and eq) such that fis odd and

ke = erilf — 1)+ () +eraalf + 1),
v=&r_|+ &+ Erypns
ks = ¢y

To construct an NSBS;(x. v), we place elements in the cells of an s x & array A in the
following order

Do, Dy Do Do Dyl FL P U 2" 2 [ ) N (6]

It is to be understood that each diagonal D) appears in this sequence exactly & times.
Symbols are placed in the cells of this sequence one at a time according (o the
following procedure:

1. Whenever an element is placed in a cell (i, 7).7 # j. it is also placed in cell {f,{).

2. Once an element x is placed in a cell, we continue to place the element x in cells
until it has been placed in /' — 1, for f + 1 cells, as appropriate.

3 e If the next fcells of the Sequence (6) include a cell (i, i), ie Z,, of the main
diagonal, then

® place an element in f consecutive cells of the Sequence (6),

» clse, if the number of elements of frequency / — 1 already placed in the array is
less than cr_ ). then

e place an element in " — | consecutive cells of the Sequence (6),

e clse,

® place an element in /" + 1 consecutive cells of the Sequence (6).



COMSTRUCTION OF SYMMETRIC BALANCED SQUARES 249

Can anything prevent this sirategy from successfully constructing an NSBS; (s, v)?

Since s and fare both odd, and since v > ks, it follows that < s — 2 It can be
shown that any f consecutive cells in the sequence span fdistinet rows and J distinct
columns of 4. Therefore, any odd element is in at most one cell of any row or
column. Since even elements lie in the cells of a sinple diagonal, each even element is
in at most one cell of any row or column. Therefore, any element lies in at most one
cell of any row or any column.

By construction, any element contained in a cell of the main diagonal is an odd
elerment and no element 18 contained in more than one cell of the main diagonal.
Thus there are ks odd elements, as required. By construction, there are ¢y elements
of frequency f — 1. Since

ks* = er—1(f = 1)+ er(f) + ern(f + 1),

it follows that there are ¢y elements of frequency f + 1, as required.

Since the construction fills cells in symmetrically situated pairs, the array is
symmetric.

Thus, the result is an NSBS; (s, v).

Mext, suppose there exist nonnegative integers f,cr_, o and ¢ry) such that fis
even and

ks = er_1(f — 1) +er(F) + e (f + 1),
v=gr_1+&r+ el
ks =er_1+erp.
Apply the above construction, with Step 3 replaced by

¥ (a) If the number of elements of frequency {4+ 1 already placed in the array is less
than eryy, then an element x is placed in an odd number of cells £+ 1
whenever the next f + 1 cells of the sequence include a cell {i.{),ieZ,, of the
main diagonal.

(b) If ¢ry elements of frequency f + 1 have already been placed in the array, then
an element x is placed in an odd number of cells /' — | whenever the next f — 1
cells of the sequence include a cell (i, i), ieZ,, of the main diagonal.

{c) Otherwise, x is placed in an even number of cells f.

Again, it can be shown that the result is an NSBS.(s,v).
The construction when » is an even nteger proceeds in essentially the same way.
Symbols are placed in the cells of 4 in the order determined by the sequence

By, Fo. B\, oo By By Eg B, B By B B

where it must be understood that this sequence consists of exactly sk diagonals.
{Mote that every diagonal is there k/2 times if k is an even integer; otherwise, s
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diagonals are there (k + 1)/2 times and the other s are there (& — 1)/2 times.) This
establishes the result. | |

In the above construction of NS85z, the cells of the main diagonal contain ks
distinct elements, each of which is an odd element. This is not, in general, the case for
SB8s. The main idea behind the construction of §85s described below, is to place an
appropriate number of even elements in cells of the main diagonal, and then proceed
as with N§85s.

LEMMA 24, If s, k and v are positive integers such that n = |ks*/v| < 5 —2, then
there ix an SBS (5, v) whenever the necessary condition of Lemma T iy satisfied.

FProof.  The division algorithm implies there exist unique nonnegative integers n and
r such that ks* = v +r where 0 < r < v. As before, define integers &, ¢, & and & so
that

ks =r(n+1) + (v —r)(n) = e(e) + d(d),

where ¢ is an even integer, {d.¢} = {n,n+ 1}, and {8.2} = {r,v — r}. The necessary
condition of Lemma | for the existence of an 85, (s v) implies that 4 < ks Divide
ks — 4 by ¢ to obtain nonnegative integers p and g such that

ks —8=pe+q, where0<g<e
If 5 is odd, place the element “1" in the first ¢ — g cells of the sequence

Do, Dy iy Do yyensy Do Dy, o0 Dy (7
If 5 is even, place the element 1™ in the first ¢ — g cells of the sequence

Ep, o B Py e By By - (8)

{Again, it is to be understood that each of these sequences consists of &y diagonals.)
Then place 1™ in g distinct cells of the main diagonal in such a way that 17 occurs
in at most one cell of any row or column. This is always possible since
e<n+1<s—2 Mow for xe{2,3,..., p+ 11, place element x in ¢ distinet cells
of the main diagonal according to the following procedure:

l. Forx=134,..., P+ 1, element x is not placed in any cell of the main diagonal
until element x — 1 has been placed in ¢ distinct cells.

2. Never place an element x in a cell (i, 7) with ¢ elements if there exists a cell { f, )
with fewer than ¢ elements.

This procedure places kv — § elements in the cells of the main diagonal.

Complete the §85; (s, v) by placing elements in the remaining cells of the Sequence
7if s is odd, and by placing elements in the remaining cells of the Sequence 8 if 5 is
even, according to the following procedure:
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1. If the next o cells in the sequence include a cell (i,7), ie Z,, of the main diagonal
and this cell {i,7) has fewer than k elements, then place an element x in the next o
cells, including cell (i, ).

2 If the next  cells in the sequence include a cell {i.{), ie Z,, of the main diagonal
and this cell {i,{) contains k elements, then place an element x in the next e cells of
the sequence, avoiding the cell (i, ) itself.

3. Otherwise, place an element x in the next ¢ cells of the sequence.

Since n < 35— 2, d = s — 1. Therefore, every odd element is contained in precisely
one cell of the main diagonal and, hence, there are d elements of odd frequency d.
Since ks* = e(e) + d(d), there are & elements of even frequency e. The method of
construction guarantees symmetry. The only property that remains to be verified is
that every element occurs in at most one cell of any row or column.

By construction, every occurrence of element x, for any x = p + 1, is contained in
some sequence of e+ 1 or fewer consecutive cells. Now, if 5 15 odd, then
e<hn+1=<5y—2 Since ¢ iseven, e<y—3 and ¢+ 1 <5 —2. It can be shown
that any s — 2 consecutive cells in Sequence 7 span s — 2 distinet rows and 5 — 2
distinct columns. If 5 is even, then ¢ <n+1<s—2and ¢+ 1< s— 1. It can be
shown that any 5 — 1 consecutive cells in Sequence 8 span s — | distinet rows and
s —1 distinct columns. Thus, no element x is contained in 2 cells of any row or
column. This establishes the result. | |

The following theorem summarizes the results of this section.

THEOREM 25, Ifs K and v are nonnegative integers such that v = ks, then there exits
an SBS (s, v) whenever the necessary condition of Lemma T iy satisfied.

4 Cases < v < ks

In this section, we present a method for constructing an S8Sp(s.v) when
max{s, 2k} < v < sk, In Sections 4.5 and 4.6, we prove the correctness of the
construction for the cases k = 2 and k = 3 respectively. Though the construction has
never failed for any particular case we have examined, a peneral proof that it can
always be made to succeed still eludes us. Thus for & = 4, the construction remains a
heuristic. Before describing the general method of attack, we show that the necessary
condition for the existence of an S85¢ (s, v) is sufficent when | < 5 < 4,

4.1. Cases when 1 < 5 < 4

Here we state the result concerning the construction problem for S855(s, v) when
1< s<4andforany 1 <& < v/2. The constructions are direct and are obtained by
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assigning a suitably chosen subset of {1,.. ., v} to each cell of the sx ¥ array. The
details of the construction and proofs can be found in Sarkar and Schellenberg [2].

LEMMA 26, For & a positive integer, v = 2k, and 1 < s < 4, there iv an SBS; (s v)
whenever the necessary condition of Lemma T iy satisfred.

4.2, General Construction Method
Recall that in an SBS8; (s, v), every element appears with a frequency n or n + | where

n= |ks* /v|, and every element appears in each row and column with frequency m or
m+ 1 where m = |ks/v|. Therefore, there exist integers r and p such that

ke =nv+r, where0<r<v
and
ks=mv+p, where 0 <p <y

Since nv = ks* —r = mvs + (ps —r), v divides ps —r. Hence, we let a = (ps —r) /v
and obtain that

ps=av+r, whereQ <r< v

This implies that @ = [ps/v|. The equation
ne+r= ks® = mvs + s =mvs+av+r,

gives one more relationship between these parameters; namely,
n=ms+a where 0 < g< s (since p < v).

