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Abstract
In this paper we present a constructive detection of minimal monomials in the algebraic

normal form of rotation symmetric Boolean functions (immune to circular translation of in-
dices). This helps in constructing rotation symmetric Boolean functions by respecting the rules
we present here.
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Combinatorial Problems.

1 Introduction

In [2], Pieprzyk and Qu studied some functions, which they called rotation symmetric (RotS), as

components in the rounds of a hashing algorithm. The study of RotS functions was continued

in [1, 4]. When efficient evaluation of the function is important, for instance in the implementation

of MD4, MD5 or HAVAL, the RotS property is desirable, since one can reuse evaluations from

previous iterations. We can simply view such a hashing algorithm as a sequence of iterations

where each iteration takes some input X = (Xk, . . . , X0) and a message block M and produces

the output Y = (Yk, . . . , Y0) using the rule Y = M + F (Xk−1, . . . , X0) + RotS(Xk, s). Note

that M,Xi, Yi are blocks of N -bits, and RotS(Xk, s) is the circular rotation of the block Xk by

s positions to the left, and F is another cryptographic primitive. It is important to study the

component RotS(Xk, s) of such a hashing algorithm (for more information see [2], for a way to

reuse previous evaluations).

As it is the case with every cryptographic property, one is interested to count the objects

satisfying that property. This motivates us to look at Boolean functions satisfying various criteria

and try to select functions necessary for cryptographic design. We need to know how big the pool

of choices is and how to generate functions in that pool.

Let Vn be the vector space of dimension n over the two element field Z2 (= V1). A Boolean

function on n variables may be viewed as a mapping from Vn into V1. We interpret a Boolean
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function f(x1, . . . , xn) as the output column of its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

Throughout the paper, by a ≤ i ≤ b, we mean that a, b, i are integers and i takes the values

a, a + 1, . . . , b− 1, b. If xi ∈ {0, 1} for 1 ≤ i ≤ n, and 0 ≤ k ≤ n− 1, we define

ρk
n(xi) = xi+k if i + k ≤ n,

= xi+k−n if i + k > n.

Let (x1, x2, . . . , xn) ∈ Vn. We can extend the definition of ρk
n on tuples and monomials as

follows:

ρk
n(x1, x2, . . . , xn) = (ρk

n(x1), ρk
n(x2), . . . , ρk

n(xn)) and ρk
n(xi1xi2 · · · ) = ρk

n(xi1)ρ
k
n(xi2) · · · .

Definition 1. A Boolean function f is rotation symmetric (RotS ) if for each input (x1, . . . , xn) ∈

Vn, f(ρk
n(x1, . . . , xn)) = f(x1, . . . , xn) for any 0 ≤ k ≤ n− 1.

Given a binary string x = (x1, . . . , xn), we define the weight of x, denoted by wt(x1, . . . , xn),

as the number of 1’s in x. Further, + is the addition operator over GF (2). An n-variable Boolean

function f(x1, . . . , xn) can be seen as a multivariate polynomial over GF (2), that is,

f(x1, . . . , xn) = a0 +
n∑

i=1

aixi +
∑

1≤i<j≤n

aijxixj + . . . + a12...nx1x2 . . . xn,

where the coefficients a0, ai, aij , . . . , a12...n ∈ {0, 1}. This representation of f is called the algebraic

normal form (ANF) of f . The number of variables in the highest order product term with nonzero

coefficient is called the algebraic degree, or simply the degree of f . A Boolean function is said to

be homogeneous if its ANF contains terms of the same degree only.

Let us denote

Gn(x1, . . . , xn) = {ρk
n(x1, . . . , xn), for 0 ≤ k ≤ n− 1},

that is, the orbit of (x1, . . . , xn) under the action of ρk
n, 0 ≤ k ≤ n−1. It is clear that Gn(x1, . . . , xn)

generates a partition in the set Vn. Let gn be the number of such partitions. We found in [4] that

the number of RotS functions is exactly

2gn , where gn =
1
n

∑
k|n

φ(k) 2
n
k , (1)

φ being Euler’s phi−function. It turns out that the sequence gn counts also the number of n-bead

necklaces with 2 colors when turning over is not allowed, or output sequences from a simple n-stage

cycling shift register, or binary irreducible polynomials whose degree divides n (see [3]). The proof

needs Burnside’s lemma (see [4] for a more detailed discussion).
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Further the following results have been proved in [4] regarding RotS functions of some specific

degree. Consider n-variable RotS Boolean functions. The number of

(i) degree w homogeneous functions is 2gn,w − 1,

(ii) degree w functions is (2gn,w − 1)2
∑w−1

i=0 gn,i and

(iii) functions with degree at most w is 2
∑w

i=0 gn,i ,

where gn,w is defined as follows [4]: consider Gn(x1, . . . , xn), where wt(x1, . . . , xn) is exactly w,

and define gn,w as the number of partitions over the n bit binary strings of weight w (total number(
n
w

)
), determined by Gn. Further, denote by hn,w the number of distinct sets Gn(x1, . . . , xn), where

wt(x1, . . . , xn) = w and |Gn(x1, . . . , xn)| = n, that is, the number of long cycles of weight w. It is

easy to see that hn,w ≤ gn,w. Write k|′m, if k (1 < k ≤ m) is a proper divisor of m. The following

result was obtained in [4]:

(i) gn,w =
1
n

(
n

w

)
, if gcd(n, w) = 1. Also, gn,0 = gn,n = 1.

