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Abstraci—The structure classification of proteins plays a very
important role in bioinformatics, since the relationships and char-
acteristics among those known proteins can be exploited to predict
the structure of new proteins. The success of a classification system
depends heavily on two things: the tools being used and the fea-
tures considered. For the bioinformatics applications, the role of
appropriate features has not been paid adequate importance. In
this investigation we use three novel ideas for multiclass protein
fold classification. First, we use the gating neural network, where
each input node is associated with a gate. This network can select
important features in an online manner when the learning goes on.
At the beginning of the training, all gates are almost closed, i.e.,
no feature is allowed to enter the network. Through the training,
gates corresponding to good features are completely opened while
gates corresponding to bad features are closed more tightly, and
some gates may be partially open. The second novel idea is to use a
hierarchical learning architecture (HLA). The classifier in the first
level of HLA classifies the protein features into four major classes:
all alpha, all beta, alpha 4 beta, and alpha/heta. And in the next
level we have another set of classifiers, which further classifies the
protein features into 27 folds. The third novel idea is to induce the
indirect coding features from the amino-acid composition sequence
of proteins based on the N-gram concept. This provides us with
maore representative and discriminative new local features of pro-
tein sequences for multiclass protein fold classification. The pro-
posed HLA with new indirect coding features increases the protein
fold classification accuracy by about 12%. Moreover, the gating
neural network is found to reduce the number of features drasti-
cally. Using only half of the original features selected by the gating
neural network can reach comparable test accuracy as that using
all the original features. The gating mechanism also helps us to get
a hetter insight into the folding process of proteins. For example,
tracking the evolution of different gates we can find which charac-
teristics (features) of the data are more important for the folding
process. And, of course, it also reduces the computation time.

Index Terms—Feature extraction, gating network, N-gram
coding, protein sequence, radial basis function network (REFN),
Structure Classification of Protein (SCOP), support vector
machine (SYM].

[. INTRODUCTION

ARGE-SCALE sequencing projects produce a massive
L number of putative protein sequences. However, the
growing of the number of known three-dimensional {3-D) pro-
tein structures 15 much slower than the sequence determined.
This situation makes the need to extract swructural information
from the sequence database more imperative. Since the 3-D co-
ordinate structures provide insight into the function, mechanism
and evolution of protein, there are several famous classification
databases such as Structure Classification of Protein (SCOP),
Class, Architecture, Topology, and Homologous superfamily
(CATH). DIAL-denved dommn database (DDBASE), Entrez,
and 3Dee, which imbue the stroctures with context and analysis.
These different classification databases of proteins focus on
their own chamctenstcs. For example, comprehensive protein
classification, such as SCOF, provides a detailed description of
the structural and evolutionary relationships of the proteins of
known structure. A mone recent scheme, CATH is also a hierar-
chical classification of protein domain structure, which reveals
the prominent features of protein structure space [1]-[5].

To classify databases of proteins which imbue the structures
with context and analysis is very imporant for understanding
the functions of proteins, and also essential for the discovery
of new medication and therapies. In early days, such databases
were made by factitious or semiautomatic procedure, such as
SCOF or CATH. But recently, protein classification and pro-
tein fold prediction have been solved by the aid of computer
with the strong ability of computation [6]-[8]. Computational
methods have been developed for the assignment of a protein
sequence 1o a folding class in the SCOP, where 83 folds are dis-
tnguished in 3D_ALL database and 128 folds are distinguished
in the SCOP database [9)-[12]. In [9] and [11]. the researchers
have used primary global protein sequence in terms of three
descrplors as physical, chemical, and structural properies of
the constituent amino acids o code the sequences. Machine
learning methods have been further indoced into this complex
classification problem.

Neural networks (NNs) and support vector machines (SVMs)
are very widely used tools in machine learning strategy; these
two algorithms should be very useful for such the complex prob-
lems of bioinformatics [6], [7]. The NN method, which has been
widely used for decade, was a powerful tool for nonlinear and
chaotic data. The SVM method, which has the advantage of fast
convergencs, wis combined with the decision tree algorithm for



multiclass protein folds recognition inorder to get higher classi-
fication accuracy [9], [11]. In particular, there have been several
attempts to use NNs for prediction of protein folds. Dubchak er
al. [9] point out that when we want a broad structural classifica-
tion of protein—say, into four classes, all alpha (], all beta (72,
alpha | beta (ne ), and alpha/beta {o/71—il is easy to get
more than 70% prediction accuracy using simpler feature vector
for mpresenting 4 protein sequence [7], [8] [ 10]. However, the
problem becomes more and more difficult as we demand more
refined classification into more classes. Dubchak et af. [9] used a
multilayer perceptron network for predicting protein folds using
elobal description of the chain of amino acids representing pro-
teins. They used various combinations of the global features de-
scribing the physical, chemical, and structural properties of the
constituent amino acids, and trained networks o find a good set
of features. In [9], Dubchak et al. proposed an NN-based scheme
for protein fold classification into 27 classes. This method like
theone in [9], [11] also uses global deseriptors of the primary se-
quence. They used proteins from the Protein Data Bank (PDB ),
where two proteins have no more than 35% sequence identity.
For each fold an NN is trmined. This procedure was repeated
seven times for each fold, and each time only one setof features
computed from a padicular attribute was used. Then a voling
mechanism was used to decide on the fold of a given protein.
All these investigations cleardy suggest that the choice of the
right features is very important for a better classification of pro-
tein folds.