In summary, we have the following relationships among the eight parameters
voa ko rom, pa

ks =nmv+r, whereQ <pr < v,
ks =mv+p, where < p=< v,
pr=w+r, where <r <,

n=my+a where ) <a < s
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Since we are considering v in the range max{s. 2k — 1} < v < ks, we pet that

3
§<n= \fi < ks,
v -
ke
0<m= \.—ﬂ = \_HTJ < min {k —1,5/2},

v |

¥

0<a= \.E < min{p, s}.

We approach the construction problem in the following way. Each element has to
be placed in the array either n or n 4+ 1 times. We complete this allocation in two
phases. Suppose an element is to be placed n tmes. We know that n = ms + a. In the
first phase the element is allocated either @ or s+« times. In the second phase the
element is placed either my or (m — 1)s times respectively. Thus the allocation in the
second phase can be completed by allocating the element to either m or m— 1
complete back-diagonals. The only constraint in the second phase is to ensure that
the element is not placed in any cell more than once.

Suppose an element has to be placed n + 1 times, wheren + 1 =ms+a+ 1. In the
first phase we place the element either a + 1 or s+ o+ | times and in the second
phase we place the element either my or (m — 1)y times respectively. This can be
achieved by allocating the element to m or (m — 1) complete back-diagonals. Again
the only constraint in the second phase is that the element is not placed in any cell
more than once.

If an element is placed @ or @ + | times in the first phase, then we will call it a short
element. On the other hand, if the element is placed 5+ @ or s+ a + 1 times in the
first phase, then we will call it a long element. The number of short and long elements
placed in the first phase depends on the values of the parameters. We now describe
the different cases that arise. The actual first phase allocation strategy is described in
Subsection 4.3 and the second phase allocation strategy is described in Subsection
4.4,

Construction Strategy I (s anda both odd ). Let v 5 & be integers such that s is odd,
a= |ps/v|is odd, and max{s+ 1.2k} < v < sk. From

ps=rla+1)+(v—r)a)
we get

(v—r+pls=rla+ 1)+ (v —r)s +a). (9)
First Phase.  Apply Construction 30 (see below) to fill (v — r + p) complete back-

diagonals with r short elements of frequency a+1 and v—r long elements of
frequency s+ a.



254 SARKAR AMND SCHELLENBERG

Second Phase. Fill up ks — (v — v+ p) complete back-diagonals using Construction
39.

Construction Strategy 2 (s and a + 1 hoth odd ). Let v, s, k be integers such that » is
odd, a = [p/v] is even, and max{s + 1,2k} < v < sk. From

pr=ria+1)+{v—rifa)
we gel
p+ris=ris+a+ 1)+ (v—rifa). {10

First Phase.  Apply Construction 30 to fill (p +r) complete back-diagonals with r
long elements of frequency s+ a+ 1 and v — r short elements of frequency a.

Second Phase.  Fill up ks — (p + r) complete back-diagonals using Construction 39.

Construction Strategy 3 (5, a+ 1 both even and v—r = p)- Let v, 5, k be integers
such that s is even, a = |ps/v] is odd, and max{s + 1,2k} < v < sk. From

pys=rla+ 1+ {v—ria)
we get
(v—rls=rla+ 11+ {v—r—pils +a) +pla). (1

First Phave. Apply Construction 34 to fill v —r complete back-diagonals with r
short elements of frequency @ + 1, p short elements of frequency g and v — r — plong
elements of frequency v + a.

Second Phase. Fill up ks — (v — ) complete back-diagonals using Construction 39,

Construction Strategy 4 (s, a+ | both even and v —v < p). Let v, 5, k be integers
such that s is even, & = |ps/v| is odd, and max{s + 1,2k} < v < sk. From

pr=rla+ 1+ {v—ria)
we get
2p—v+ris=(p—v+riis+a+1)+{v—plla+ 1)+ {v—r)a). (12)

First Phase.  Apply Construction 34 1o fill 2p — v + r complete back-diagonals with
v —p short elements of frequency a + 1, v —r short elements of frequency a and
p—v+r long elements of frequency s+ a + 1.

Second  Phase. Fill uwp ky— (2p—v+r) complete back-diagonals using
Construction 39,
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Construction Strategy 3 (s, a both evenandr = p). Let v, 5. k be integers such that s
is even, a = |ps/v| is even, and max{s+ 1,2k} < v < sk. From

py=rla+ 11+ {v—ria)

we get
m=r—plls+a+1)+plat+1)+(v—rlia). (13)

First Phase.  Apply Construction 3 io fill » complete back-diagonals with p short
elements of frequency o + 1, v —r short elements of frequency o and r —p long
elements of frequency s +a + 1.

Second Phase.  Fill up kv — r complete back-diagonals using Construction 39.

Construction Strategy 6 (s, a both even and v < p). Let v, 5.k be integers such that s
is even, a = |ps/v| is even, and max{s+ 1,2k} < v < sk. From

pr=ria+ 1)+ (v —ri{a) we get
(2 —r)s = rla+ 1)+ (p— r)(s +a) + (v — p)(a). (14)

First Phase.  Apply Construction 34 to fill 2p —r complete back-diagonals with r
short elements of frequency @ + 1. v — p short elements of frequency e and p— r long
elements of frequency v + a.

Second Phase.  Fill up kv — r complete back-diagonals using Construction 39,

In the first phase allocation, an odd frequency element, whether short or long, will
be placed in exactly one of the main diagonal cells. An even frequency element is
placed in either 0 or 2 main diagonal cells according as it is a short or a long
elerment.

When s is odd, any complete back-diagonal has exactly one main diagonal cell,
whereas, when v is even, any complete back-diagonal has either () or 2 main diagonal
cells. In Subsection 4.3, we will describe an enumeration of the cells of the back-
diagonals of an s x & array and an ordering of the back-diagonals.

The intwtion behind equations (9) to (14) is the following. Let b be the number of
complete back-diagonals on the left hand side of any of the equations (9) to ( 14). The
first & back-diagonals in the enumeration in Subsection 4.3 include precisely b cells
(f.4) of the main-diagonal. Let o be the number of main diagonal cells required in
the first phase to properly place the v elements. Then the equations (9) to (14) are
designed so that b = d.

4.3, First Phase Allocation

We describe the allocation separately for s odd and s even.
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430 Case s Odd

When s is odd, there exists an integer ¢ such that s = 2¢ + 1. Recall from Definition
22, that Dy consists of the symmetrically situated pairs of cells

h—ih+i) and (h+ih—1),

where { assumes the valuest, 0 —1,..., 2. 1in that order, followed by the cell (#. /) on
the main diagonal. Define D, to be the same set of cells, but in the opposite order;
that is, D, begins with the main diagonal cell (h, /) and then continues with the
symmetrically situated pairs of cells

h—ih+i) and (h4+ih-1i),

where { assumes the valoes 1.2,..., ¢ in that order.
We define the following order of the cells of an v xs array where each cell is
repeated exactly & times.

.E"’-=|{D“,m,ﬂ|,m ----- D_v—hﬁhﬂihm ----- D.\'—|~ET~D“-m1"']‘ {]'SII

where it must be understood that this sequence consisis of exactly sk back-diagonals.
Furthermore, whenever an element x is placed in cell (i, /) of %, i # j, then x is also
placed in cell (;.i).

ExamMPLE. We provide an example to ilusirate the enumeration of the cells for
& =9 For convenience, we fist the cells ina 2D form. Observe that each row, after the
Sirst row, is obtained by adding I modulo 9 to the entries of the preceding row. I iy o be
wnderstood that this 20D array i extended row wise wntil it convisis of ks back-
dicgonaly.

{5,4} 16,3} {7.2} {81} (0.0 | (55 {46} {3.7} {28} {1,0}
{5,7} {48} {30} {2,1}
7 {6,8} {50} {4,1} {3,2}

(7.0} {61} {5.2} {4.3}

( ]
(6,5} {7.4} 8.3} {02} (1,1) | (6,6)
{1,6} {8,5} {0,4} {1,3} (2.2) | (1.7
8,7} {0,6} {1,5} {2,4} (3,3) | (8,8)
{08} {1,7} {26} {3.5} (

The sequence 5 s obtained by scanning the rows from left to right starting from the
Siest row. fn thiv example, the notation {5, 4} represents the two cells (4,5) and (5.4,
while the notation (1. 1) represents the single cell (1, 1) which lies on the main diagonal
of the 9 =9 array. I an element iv to be placed fow times, then it has to placed in the
cells 15,4} and {0,3}. On the other hand, o place an element IV tmes, i has o be
Maced in the eeflls 15,41, {6,31, {72} {8, 1} (0,0) anef (5. 5).

The following three observations are critical to the succesy of the consruction.
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Lemma 27, The main diggonal cell (h h) of diagonal Dy iy immediaely succeeded by
the main diagonal cell (h+ ¢+ 1 h+ ¢4+ 1) of diagonal Dy .

LEMMA 28 120 < s, then any 2h consecutive cells of this sequence span 2h distinet
rows of A and 2h distines columns.

Lemma 29, §f s < 2h < 25, then any 2 consecutive cells of this sequence cover all
rows and cofumng of A at least once, but at most two cells le in any one row or colimn.