(ii) gn,w =
1
n

(n

w

)
−

∑
k|′gcd(n,w)

n

k
· hn

k
, w

k

+
∑

k|′gcd(n,w)

hn
k

, w
k
, if w < n.

However, the combinatorial results of [4] renders a nonconstructive count as opposed to the

results of this paper. By using a different method, we find necessary and sufficient conditions for

minimal monomials to generate cycles in homogeneous RotS functions. This in turn helps in the

enumeration of RotS functions of certain degree.

2 The Results

We start with the definition of the short algebraic normal form (SANF) of a RotS function. By

abuse of notation we use Gn further on the monomials defining

Gn(xi1xi2 . . . xid) = {ρk
n(xi1xi2 . . . xid), for 0 ≤ k ≤ n− 1}.

We write a RotS function f(x1, . . . , xn) in the form

a0 + a1x1 +
∑

a1jx1xj + . . . + a12...nx1x2 . . . xn,

where the coefficients a0, a1, a1j , . . . , a12...n ∈ {0, 1}, and the existence of a representative term

x1xi2 . . . xid implies the existence of all the terms from Gn(x1xi2 . . . xid) in the ANF. This repre-

sentation of f is called the short algebraic normal form (SANF) of f . Note that the number of
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terms in each summation (
∑

) corresponding to same degree terms depends on the number of short

and long cycles.

A cycle is called long if the minimum N satisfying ρN+1
n (x1, . . . , xjd

) = x1, . . . , xjd
is n− 1, i.e.,

|Gn(x1xi2 . . . xid)| = n. A cycle is called short if the minimum N satisfying ρN+1
n (x1, . . . , xjd

) =

x1, . . . , xjd
is strictly smaller than n − 1, i.e., |Gn(x1xi2 . . . xid)| = N < n. These cycles are com-

pletely determined by their minimal monomial, i.e., the lexicographically first term xj1xj2 · · ·xjd

(it is clear that j1 must be 1).

Assume throughout that d ≥ 1. First note that a degree d homogeneous RotS function is a

sum of degree d RotS long cycles,

n−1∑
k=0

ρk
n(xj1xj2 · · ·xjd

), j1 < · · · < jd,

or degree d RotS short cycles

N−1∑
k=0

ρk
n(xj1xj2 · · ·xjd

), j1 < · · · < jd.

Therefore, there is an equivalence between the cycles of RotS functions and their minimal

monomials. Using this observation we obtain our first result.

Theorem 2. The number of homogeneous RotS functions of degree d ≥ 1 equals

2m(d) − 1,

where m(d) is the number of minimal monomials of degree d.

Proof. Let mi, i = 1, . . . ,m(d) be the minimal monomials. It is obvious that any RotS function is

a sum of cycles determined by these monomials. Since the constant 0 function is not counted, we

get the result.

Corollary 3. The number of RotS functions of degree d ≥ 1 (not necessarily homogeneous) is

(2m(d) − 1) · 2
∑d−1

i=1 m(i)

Proof. In a degree d RotS functions we must have at least a degree d homogeneous RotS cycle.

Using the previous theorem and the fact that RotS cycles of lower degree may or may not appear,

the number of these being 2
∑d−1

i=1 m(i), we get the count.

The number of degree d monomials is obviously
(
n
d

)
. How many of these monomials can occur

as minimal terms? We shall give a constructive answer to this question.
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We treat the case of degree 2 and 3 separately, to clear up some of the issues in the general

degree d case. We take first the degree 2 RotS functions, with cycles of the form f2(x1, · · · , xn) =

x1xl+1 + x2xl+2 + · · · .

Theorem 4. The number of degree 2 homogeneous RotS functions is 2b
n
2
c − 1.

Proof. It suffices to prove that the number of minimal monomials is bn
2 c.

First, take n to be even. If l = n
2 , then f2 is a short cycle. If l ≤ n

2 − 1, it is easily seen that

x1xl+1 is minimal. If l ≥ n
2 , then ρn−l

n (x1xl+1) = xn−l+1x1, which is less than x1xl+1, so x1xl+1 is

not minimal. Therefore, the number of RotS cycles in this case is n
2 .