CoNsTRUCTION 30 (First Phase Allocation: s odd).  The construction is based on
equations (9 gnd (10, Refer to Section 4.2 for the definition of the various
Paramneters.

I. Let % be the ordering of the cells of an s = 5 arvay av defined in equation (15).

2 ffa s odd, then

o Fill the first vla+ 1) celly of the sequence & by placing cach of v elements in
(a+ 1) consecutive celly of 5.

o Fill the next (v —rli(s + a) celly of the sequence 5 by placing each of (v —r) cells
in (5 + a) consecutive celly of 5.

3. ffa is even, then

o Fill the first (v — rla cells of the sequence 5 by placing cach of (v — r) elements in
a consecutive cells of the sequence 5.

o Fill the next ris + a + 1) cells of the sequence 5 by placing each of v elements in
(8 +a+ 1) consecutive cells of the sequence 5.

Lemimia 31 (Correciness of Construction 30).  Let v, 5, k be integers such that 5 i
odd and max{s + 1,2k} < v < sk, Construction 30 ensures that

I. Each short element has frequency ©or 1 in each row and colunmn.

b

2. Each long element has frequency T or 2 in each row and column.
3o a iy odd, then v —r + p back-diagonals are completely filled, else v + p back-
diggonals are completely filled.

FProof.  Consider the case when g is odd. Since g and & are both odd, the integers
a+ 1 and 5+ a are both even. In the sequence % defined in (13), two main diagonal
cells are always consecutive. This ensures that Construction 30 completes
successfully. Sinee

(v—r+pls=ria+ 1)+ (v—ri{s +a),

these elements completely fill up v — r + p back-diagonals of sequence .%. By Lemma
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28, each short element has frequency 0 or 1 in each row and column. By Lemma 29,
each long element has frequency 1 or 2 in each row and column. This establishes the
result when « is odd.

In a similar fashion we can establish the corresponding result when a is even and

p+ris=ris+a+ 1)+ (v—rifa).

This completes the proof. [ |

432 Case s Evwn

Let the back-diaponals E, and F, be as defined in Definition 23. We define the
following order of the cells of an sx s array where each cell is repeated exactly &
times.

F = (B, Fo, E1, F)s ..., Ee 1, Foo, By Fo, By By Eo 1, Foty-.); (16)

where it must be understood that this sequence consists of exactly sk back-diagonals.
Furthermore, whenever an element x is placed in a cell (i j) with i # j, then x must
also be placed in the cell {j,{) in order to achieve symmetry.

EXAMPLE. We provide an example to ilfustrate the enumeration of the celly for
= M. Again for convenience, we lise the celly in a 2D form. Observe that each row,
after the first vrow, iv obtained by adding § modulo 10 to the entries of the preceding
row. £t i to be understood that this 20D array is extended rowwise uniil it consists of ks
haclk-diagonals.

(0,0) {1.9} {2.8} {3.7} {46} (5.5 | {1.0} {2.9} {3.8} {47} {56}
(L1) {20} {3.9} {4.8} {57} (6.6) | {21} {3.0} {4.9} {58} {6.7}
(2,2) {31} {40} {59} {68} (7.7 |{3.2} {4.1} {50} {69} {7.8}
(3,3) {42} {51} {6.0} {79} (88) | {43} {52} {6.1} {70} {89}
(4,4) {53} {6,2} {7.1} {80} (9,9) | {54} {6,3} {7.2} {81} {9.0}

The sequence . iy obtained by scanning the rows from lefi to right starting wich the
Jwest vow. Ay in the case of s odd, placing an element in cell (i J) means that it s
alse placed in the cell (j.0). An element placed in the cells (0,0),{1,9} iy placed three
times. On the other hand, an element placed in the cells {28} and {3, 7} is placed four
times.
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The following two observations are critical to this first phase allocation.

Lemama 320 000 < b < 5, then any b consecutive cells of the sequence 3 span b
distingt rows and b distinet columns {where it must be understood that these b eells must
alwayy include cell (1) whenever ity symmetric mate, ([, 0), iy included).

Lemmia 330 I s < b < 25, then any b consecutive cells of the sequence 3 include at
least one cell, and at most two cells, of cach vow and column (where it must be
wnderstood that these b cells muse abvayy include cell (i) whenever ity symmetric
made, (f 1), iy included ).

We say an element is properly placed in sequence ¥ defined above if (a) it occupies
a subsequence of consecutive cells and, (b) whenever it occupies cell (i, 7). i # /. then
it also occupies cell (7,4,

We now describe the first phase allocation when s is even.

ConNsTRUCTION 34 (First Phase Allocation: s even). The idea behind the
construction i based on equations (11) to (14). In each of these cases, elements
have to be placed a0+ Vs +a times or g.a+ 1. s 4+a+ 1 times. Let fi = a, fr =
a+ 1 and f5=s4aors+a+1 ay the cave may be. For 1 <i <3 et ny be the
number of elements which have o be placed with frequency .

I Let 3 he the sequence ay defined in equation (16).

20 While (n) =00 or (na = 0) or (ny = 0) do

o [f(n =0) and an element can be placed with frequency [ in the next f) cells of
F, then

o Place an element with frequency f).
e =n — 1l

o clie if (ny = 0) and an element can be placed with frequency 3 in the next f5 celly
of &, then

o Place an element with frequency f3.
® =i — 1.

el i (ny = 0), then
o Place an element with frequency f3.

ey =n; — L.
3. End do

LEmnia 35 (Correctness of Construction 34).  Let v, s, k be integers such that s i
evenn and max{s + 1, 2k} < v < sk, Convtruction 34 ensures that
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1. Each short element hay frequency O or i each row and column.

o

2. Each long element has frequency {or 2 in each row and column.

3. Exactly n; elements are placed with frequency f; for 1 < i< 3.

Proaf.  The first two assertions follow from Lemmas 32 and 33. The last assertion is
equivalent to the fact that at each iteration of the while loop exactly one element is
properly placed. Note that each iteration places at most one element. 5o it is
sufficient to show that at least one element can be placed at each iteration. We now
proceed to do this.

As long as both ny,ny = 0, elements will be placed with frequencies | and f5. At
some stage, one of # or m will become 0 and the other will remain positive. Denote
by n' the remaining positive value and let f* be the corresponding frequency. From
this point onwards, elements will be placed with frequencies /7 and /5 untl one of #
or ny becomes (0. Denote by #" the remaining positive value and let /' be the
corresponding frequency. From this point onwards, #" elements have to be placed
with frequency /.

Thus it is sufficient to show the following three claims.

Claim I, If ny,m =0, then either an element of frequency f; or an eement of
frequency f2 can be properly placed.

Claim 2. If ' ,ny =0, then either an element of frequency /" or an element of
frequency f3 can be properly placed.

Claim 3. If 1" = 0, then an element of frequency /™ can be properly placed.

Claim 1 is easy to verify. The proofs of Claims 2 and 3 are more complicated. These
two claims have to be proved individually for Construction Strategies 3 to 6 in
Section 4.2. We provide a detailed proof for Construction Strategy 3. The proofs for
the other Construction Strategies are similar.

Proaf of Claim 2 for Construction Strategy 3. In this case, a is odd, v —r = p: The
corresponding equation is

(v—rls=rla+ 11+ {v—r—pils +a) +pla).

There are (v —r) back-diagonals to be filled up by r elements of frequency (o +
1), (v — r — p) elements of frequency (v + o) and p elements of frequency a. Thus in
this case f3 = & + . Note that (v — r) is even, whenever s is even. A properly placed
element of frequency a or s+ a occupies exactly one diagonal cell and a properly
placed element of frequency a + 1 does not occupy any diagonal cell.

The value of f* is either @ or a + 1 and hence we have two cases.
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Subcase 1. " = g If the next @ cells of the sequence F contain a main diagonal cell
(1.4, then it is possible to properly place an element of frequency a; otherwise, it is
possible to properly place an element of frequency s + a.

Subease 2. (" = o+ 10 All pelements of frequency o have been properly placed and
(v —r —p — n;) elements of frequency s+ o have been placed. Each of these (v —
r—n3) elements with frequencies o and s+ @ occur in one main diagonal cell (7).

This means that in the sequence ¥, (v — r — ny — 1) back-diagonals have been
completely filled. one is partially full, having (s — #) full cells and § empty ones, and n;
back-diagonals are vet to be filled by Construction 34.

Therefore, n' elements of frequency o + | and n; elements of frequency & +a will
exactly fill the remaining { + nyy cells; that is { +myy =n'{a+ 1) + n3(s + a) and so
i=(n+mla+n >2a+1>a+1,since n' . ny > 0 Sincei >a+ 1, one can always
properly place an element of frequency a + 1. [ |

Proof of Claim 3 for Construction Strategy 3. There are three subcases.

Subcase 1. /" =g Since the previous elements have been properly allocated, the
number of diagonal cells that must be left must also be #”. Since there are a total of
(v —r) back-diagonals and (v —r) is even, the number of complete back-diagonals
left must also be n”, to provide the »" diagonal cells required by the n” elements of
frequency o each. Additionally there could be ¢ cells remaining in a partially filled
back-diagonal. Further, if »” 15 odd, then ¢ must be positive. Thus the total number
of cells remaining is sn” + i and the total number of cells required by the »” elements
is n"a. Thus we must have sn” + i = #'a which is not possible since a < 5. Thus this
Case cannot ocour.

Subease 2. (" = a + 1: In this case, all p elements of frequency a and all (v —r —p)
elements of frequency s + a have been properly placed. As well, n: — n" elements of
frequency a+ 1 have been properly placed. Each of the elements of frequencies
a, % + a occur in one cell ( 7, /) of the main diagonal. Hence, the first (v —r — 1) back-
diagonals of sequence . are filled and back-diagonal v — r contains s — i filled cells
and { empty cells. Since (v —rly = rla+ 1)+ (v — r — pl{s + @) + pla), we must have
i=n"(a+1). None of the n" elements of frequency @ + 1 may occupy a cell { 7. /) on
the main diagonal. Since v — r is even, back-diagonal (v —r) has no main diagonal
cell {f,7). Therefore, the n" elements of frequency o + 1 can all be properly placed.

Subease 3. " = s+ a: Each of these elements require exactly one diagonal cell. So
there must be n" complete back-diagonals left and ¢ cells in a partially filled back-
diagonal. Note that any s + « cells always contain a diagonal cell. Thus the only way
an element with frequency (v + @) cannot be placed is if the next (s 4 a) elements
contain two diagonal cells. But this can happen only if i < o. We show that this is not
possible. The total number of cells left is § + n"s and this must be equal to n"{s + a).
This gives { = n"a. Since »” is at least 1, we have { = a.
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This completes the proof of Claim 3 for Construction Strategy 3. As mentioned
before, the proofs of Claims 2 and 3 for Construction Strategies 4, 5 and 6 are similar
to this proof. | |

4.4. Second Phase Aflocation

Having filled an integral number of back-diagonals, we now want to complete the
S85;(s.v) by placing each of the v elements in m or m — 1 {as the case may be)
complete back-diagonals. This placement cannot be done arbitrarily as each cell
must contain & distinct elements.

We formulate the constraint in the placement of elements to back-diagonals in the
second phase in terms of flow in a network.

CoNsTRUCTION 36 (Network Construction).  We deseribe the construction of a
network N oas follows. First we construct a bipartite graph.

I Let {hy ba, oo b)Y be a set of vertices, one for each badk-diagonal.

2 Let {er,e0,..., et be a set of vertices, one for cach element.

3. Vertices by and ¢; are joined by an are (b)) divected from b; to e; of capacity 1 if
and only if element ¢; has not been allocated to any eell of back-diagonal by in the
Sirst phase, e, by Constructions 30 or 34,

To this bipartite graph we add a source and a sink node and additional ares.

I Introduce a source node 8. For each back-diagonal by, introduce an are (8.5 of
capacity k — £ where cach cell of back-diagonal by containg £ elements, ie., the

back-ciagonal by has been filled wp ¢ times in the first phase.
2. Introduce a sink node T. For each element e, introduce an are (e, T')

o of capacity m if element ¢ iv a short element of frequency a ora+ 1, or

o of capacity m — | if element ¢; is a long element of frequency s +aor s+a+ 1.
Thixy gives ws the network N, For any arc & in N, we denote the capacity of & by cap(i).

We provide an example to illustrate the bipartite graph and the network N.
EXAMPLE. fetk=535=9v= 10 Thisgivesn =dd.p=53m=4a=4r =5 In
the first phave 10 complete back-diagonals arve filled up. Five elements have been placed

14 times each and five other elements have each been placed fouwr times each. We now
have to complete the construction.
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The adjacency matrix of the bipar tite graph iy the following. The divection of the arcs
is from the back-diagonals to the elements.

L] €3 €3 L L L e E Gy i
hy L] i} ] 1 1 1 1 1 | i}
in 1 1 i ] ] 1 1 1 I I
LB 1 1 1 1 i} i} 1 1 | I
by 1 | | | 1 i} i} | 1 |
e 1 1 1 1 1 1 i} 1 1 I
By, | 1 1 1 1 1 i} i} I |
by I I I I I I I ] i I
iy 1 1 | 1 1 1 1 1 i} |
iy 1 1 1 1 1 1 1 1 i} i}

Elements ) to es must each be assigned to five complete back-diagonals and
elements g5 to ey must each be assigned to four complete back-diagonals. Thus for
1 <j<35, the capacities of the arcs (g, T') are all five and for 6 <j < 10, the
capacities of the arcs (e¢;, T') are all four.

Each cell of back-diagonal b has to be filled up three more times whereas each cell
of back-diagonals ba to by has to be filled up four more times. Hence the capacity of
the arc(S, b)) is three and for 2 < § <9, the capacities of the arcs (8, b)) are all four.

Lemma 37, dn the network N of Construction 36
Z capi 8. b = Z caple;, T).
i=1 i=1

FProof.  Let the total number of back-diagonals filled in the first phase be . There
are a total of ky back-diagonals. Thus,

=8

> cap(S.,b,) = ks — .

i=1

In an SBS;(s, v) each cell is filled k times. So there are a total of ks* cells. The total
number of cells filled in the first phase is fis. Thus the number of cells filled in the
second phase is ks® — fis. In the second phase, the element ¢ is to be placed in
sx cap(ey, ') cells. Thus the total number of cells filled in the second phase is
5 Zj:] cap(e;, T). Equating this to ks® — fis we get Z’;': caple;, T) = ks — fi. Thus the

result holds. | |
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Lemmia 38, For any back-diggonal bin the network N of Construction 36,

Gl = \‘v{m —xljl -+ ﬁJ e "v{m —ﬁljl +G“ 1

where o < v iv the number of short elements placed in the first phase.

Proaf.  If ¢ is a short element, then cap{e, T') = m and if ¢ is a long element, then
caple. T) = m — 1. Thus using Lemma 37, we get

anp{q,-, TN=om+(v—olm—1)=vim—1)+a. (17
=1

Let | =mincic, {eap(S. b))} and L = max) <., {cap(S.0)}. Then any back-
diagonal is filled upat least & — L times and at most & — / times.

The first phase allocation uses the enumeration % or Fof the back-diagonals
ziven by equation (13) or (16) respectively. In both % and 7, all back-diagonals
occur exactly once between two successive occurrences of any particular back-
diagonal. The first phase allocation ensures that (kK — 1) — (k — L) < 1. This gives
(L—1 = 1. This combined with Lemma 37 and equation (17) mves the resuli. W

ConNSTRUCTION 39 (Algorithm Second Phase)

I, Convtruct the network N as in Construction 36.
2. Find a maximum capacity flow in N

3. For cach back-diagonal vertex by and each element vertex ey if f(b,e/) = 1, then
place the element e in all the cells of the back-diagonal b;.

We now turn to the correctness of the algorithm. The only way the algorithm can fail
is if the maximum flow does not saturate the requirement of all the back-diagonals.
We analyze this possibility.

Observe that by Lemma 37, the capacity of the cut ({5}, {S}) is the same as the
capacity of the cut ({T'}, { T'}). If these are minimum cuts, then a maximum flow in N
is equal to the capacity of these minimum cuts.and any such maximum flow provides
us with the required assignment of elements to back-diagonals. We record this in the
following result.

THEOREM 40, The second phase allocation can be properly comple ted i and only if
({S}.{S}) is a minimum cut in the network N of Construction 36.
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Thus, to complete the correciness proof for the second phase allocation strategy,
we must show that ({8}, {S}) and ({T},{T'}) are cuts of minimum capacity in N.
Mote that the capacity on an arc (8, by is the number of elements that must be added
to each cell of back-diagonal b; in order to fill it. We call the capacity of arc (S, 5)
the requirement of back-diagonal &, The maximum flow provides the desired
assignment if the requirement on all the back-diagonals (and hence the elements) can
be satisfied. The next result simplifies this to show that it is sufficient to satisfy the
requirement on any m+ 1 back-diagonals.

THEOREM 41,  Consider the Network N of Construction 36. Then the following are
equivalent.

—

. ({8}, {8}) is a cut of minimum capacity.

S

There i a flow auch that (8. 0) = cap(8. b)) for each back-diagonal b.

3. For every set By of (m+ 1) back-diaggonals, there is a flow [, such that
S (8.b) = cap(8, b), for each be By.

FProof.

(1) = (2] follows from the Min-cut, Max-flow Theorem.
(2) = (3) is obvious.

(3) = (2): We are given that the requirement on every set of (m + 1) back-diagonals
can be satisfied by some flow in network N, We show that under this assumption the
capacity of any cut cannot be less than the sum of the requirements of all the back-
diagonals. For this we have to consider the different possible cuts and argue about
their capacities.

Let B be the set of back-diagonals and £ be the set of elements. Let Xand Y be the
sum of the requirements of all the back-diagonals and and all the elements,
respectively. We have X' = Y. There are different cases to consider depending on the
nature of the cut (C,C).

Case 1. C = {5}. In this case clearly the cut capacity is equal to X.
Case 2. O = {S}UBUE In this case the cut capacity is ¥ = X.