Now, if n is odd, the same analysis renders the number of RotS cycles to be n−1
2 .

Now we take the case of degree 3 RotS functions, with long cycles of the form

f3(x1, · · · , xn) =
n−1∑
k=0

ρk
n(x1x1+rx1+r+s),

and short cycles of the form

f3(x1, · · · , xn) =
N−1∑
k=0

ρk
n(x1x1+rx1+r+s),

with ρN
n (x1x1+rx1+r+s) = x1x1+rx1+r+s (N < n minimum with this property).

Theorem 5. The number of degree 3 RotS long cycles equals the number of pairs 1 ≤ r, s ≤ n− 1

satisfying either of the following conditions:

(i) s > r and s + 2r < n.

(ii) s = r < n
3 .

Moreover, there is only one short cycle if and only if n ≡ 0 (mod 3), generated by the minimal

monomial x1x1+n
3
x1+ 2n

3
.

Proof. We want to find all minimal monomials of degree 3, which generate long cycles. Take

an arbitrary monomial with indices {1, r + 1, r + s + 1}, which we assume to be minimal. By

applying ρi
n, we get monomials with indices {i + 1, r + i + 1, r + s + i + 1}. It follows that for any

i, with 1 ≤ i ≤ n − 1, the term ρi
n(x1xr+1xr+s+1) follows x1xr+1xr+s+1 in lexicographical order.

Therefore, we have {i, r+i, r+s+i} > {0, r, r+s} (modulo n) (we assume the indices in increasing

lexicographical order), which will hold, except, if either r+i ≡ 0 (mod n) or r+s+i ≡ 0 (mod n).

Since i ≤ n− 1, we obtain that either i = n− r or i = n− r − s.
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Case 1. If i = n− r, then {0, s, n− r} > {0, r, r + s} (obviously, n− r > s). Thus, we obtain that

a necessary condition for our monomial to be minimal is to have s > r, or s = r and r < n
3 (not

sufficient, yet).

Case 2. If i = n − r − s, then we need {0, n − r − s, n − s} > {0, r, r + s}. We get that, either

n − r − s > r, or, n − r − s = r and n − s > r + s, that is, another necessary condition for our

monomial to be minimal is to have 2r < n− s, or 2r = n− s and r > n
3 .

A similar analysis (which will be done fully in our general theorem), renders one short cycle if

and only if n ≡ 0 (mod 3), generated by x1x1+n
3
x1+ 2n

3
.

Corollary 6. The number of degree 3 RotS cycles is

n ·
⌊

n− 1
3

⌋
−

3bn−1
3 c(bn−1

3 c+ 1)
2

,

plus one short cycle if and only if n ≡ 0 (mod 3).

Proof. The number of pairs in case (ii) of Theorem 5 is bn−1
3 c. In case (i), we need r ≤ bn−1

3 c and

r < s < n− 2r. Thus, the number of pairs in case (i) is

bn−1
3

c∑
r=1

(n− 3r − 1) = (n− 1)
⌊

n− 1
3

⌋
−

3bn−1
3 c(bn−1

3 c+ 1)
2

.

Hence the result.

Now, we treat the general case. Let a degree d (homogeneous) RotS long cycle be given by

f(x1, · · · , xn) =
n−1∑
j=0

ρj
n(x1 x1+i1 · · · x1+i1+···+id−1

).

We shall find all monomials x1 x1+i1 · · · x1+i1+···+id−1
, that are minimal, thus counting the

degree d RotS cycles and giving in the same time a way to list them. For arbitrary j, ρn acts on a

minimal monomial in the following way

ρj
n(x1 x1+i1 · · · x1+i1+···+id−1

) = x1+j x1+i1+j · · · x1+i1+···+id−1+j .

For 1 ≤ k ≤ d− 1, take j = n− i1 − · · · − ik. Since x1 x1+i1 · · · x1+i1+···+id−1
is minimal, it follows

that, using the lexicographical order,

{0, ik+1,ik+1 + ik+2, . . . , ik+1 + · · ·+ id−1, n− i1 − · · · − ik,

n− i2 − · · · − ik, . . . , n− ik} > {0, i1, i1 + i2, . . . , i1 + · · ·+ id−1}.
(2)
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We observe immediately that i1 ≤ ik+1, for any k. We distinguish two cases.

Case 1. If k = d− 1, then we need

{0, n− i1 − · · · − id−1, . . . , n− id−1} > {0, i1, i1 + i2, . . . , i1 + · · ·+ id−1}.

It implies that the indices satisfy either:

C: n > 2i1 + i2 + · · ·+ id−1, or

C1: n = 2i1 + i2 + · · ·+ id−1 and n > i1 + 2i2 + i3 + · · ·+ id−1 (⇐⇒ i1 > i2), or

C2: n = 2i1 + i2 + · · ·+ id−1 and i1 = i2 > i3, or
...