Case 3. C ={S5}U8. Thus the cut capacity is equal to the total number of
arcs connecting the back-diagonals to the eements. The in-degree of each
element is at least s— 3 and the requirement is at most m = [ks/v|. Since
k=<v/2, we have m= |s/2]. Since we have completely reselved the existence
question for SBSp(x, v) designs when s < 4, we need only consider s > 4. In this
case, s — 3> |4/2|; that is, the in-degree of each element is greater than its
requirement. Hence the sum of all the in-degrees of the elements is greater than
Y=4%.
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Case 4. C = {S}UBUE where £ is a proper subset of £ In this case, the
capacity of the cut is equal to the sum of the requirements of the elements in £ plus
the sum of the in-degrees of the elements in £ — E). Asin Case 3, in this case also it
can be argued that capacity is greater than X.

Case 5. C={5}uU 8 where 8, is a proper subset of 8. For the first time we use
the hypothesis that the requirement of any (m + 1) back-diagonals can be satisfied.
This implies that the requirement of any one back-diagonal can also be satisfied.
Thus the out-degree of any back-diagonal is greater than or equal to iis
requirement. The cut capacity is the sum of the requirements of the back-diagonals
in #— 8, and the sum of the out-degrees of the back-diagonals in 8,. Since the
out-degree of any back-diagonal is greater than or equal to its requirement, the cut
capacity i greater than or equal to the sum of the requirements of all the back-
diagonals.

Case 6. C = {S]UB UE where 8 is a proper subset of B and £, is a proper
subset of £. The capacity of cut (C,C) is equal to the sum of the capacity of cut
(E1,{T}) plus the capacity of cut ({5}, B:).where B. = B\ B, plus the capacity of
cut (8, E1) where £> = EY E|.

We first show that if the size of #) is more than m + 1, then the cut capacity is
= X, without using the hypothesis. For each of the elements the requirements are
either m or m — 1. Further, if the requirement is m, then the in-degree can be vy — 1
or s — 2 and if the requirement is »m — 1, then the in-degree can be s — 2 or s — 3.
The size of the set 8, greater than m+ | implies that the size of the set B is less
than s —m — 1, i.e., less than or equal to s — m — 2. Each of the back-diagonals in
B> can be connected at most once to each of the elements in £ . Hence for each
element ¢ in £,, the back-diagonals in B, can account for at most s — m — 2 of the
arcs coming into e. If the requirement of e is m. then its degree is at least vy — 2 out
of which at most s —m — 2 is contributed by the back-diagonals in 8. Thus the
back-diagonals in B) must contribute at least s— 2 — (s —m — 2) =m 1o its in
degree. In a similar fashion, it is possible to argue that if the requirement of ¢ is
m — 1, then also at least m— 1 of its in-degree must be contributed by the back-
diagonals in 8. Thus for each element ¢ e £, the number of arcs coming into it
from the back-diagonals in 8 is at least as great as its requirement. Hence the cut
capacity 1s = ¥ = X\

We now turn to the case when the size of 8, is less than or equal to m + 1. In this
case we need to use the hypothesis. Consider a flow fthat meets all the requirements
on back-diagonals of B). Clearly,

cap( S, By} = f(S, B))
(B E)+f(E,T)

< cap( 8, E3) +cap( £, T).
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Therefore,

X =cap(8.B) = cap(8, B)) +cap(§, 8
< capl B Ex) 4 cap( ), T) + capl( 5, 81)
= eap(C, C),
as required. [ |

In the next two subsections we use Theorem 41 to show the correctness of the
construction strategy for the cases kK = 2 and &k = 3. We conjecture that in the general
case ({51, {5}) is a minimum cut in the network N.

45 Case k=2,5<s<v<=X

Here we prove that in the case &k = 2, the requirement of all the back-diagonal in the
eraph G can be satisfied. For this we use Theorem 41 Since & = 2 we have m = | and
hence by Theorem 41, it is sufficient to show that the requirement on any two back-
diagonals can be satisfied. First we state some preliminary results.

LEMMA 42, Let s = 0 be an even integer and & < 3. In the First Phase Allocation of
Construction Strategies 3, 4, 5 and 6, there are at least four short elements.

Proof.  We prove the result only for &£ = 2 and Construction Strategy 3. The proofs
for the other Construction Strategies and the case k = 3 are similar.

In Construction Strategy 3 we have s to be even, ¢ to be odd and (v —r) = p. The
corresponding equation is

(v—rls=rla+ 11+ {v—r—pils +a) +pla).

It is easy to check that in this case (v —r) must be even. The number of short
ekements is p+r=2s— v+r= 25— (v—r). Since (v —r) is even it follows that the
number of short elements must be even. Since p = (), there must be at least one short
elerment. We show that there cannot be exactly two short elements. Suppose that
there are two short elements. Then 2 =r+p =25 —v+r which implies that
v—r=2s—2. Since 25— 1 = v, this gives r < 1. Thus r = 0, | and correspondingly
p=21.1p=1, then v =25 — | which gives n = |ks*/v| = |24 /(25— 1)| =5 and
r =4 Since s = 1, this contradicts r = 1. On the other hand, ifp = 2, then v =25 — 2
which gives n=s+41 and r =2. This contradicts r=10. Thus we get a
contradiction and hence there cannot be exactly two short elements. | |

The next result holds for all k.
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Lemma 43, Lee O <k, 1 <5 < v<ky and “Short” he the see of short elements
Paced in the first phase of Construction Strategies I to 6. Also let N be the network of
Construction 36, Then the following holds.

I In Construction Strategies T io 5, (f N has a back-diggonal b such that theve are no
arcy (b el for any ee Shore, then b nue be the first back-diagonal of either the
sequence 5 or the sequence 5.

2 fn Construction Strategy 6, i N has a back-diagonal b such that there are no ares
(hoe) for any e Short, then b st be either the first hack-diagonal or the 2p-th
hack-diagonal of the sequence 5.

Proof.  lItem 1 has to be proved separately for s odd (Construction Strategies 1 and
2) and for seven (Construction Strategies 3, 4 and 5). We provide only the proof for
§even.

We have p,v—r = (. It 15 easy to check that this implies that in Construction
Strategies 3, 4 and 5, there is at least one short odd element. By Construction 34, it
follows that since there is at least one short element and the sequence F starts with a
diagonal cell, the first element placed must be a short odd element. Hence the first
back-diagonal completely contains at least one short element. Denote the first back-
diagonal by b and the first short element placed by ¢. Then the arc (b, ¢) is not
present in the network N. Further, for any back-diagonal ' # b, the arc (§,e)) 15
present in & Hence if b is such that there are no arcs (b, ¢) for all ee Short, then we
must have b= by, 1.e., b must be the first back-diagonal.

MNow we turn to the proof of Item 2. In Construction Strategy 6, if there is at least
one short odd element, then the proof is similar to Item 2. There is no short odd
elernent only if r = (. In this case, the number of back-diagonals filled in the first
phase is 2p. Since 2p is even, the last back-diagonal filled in the first phase does not
have any diagonal cell. Hence the last element placed in the first phase cannot be a
long element and it must be a short even element. Thus the 2p-th back-diagonal
completely contains at least one short element. Now it is possible to argue as before
that b is the 2p-th back-diagonal. [ |

CoROLLARY 44 I o back-diagonal b has fewer than & elements in each cell when
Phase I iy complete, then theve is a short element that i available for b,
We are now ready to turn to the case k = 2.

LemMma 45, Let k=2 and 5,v be such that 5 < 5 < v < 25 Then in the network N of
Construction 36, for any set 10 b} of two hack-diagonals, there is a flow | such that
FS b)) = cap(8. B, for i =1,2.

Proof.  Since k =2, we necessarily have m = 1. Thus for any long element ¢, the
capacity cap( T, ¢) = 0. S0 any flow that meets the capacities of b and & must use
only the short elements to do so. We consider two cases.
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Case 1. For each back-diagonal b, there isa short element ¢ such that the arc (b, ¢) is
present in the network N of Construction 36.

If the number of short elements is at most 2, then s must be odd, only the first two
elements can be short elements and only the last two back-diagonals can have
requirement 1. In this case, it is easy to satisfy the requirement of the last two back-
diagonals.

So suppose the number of short elements is at least 3. Let by and b be any two
back-diagonals and fori = 1,2, let 4; be the set of short elements which do not occur
in by, Since by and b can have at most one short element in common and there are at
least three short elements, it follows that |4, U 42| = 2. Hence it is possible to pick a
system of distinct representatives ¢, e for 4, and A5 respectively. Placing ¢ in b
and e in b satisfies the requirements of by and ha.

Case 2. There is a back-diagonal b such that there are no arcs (b, ¢) for each short
element e, in the network N of Construction 36.

Ifa =0, then in the first phase, short elements corresponding to frequency o have
not been placed in any back-diagonal. Thus for any back-diagonal & the arc (¥, ¢)
must be present for each short element ¢ corresponding to a = (0. This contradicts the
hypothesis of the case. Thus we must have a = (.

In this case, it is sufficient to show that b must have been filled twice in the first
phase, i.e., the capacity of the arc (5.8 in the network N of Construction 36 s (). We
prove this by contradiction. Suppose that b has been filled only once in the first
phase. Since a = 0, the number of short elements is at most [{(s+ 1)/2].

By Lemmas 42 and 43, in Construction Strategies 1 to 5, b must be the first back-
diagonal. If the first back-diagonal has been filled up only once in the first phase,
then the sum of requirements of all the back-diagonals is at least v. Using Lemma 37,
this means that there should be at least s short elements. This contradicts the fact
that there are at most [(s + 1)/2] short elements.

In Construction Strategy 6, if some back-diagonal contains all the elements, then
this is either the first back-diagonal or the 2p-th back-diagonal (Lemma 43). If it is
the first back-diagonal, then the argument is similar to the one given above. So
suppose the 2p-th back-diagonal contains all the short elements. Note that in
Construction Strategy 6, the 2p-th back-diagonal is the last back-diagonal that is
filled in the first phase. If 2p = 5, then this back-diagonal is completely full. 1F2p < &,
then the total requirement of the back-diagonals is at least s and hence there must be
at least these many short elements. Again this contradicts the fact that the number of
short elements is at most [{s+ 1)/2]. ]

From Lemma 45, and Theorem 41, we get the following result.

THEOREM 46.  [f'5 <5< v 2y, then an SB5:(s,v) can be construcied.
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46, Case b= 3.5 <s<v<3s

Here we prove the correciness of Construction 39 for the case & = 3. By definition
m= |ksfv| = |3s/v] < 3, since v = 5. Thus the possible values of m are | and 2. We
consider these cases separately. Further since & = 3, the requirement in any back-
diagonal is at most 3.

LEMMA AT, Let 5 < s < v,k = 3andm = 1. Suppose there iv a back-diagonal b such
that there are no ares (b, e) for all short elemens e in the neowork N of Construction 36.
Then b nrust have been completely filled in the firse phase, ie., capacity of the arc (5. h)
niust be (.

Proof.  As in the proof of Lemma 435, the hypothesis on b forces a > (. We show
that b is completely filled separately for v even and s odd.

If 5 is odd, then using Lemma 43, & must be the first back-diagonal. In
Construction 30, all the short elements are placed before any long element. Hence b
can be filled by short elements only once. Thus the total number of short elements
can beat most [5/2]. Since there are at most [5/2] short elements, using Lemma 37
there are at most [5/2] back-diagonals to fill in the second phase. Therefore the first
back-diagonal was filled up three times in Phase 1. This proves the result when s is
odd.

We now consider the case s even. There are two subcases, depending on whether
there is at least one short odd element or not.

First suppose there is at least one short odd element. Then by Lemma 43, b must
be the first back-diagonal. If A is filled up only once, then there can be at most
[{s+ 1)1/2] short elements. On the other hand, the total requirement of all the back-
diagonals must be at least 2s. Using Lemma 37, this shows that there must be at least
2y short elements. This is a contradiction.

So suppose b is filled up twice. In Construction 34, as long as there are both short
odd and short even elements remaining, these will continue to be placed. Thus after b
is filled up once, there will be short odd or short even elements remaining but not
both.

Suppose only short odd elements remain after b isfilled up for the first time. Since
b is the first back-diagonal, it has two diagonal cells. Thus when b is filled up the
second time, at most two short elements can be placed. Thus the total number of
short elements is at most [(s4 1)/2] +2. Since b is filled up twice, the total
requirement of all the back-diagonals is at least 5. This again gives a contradiction.

So suppose that only short even elements are left afier £ is filled up for the first
time. We now distinguish two cases. If @ = 1, then the total number of short elements
in b is at most 5/2 + (v —2)/2 =5 — 1, whereas the total requirement of all the back-
diagonals is at least 5. Using Lemma 37, this again gives a contradiction. So suppose
a = 1. Then the short frequencies are 1 and 2 and the number of short elements with
frequency 1 is at most 2. If possible, let this number be 2. When b is filled up for the
first time, the first and last elements placed in b have frequency 1. The second back-
diagonal starts with an off-diagonal cell and an element of frequency 2 will be placed
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in this cell by Construction 34, Thus all short elements have not been placed in b,
which contradicts the hypothesis. So the only possibility is that @ =1 and the
number of elements with frequency a is exactly 1. 1t is easy to check from equations
(11} to (14) that this cannot happen. Thus b must have been filled up three times.
The other case that we need to consider is when there are no short odd elements.
This can happen only in Construction Strategy 6 with r = (0. In this case there are
only short even and long even elements. The last back-diagonal filled in the first
phase is the 2p-th back-diagonal. Since 2p is even, this back-diagonal does not have
any diagonal cell. Hence the last element placed in the first phase must be a short
even element. Since this element is placed in the 2p-th back-diagonal, by the
hypothesis, the 2p-th back-diagonal must be b, Since ¢ =0 and in Construction
Strategy 6. ¢ is even, we must have o to be at least 2. Thus if b is filled up twice, there
can be at most 5 short elements. If 2p < 25, then the total requirement on the back-
diagonals must be greater than s, which is a contradiction to the maximum number
of short elements. If 2p = 25, then b must have been filled three times in the first
phase. Thus the only possibility is that 2p = 25, Then the number of short elements
must be exactly s. If & > 2, then the number of short elements present in b is less than
& Thus a must be 2. This combined with r =0, 2p = 25 and equation (14), gives
& << 5. Since s is even, this means s < 4. This contradicts the hypothesis of the lemma,
where 5 = 4. Thus b must have been filled up three times in the first phase. [ |

LEmma 48 Let k=3 35<s<v<3y and m=1. Then in the network N of

Construction 36, for any set {by, b} of back-diagonaly, there s a flow [ such that
SIS b)) = cap(S. b).

FProof. Since m =1, as in Lemma 45, any such flow must use only the short
elements to meet the capacities of b, by. Further, since & = 3, the requirement on any
one back-diagonal can be at most 3. Thus the requirements on & and b can
respectively be the following values.

(13 0,0 (2)0,1 (3) 1,1 (4) 1,2 (5) 2,2 (6) 2,3 (7) 3,3.

Case (1) is trivial. In case (2), we have to show that there is a short element which
can be placed in b . If there is no such short element, then using Lemma 47, we know
that £ must be completely full, which contradicts the fact that requirement of b2 is 1.
Thus there must be a short element which does not oceur in by and hence can be
placed in /. In case (7), using Lemma 37, there must be at least six short elements
which have not been placed in either b or b2 (since no element has been placed in b
or ). 50 we can put any three shortelementsin by and three others in ba. In case (6),
we first show that the requirement on & can be satisfied. Since the requirement on
is 2, it has been filled up only once in the first phase and hence can contain a
maximum of [{s 4+ 1)/2] short elements. Since the requirements are 2.3, using
Lemma 37, the number of short elements must be at least 25 + 1. Since 5 = 5, there
must be two short elements which do not occur in b and can be placed in b Then it
can be shown that there are three distinct elements available for back-diagonal ba.
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Thus we have to consider the cases (3) to (3).

In case (3), from Lemma 47, neither of /) or b2 can contain all the short elements.
Then proceeding as in the case of & = 2, we can show that the requirement of both b
and f; can be satisfied.

In case (4), again using Lemma 47, there must be a short element ¢ which does not
occur in b Then ¢ can be placed in b to satisfy the requirement of by . Since b has
requirement 2, it must have been filled up only once in the first phase and hence can
contain at most [(s + 1)/2] short elements. These elements cannot be placed in by
and also e cannot be placed in by, Thus a total of 1 + [(s +1)/2] cannot be placed in
f. Since the requirements are | and 2, the total requirement of all the back-
diagonals must be at least v+ 1. Using Lemma 37, there must be a total of s+ 1
short elements. Out of these 1 + [(s + 11,/2] short elements cannot be placed in 5.
Since ¥ = 3, there must be two other short elements which can be placed in ha.

In case (3), we first use the argument of case (6) to show that the requirement of b
can be satisfied. Then the number of short elements which cannot be placed in b is
24 [{x 4+ 1)/2]. Since the requirements are 2.2, the total requirement of all the back-
diagonals must be at least s+ 2. Using Lemma 37, the number of short elements
must also be s + 2. Since s = 35, this means that there are two short elements which
do not occur in f2 and hence can be placed in fs. | |

It will be convenient to introduce the notion of gap for the sequel. In the sequences
% and .F, we refer to the v — | back-diagonals (consisting of s{x — 1) cells) between
two consecutive occurrences of back-diagonal b as a gap of & If b s completely filled
up ¢ times in the first phase, then ¢ — 1 gaps of b have also been filled in Phase 1.

We say back-diagonal b covers an element e, if ¢ occupies one or more cells of b;
otherwise we say ¢ is available for b. Thus (b, ¢) s an arc in the Network N of
Construction 36, iff ¢ is available for b. Can all cells of a gap of b be filled by
elements covered by A7 The answer is no, since

s(s—1)—2 —2a=45"—3s—2a
= s — 35— 25+ 2, sincca<s—1
=(s—3)s—-2)—-4
=2 sinee § > 5.