Cd−2: n = 2i1 + i2 + · · ·+ id−1 and i1 = i2 = i3 = · · · = id−2 > id−1.

But the conditions i1 = · · · = is > is+1, occurring in Cs (1 ≤ s ≤ d − 2), contradict the first

observation that i1 ≤ is+1, s ≥ 1. Therefore, the only condition in this case that the indices must

satisfy is

2i1 + i2 + · · ·+ id−1 < n.

Case 2. If 1 ≤ k ≤ d − 2, then the inequality (2) implies that the indices satisfy either of the

following conditions:

P k
1 : i1 < ik+1, or

P k
2 : i1 = ik+1, i2 < ik+2, or

P k
3 : i1 = ik+1, i2 = ik+2 and i3 < ik+3, or

...

P k
d−k−1: i1 = ik+1, i2 = ik+2, . . ., id−k−2 = id−2 and id−k−1 < id−1, or

P k
d−k: i1 = ik+1, . . ., id−k−1 = id−1 and n−

k∑
a=1

ia >
d−k∑
b=1

ib, or

P k
d−k+1: i1 = ik+1, . . ., id−k−1 = id−1, n =

k∑
a=1

ia +
d−k∑
b=1

ib and n−
k∑

a=2

ia >

d−k+1∑
b=1

ib, or,

in general,

P k
d−k+l: Qk

d−k+l and
d−k+l∑
s=1

is +
k∑

t=l+1

it < n, for 0 ≤ l ≤ k − 1,

where Qk
d−k+l is the condition i1 = ik+1 and . . . id−1−k = id−1 and n−

k∑
a=s

ia =
d−k+s−1∑

b=1

ib, for all

1 ≤ s ≤ l, that is, Qk
d−k+l is the condition n =

k∑
a=1

ia +
d−k∑
b=1

ib and ij = ik+j , 1 ≤ j ≤ d− 1− k and

is = id−k+s, 1 ≤ s ≤ l − 1.

To have a short cycle, we need j = n − i1 − · · · − ik, with ρj
n(x1x1+i1 · · ·x1+i1+···+id−1

) =

x1x1+i1 · · ·x1+i1+···+id−1
. We see that if k = d − 1, then i1 = i2 = · · · = id−1 = n

d , and the
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minimal monomial for this unique short cycle is x1x1+n
d
· · ·x1+(d−1)n

d
. If k < d−1, then a minimal

monomial for a short cycle needs to satisfy

{0, ik+1,ik+1 + ik+2, . . . , ik+1 + · · ·+ id−1, n− i1 − · · · − ik,

n− i2 − · · · − ik, . . . , n− ik} = {0, i1, i1 + i2, . . . , i1 + · · ·+ id−1},
(3)

which implies

Sk : ik+1 = i1, ik+2 = i2, . . . , id−1 = id−1−k;

i1 = id−k+1, i2 = id−k+2, . . . , ik−1 = id−1;

n = i1 + i2 + · · ·+ id−1 + ik.

Assuming n− i1 − · · · − ik is the order of ρn on x1x1+i1 · · · , we need to impose also the conditions

that for any j = n− i1 − · · · · · · − il (l > k),

ρj
n(x1 x1+i1 · · · x1+i1+···+id−1

) > x1 x1+i1 · · · x1+i1+···+id−1
.

Similar to the case of long cycles, we obtain that the indices must satisfy in addition to Sk, one of

the following conditions

P l
1, P

l
2, · · · (l > k).

Putting together the previous results we get our general theorem (∨,∧ are the logical or,

respectively, and).

Theorem 7. The number of degree d RotS long cycles is equal to the number of sequences 1 ≤

i1, i2, · · · , id−1 ≤ n− 1 satisfying
d−2∧
k=1

(
d−1∨
s=1

P k
s

)∧
C,

Moreover, the number of degree d RotS short cycles is equal to the number of sequences 1 ≤

i1, i2, · · · , id−1 ≤ n− 1 satisfying

d−2∨
k=1

(
Sk ∧

d−1∧
l=k+1

(
d−1∨
s=1

P l
s)

)

plus one more, if n ≡ 0 (mod d).

We regard the previous result as a summarizing or listing theorem. The count is certainly not

as simple as the one of gn,w presented in the introduction, but it has the advantage that one can

construct RotS Boolean functions by respecting the rules of Theorem 7. Certainly, it is possible to

get the exact count in some particular cases (which we have done in Theorem 4 and Corollary 6

for n = 2, 3), but it seems elusive to get, for general n, the count gn,w using Theorem 7.

8



Acknowledgment: The authors like to acknowledge the anonymous reviewers for their profes-

sional comments that improved both the editorial and technical quality of this paper. We also

thank the editor for his patience.

References
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