Therefore, there is at least one element available for b corresponding to each gap of b
filled in Phase 1.

LEmmA 49 Let k=3 5<s<v< 35, and m=2. Then in the network N of
Construction 36, for every set 10, b2 by} of back-diggonaly, there iv a flow fsuch that
SIS b)) =cap(8. b)), for i =1,2 3.

Proof.  Without loss of generality we assume that the first occurrence of b is before
the first occurrence of /2 and the first occurrence of b 18 before the first occurrence of
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fy in either the sequence % (equation (15)) or the sequence ¥ (equation (16)). We
have to consider the following possible requirements on the back-diagonals by, h,
and by respectively.

(1) 0,0,0 (2) 0,
2208

J1(3)0,1,1 (4) 1,1,1 (5)1,1,2
299
12,3(9) 2,3,3(10)3,3,3

——
o

——
[E*]
S

Since m = 2, in the network N of Construction 36, for each element vertex e, the
arc of the form (e, T has capacity either 1 or 2. From this, using Lemma 37, we get
that the requirement of any back-diagonal b (i.e., the capacity of the arc (5, /) in the
second phase must be at least 1. Thus the cases (1) to (3) above cannot arise. We now
separately consider the cases (4) to (10). Fori = 1,2, 3, let 4; be the set of elements
available for back-diagonal b, in the first phase. Then in the second phase any
elernent from A; can be placed in &. Further, let o be the total number of short
elermnents. Clearly, ¢ < v.Then each of these ¢ short elements have to be assigned to
two complete back-diagonals in the second phase.

Case (4) Requirements are 1,1,1.  Let ¢ be the first element which is placed in b in
the first phase and let ¢y be the last element which is placed in by in the first phase.
Then ¢) does not occur in by and e3 does not occur in by, Placing ¢) in by and e3 in f)
satisfies the requirements of b and b3, The back-diagonal b is filled up twice in the
first phase and hence one gap of b is also filled. Since v = 3, there must be an
element ¢ in the gap of f/ which s available for b2, Also ¢ cannot be the same as
either ¢ or ¢3. Hence ¢x can be placed in h2 to satisfy the requirement of bs.

Case (5) Requirements are 1,1,2,  We consider two cases.

I ocovers at feast three elements.  Then there s at least one short element x in M.
This element x can be assigned to two back-diagonals. Hence x is placed in both b
and by to satisly the requirements of both b and b2 The maximum number of
elernents occurring in by 18 (s + 1)/2]. Since the number of elements is at least s+ 1,
the number of elements which can be placed in b3 is at least |(s+1)/2] = 3, for
& = 5. Hence there must be two elements which can be placed in by to satisfy its
requirement.

I ocovers at most two elements. For i = 1,2, let e be an element available for &y
corresponding to the first gap of by

If &) # ea, then place ) in b and e in bo. This satisfies the requirements of b
and ha. Since by covers at most two elements, |43 = v— 2 Therefore,
|43 {erex}t| = v—4 =2, since v > 6. Hence there are at least two elements
available for by,

If e; = ¢a, then there is only one element in the first gap of b and b, which is
available for both ) and b2, Let ¢y be the element immediately succeeding ¢) = ¢2
in Phase 1. Then e 15 not available for either & or b, Hence the element ey



274 SARKAR AMND SCHELLENBERG

succeeding ¢y in the Phase 1 must be available for by . Therefore we place ¢ in
and ¢4 in By to meet the requirements of b and b The requirement of by can be
satisfied as abowve.

Case (6) Requirements are 1,2.2.  Let the first element placed in by in the first phase
be ¢) and the last element placed in by in the first phase be ¢2. Then ¢ (respectively
e2) does not occur in by (respectively fo ). Thus we can place ¢ (respectively e:) in by
(respectively b ). Since by is filled up twice, it has one gap and since s > 5, there must
be an element ¢ occurring in the gap of ) which is not present in b This can be
placed in b . Thus the requirement of A is satisfied and the requirements of b; and by
are now 1, 1. Since by, by have been filled only once in the first phase, we have
[Aa) |43l =5 +1—[(s+1)/2] = (s +1)/2]. Also, [|d2\{e,ea}],|3\{e,er}| =
[(s+1)/2| -2 =1, fors = 5. Further, [42 U A3 = v— land |4y U A3\ {e.e1, e} =
v—4 =2 for v> s = 5. Thus we can find a system of distinct representatives 3, f3
respectively for the sets 4>\ {e,ea} and A43'\{e, e }. Then we can put £ in b2 and f; in
by to satisfy the requirements of b and b

Case (7) Requiremenis are 22,2, This has three subcases.

b by ab least three elements.  Then there must be a short element ¢ in b This
elermnent is placed in both & and by, Let the first element placed in f in the first phase
be ¢) and the last element placed in b in the first phase be ¢a. Then ¢) does not occur
in by and 2 does not occur in Ay, Thus placing e (respectively £2) in by (respectively
by ) satisfies the requirements of both b and b;. Further, since b, has been filled only
once in the first phase, by the now standard cardinality argument on Aa, there must
be two elements in 4> and hence these can be placed in ha.

b has exactly two elements. Let the first element placed in b in the first phase be ¢
and the second element placed in b in the first phase be #2. Then ¢) (respectively &)
does not occur in by (respectively by). S0 ¢ can be placed in by and ¢ can be
placed in ). Now |4 Z2v—[{s+ 1)/2] 25+ 1—-[(s+1)/2] = (s + 1)/2] = 3.
Similarly, |43] = 3. In addition, |4, U 43| = v. Therefore, |4\ {e,e2}| = 1, |43}
fer.eat| = 1 and |4, U Aa\{e.ea}| = v — 2. Therefore there are distinet elements
Ji.f5 such that fied "\ {e,ea} and 1€ 43" {e),ea}. The elements f,f3 can now be
used to meet the requirements of the back-diagonals &) and By respectively. Now by
hypothesis, |4.| = v— 2. Therefore, |42\ {e|,ea,f). i}l =v—4 =2, since v= 6.
Hence there are two elements in A, distinet from e, ea, f1, f3, which can be used to
satisfy the requirement of ha.

b containg exactly one element.  Let this element be ¢, This is necessarily a long
elernent. In this case, there must be an element ¢ (respectively e3) in b (respectively
f) which does not occur in by (respectively by). Thus ¢ (respectively e3) can be
placed in by (respectively f). It is now possible to argue that the sets 4, {3} and
A3 {er } has a set of distinet representatives f), 3 respectively. Then f) can be placed
in A and fy can be placed in by Now |42\{e,e1,e3, 1.6} =v—5.1f v = 7, there
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must be two elements in A2Y {e, e, e3. /.6 } and hence these can be placed in b2, So
suppose v = 6. Then there is at keast one element fin 4.% {e, e, €3, /1. /3} which can
be placed in b, Thus we now have to show that there is another element which can
be placed in b2 Since the requirements of the back-diagonals are 22,2, we have
V4o x5+ 38 fory> 5 Since v = 6, we have ¢ > 2. Thus there are at least two
short elements. The element ¢ is long element. So one of the elements ¢y, 3. /1.6
must be a short element. Let us call this element /7. Then /7 has been placed in one of
by or by but not both. Since /7 is a short element and does not occur in by, it can be
placed in by to satisly the requirement of .

Case (8) Requirements are 2,23, In this case, there s either an element ¢ in by
which does not occur in b or an element e in b which does not occur in by, We
assume the first case, the other case being similar. Thus ¢, can be placed in 2. Then
we have, |A| = |[(s+1)/2] Z 3, |da\{ex}| Z (s +1)/2] — 1= 2 and [4; UAaY
{ea}l = v—2= 4, for s = 5. Thus we can choose three distinct elements fi. 5, f3
such that f1. /> 4, and /3 4>. Elements f}. > are placed in b and f5 is placed in 5.
This satisfies the requirements of by and b, IF v = 7, then there are three other
elements which can be placed in by, So suppose that v = 6. In this case, there are two
elements distinet from e, f), /2, f3 which can be placed in by. Since the requirements
of by b by are 223 we have v+ o6 = 2y 4+ 1 = 11 for s = 5. Since v= 6, we have
& = 5, i.e, there are at least five short elements. This means that at least one of the
elements e, f1. /2. f3 must be a short element (say /). Since none of e, f}, f3, f3 occur
in by, we can place  in by, This satisfies the requirement of ;.

Case (9 Requirements are 2,3,3. Cardinality argument on 4, shows that the
requirement of h) can be satisfied. Suppose the elements that can be placed in b are
e,ea. If v = 8, then there are three elements each for b and by, Since the
requirements are 233 wehave v+ o> 25+ 2> 12 fors =5 Ifv= T, theno = 3
and if v = 6, then 6 = 6. Thus there are at least five short elements. Hence there are
at least three short elements distinet from e, e2. Let us call these i, /5. /5. Then one
may place elements /1, /5.5 in b2 and in by, This satisfies the requirements of by and

hy.

Case (10} Requirements are 3,33, If v =9 then three distinct elemenis are
placed in each of by, M, by So suppose v < 9. Since the requirements are 3.3.3, we
have v+o = 25+ 3 = 13, for 5 = 5. Since o < v, this gives v = 7. Thus we have to
consider the cases v =78 If v=7, then ¢ =6 and if v=8&, then ¢ > 5. Thus
there are at least five short elements. Let these be ¢,e2,¢3,e4,¢5. We place
e ey, esin by, e, 0,04 in b oand e, 63,04 in by, This satisfies the requirements of
By by by [ |

Combining Lemmas 48, 49 and Theorem 41, we get the following result.

THEOREM 30, 5 < s < v< 3u, then an SBSy(s v) can be conytructed.
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5 Caser < s

We describe a construction of SBS5i(s, v) whenever v < 5. Let s = gv +r. The case
v|s (ie., r=0)is simple and hence we dispose of it first. The construction for the
case vf g 18 based on a re-balancing technique.

Consider the following sequence of numbers.

01,....s—2,5—1.

For 0 <i<s—1, let W; be a window of length k, 1e., W; is the subsequence
i+0i4+1,...,i4+{k—1) mod 5. Define a new sequence Seq(s) as follows

It is not difficult to verify that each element of {0,... .. i — 1} occurs exactly & times in
the sequence Seq(s).

We start by describing a construction of S85; (s, ) based on the sequence Seqis).
The construction is different for 5 odd and s even.

Case v odd. Assign the set of elements in the window W, to the back-diagonal D,
{see Definition 22). Clearly the resulting array is an S85;(x, 1),

Case seven.  For (0 <7 < 4/2 — 1, assign the set of elements in the window W 1o the
back-diagonal E; (see Definition 23). For /2 < i < v — 1, assign the set of elements
in the window W to the back-diagonal ¥, ,>. Again it is easy to see that the
resulting array is an SBS; (s, 5).

The following important property is achieved by the above construction.

PROPOSITION 51, fn any 8BS (s 8) constructed by the above method the following
holds. For O < i< |s/2] =1, the (i,i)-th cell contains the element | and does not
contain any of the elements i +k i+k+1,..., i+v—1

Proof.  This follows immediately since W isin cell (7,7) for 0 < i< |5/2]. [ |

We now tackle the case v|s. Let r=0 and 5= gv. Let M be an S85;(v,v)
constructed as above. The construction of §85; (gv, v) is simply a g =g block array
whose blocks are M. Clearly this construction is correct. Thus we get the following
result.

THEOREM 32, Let &, 5, v be positive integers such that v|s and 2k < v, Then it i
possible to convtrucs SBS; (s, v).

When s = gv + r, where () < r < v, we use a modification of the above technique. Let
L be the 885, ({g — 1)v,v) constructed as described above. Consider the following
array .
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L R A
RT M B
AT BT 8§

The various components are as follows.

l. The array B is a rectangular vxr array, where each entry is a k-subset of
{0,..., v— 1}. Each column of 8 has all the v elements exactly & times each. Each
element occurs either |[kr/v| times or [kr/v| times in any row of B. The
construction of B is described later.

2. The array A is [BT,..., B"|", where there are exactly {g — 1) copies of B”.
3. The array R =[M,..., M]T, where there are exactly (g — 1) copies of M.
4. The array & is a square r x r array, which is either an SB5;(r.v) if one exists or

else it is an NSBSg(r, v).
There are two cases to consider.
Case r<v<rk. In this case the array 8 is constructed as follows. Let

kr = gyv+ry, where 0 < ry < v. Consider the following v x kr matrix E. (All entries
are taken modulo v.)

0 e or—=1 0 T e T 0 e =1 0 e om—1

| i 1 i | v 1 I
r—1 ... 2v=2 v—1 ... 2v=2 .. v—=1 ... 2vr=2 v—=1 ... v+n
In the first row, the first ;v entries are g many repetitions of 0,. .., v — 1. The last r|

entries are 0, ....r — 1. The array 8 is constructed from the above matrix. The first
column of #is the first & columns of £. In general the i-th column of B consists of the
columns (i — 1)k + 1 to ik. Clearly in the above construction in each row any
element occurs either | kr/v| times or [kr/v| times.

When & = 1, the condition for this case is vacuously true. For & = 2,3, using
Theorems 46 and 50, we know that SBS;(r, v) can be constructed. In these cases, we
take S to be an S8S;(r, v).Then it is easy to check that the array D is an SHS5(s, v)
and hence S85;(s, v) can be constructed. For & = 3, the above technique reduces the
problem of constructing SBS;(s,v) to one of constructing SHS5;(r, v). Thus we get
the following.

LEMMA 533, Let s, v, & be positive integers such that 28 < v, s = gv +r, with g = 0,
r< v < rk. Then the following holds.
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0k < 3, then 8BS 5, v) can be consfructed.

200k = 3, then 8BS (s v) can be constructed i SBSg (r.v) can be constructed.

Case v=rk. 1If §B5.(r,v) exists, then we use the technique described above. If
SBSir.v) does not exist, then using Lemma 21, we know that NSBS;(r,v) exists.
We put Sto be an NSBS;(r,v). If v= rk, then SBS;(r,v) exists. If v = rk and there is
no SBS.(r.v), then v = rk. In this case, there i1s an NSBS,(r, v).

Our strategy now is to re-balance the entire array. We replace some of the elements
in the diagonal cells of M by other elements. This cannot be done arbitrarly. We
describe the conditions that must be satisfied for such replacements to be possible.

In an NSBS; (s, v), the elements can have three possible frequencies n — 1on,n+ 1.
Let v_y,w,vy be the numbers of elements with frequencies n— 1 n.n+ 1
respectively. Put  w=min{v_j,v. ). Note that v +vy <v and hence
w= |v/2]. Without loss of generality we assume the following. We take the
elements 0,1,...,w—1 to have frequency n+ | and the elements v —w, v —w+
l,....,v—1 to have frequency n — 1. The elements 0.1, ..., w —1 are going to be
replaced once by the elements v —w, v —w+ 1,...,v — 1 respectively in the array M.
By Proposition 51 we have that for 0 < 7 < w— 1, the (i, 7)-th cell of M contains the
element { but not the element v—w +4i. Thus for 0 <i<w— 1, we can replace
elernent 7 in cell (i, {) by element v — w + i provided the frequency of element i in row
and column i exceeds the frequency of element v — w4+ i by 1. After the replacement
the row frequencies of the elements will be interchanged. The overall frequencies of
the elements i and v — w+ i will become equal.

We now describe a construction for 8 which achieves this property. Note that
since v > kr, each element must oceur either () or | time in each row of B. Consider
the following matrix #. All entries are taken modulo v.

0 1 ... v—w—=1 v—w+1 v—w+2 ... kr kr+1

1 2 e ¥—w r—w+2 v—w4+3 ... kr41 kr42
{v—l Yoo 2r—w-=2 2vr—w 2v—w4+1 ... v+kr—1 1‘+.kr"‘
Mote that in this matrix the column [v —w, ..., v —w— 1|T is missing.

The construction of B is from F. The first column of B consists of the first &
columns of F. In general the j-th column of B consists of the columns (f— 1k + 1 to
Jk of F. Since each column of F contains all the v elements exactly once, it follows
that any column of 8 contains each of the velements exactly k times. Since v = rk in
each row of B, any element occurs either 0 or 1 time. Further, for 0 < i< w— L

® The element i certainly occurs in the ith row of B.

# The elkement v — w + § does not occur in the i-th row of 8.

Thus the substitutions in the diagonal cells of M can be made properly. This gives us
the following result.
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Lemma 54, Let s kv =0, such that s =gv+r, with g =0, vZ=rk. Then it i
possible to converuc: SBSp (s, v).

Combining Lemmas 53 and 54, we obtain the following result.
THEOREM 35, Let s kv = 0 with v < 5 and 2k < v. Then we have the following.

o [k <3 SBS.(sv) can he constructed.
o [k =3 thenlet s =gv+r.
o [fv =0k, then S5, (s, v) can he constructed.

o ['r<v<rk, then 8BS (s, v) can be constructed ift SBSg (v v) can be constructed.

6. Conclusion
We make the following conjecture.

COMNIECTURE 1. Let s vk be positive integers. Then an SBSi(s,v) can be constructed
whenever it ix feasible (see Definition 3.

Our work in this paper shows ample positive evidence that Conjecture 1 is indeed
true. More precisely, following our work, to prove Conjecture 1, it is sufficient to
prove that S85;(s,v) can be constructed under the following condition.

ey = v=Ffs, k>3and 5 = 4.

Our approach to proving Conjecture 1 18 to show the correctness of Construction
39. This fact along with Theorem 40 leads us to make the following conjecture.

CONJECTURE 2. The cut ({8},{S}) in the network N of Construction 36 is a
minimum capacity cuf.

We have proved Conjecture 2 and hence the correctness of Construction 3 for the
cases k = 2.3 So for & = 3, Construction 39 can currently be considered to be only a
heuristic. For all the examples that we have investigated with & = 3, Construction 39
turned out to be correct. This leads us to believe that Conjecture 2 is true for general
k. Proving Conjecture 2 for general & will prove Conjecture 1. However, there may
be other methods of proving Conjecture 1.
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