Although the bioinformatics researchers acknowledged the
importance of feature analysis, no systematic efforts o find the
best set of features have been done—mostly authors have used
enumeration techniques. Feature analysis is more important for
bioinformatics applications for two reasons: the class structure
15 highly complex and the data are vsoally m very large dimen-
sion. Most of the feature analysis techniques available in the pat-
tern recognition literature are offline in nature. [t is known that
all features that charactlerize a data point may not have the same
impact with regard 1o its classification, i.e., some features may
be redundant and also some may have derogatory influence on
the classification task. Thus, selection of a proper subset of fea-
tures from the available set of features s important for design of
efficient classifiers. There are methods for selecting good fea-
tures on the basis of feature ranking, ete. [13]-{17].

In this investigation we use three novel ideas. Fist, we use
NNs where each input node 1s assocuted with a gate. At the be-
ginning of the training all gates are almost closed, i.e., no fea-
ture 15 allowed to enter the network. During the traiming, de-
pending on the requirements, gates are either opened or closed.
Al the end of the training, gates corresponding to good features
are completely opened while gates corresponding 1o bad fea-
tures are closed more tightly. And of course, some gates may
be partially open. Hence, the network can not only select fea-
tures n an onling manner when the learning goes on, but it
also does some feature extraction. The second novel idea is
Lo propose a new hierarchical learning architecure (HLA) 1o
cope with the multiclass protein fold classification problem.
Al the first level of HLA, the network classifies the data into
fouwr major classes: ne, 3, e + 3, and /7. And in the second
level we have another set of networks, which further classi-
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fies the data into 27 folds. The proposed architecture can house
a set of either NNs or SVMs as basic building blocks, with
cach being a multiclass classifier inherently. This is in con-
trast to the onginal approaches m [9] and [11], where a series
of two-class classifiers and a voting scheme must be used 1o
solve the same problem and avoided the denvative problem,
i.e., the “false positive™ problem. The third novel idea is to in-
duce the indirect coding features from the amino-acid compo-
sition sequence of proteins based on the N-gram concept. In
addition o the aforementioned raditional global features, we
derive new local features describing the chain of amino acids
representing proteins using the bigram and new spaced-bigram
coding methods. These kinds of features can well describe the
interactions among neighboring amino acids locally in a 3-D
structure of the amino-acid composition sequence of proteins.
This provides us with more representative and discnminative
new features of protein sequences for the problems of multi-
class protein fold classification.

The proposed HLA with new N-gram coded features in-
creases the protein fold classification accuracy by about 12%
than the conventional methods. Moreover, the gating network
is found 1o reduce the number of features drastically. Using
only half of the orginal features selected by the gating network
can reach comparable test accuracy as that using all the onginal
features. The process also helps us to get a better insight into
the folding process. For example, tracking the evolution of
different gates we can find which characterstics (features) of
the data are more important for the folding process. And, of
course, 1L reduces the computaton time. The experiments on
the same datasets and protein charactensuces also show that the
proposed HLA can achieve higher classification accuracy with
smaller number of classifiers and lower computation overhead.
Furthermore, due o the removal of the voling mechanism, the
numerical output value of the classifiers in the proposed HLA
can indicate the reliability and confidence of the prediction.
Since each protein is classified with different reliability, such a
reliability score is necessary for practical prediction systems.

The rest of this paper is organized as follows. Section 11 in-
troduces the protein datasets used in the target problem of this
research. Section L inroduces the conventional global features
as well as the proposed local features describing the chain of
amino acids representing proteins. The proposed HLA housing
NNz or SWMs is described in Section IV, The online feature
selection scheme through gating NNs is proposed in Section V.
The accuracy measurement indices of protein fold classification
are discussed in Secton VI The experimental results and dis-
cussions are myven in Section VIL and conclusions are made in
Secton VIIL

II. PROTEIN DATASETS

The SCOP is a famous protein databank, which uses the evo-
lution and similarity of proteins to classify the structure of pro-
teins. The data structure of SCOP is found according o the hi-
erarchical structure of proteins, where the hierarchical classifi-
cation scheme is widely used in bioinformatics such as SCOP
and CATH. In the SCOP database, the mam classes are divided
into several classes. The main classes, with most numbers of
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TABLE 1
PATTERN NUMBERS OF EACH CLASSES 1N SCOP WiHcH Was PICKED U TO
BE TRAINMNG AND TESTING PATTERNS 1N THIS STUDY

Classes Patern Mumber Fattern Number
iTraining Dats) (1ezling ala}
All Bipha j 55 Bl
All Hala , 109 nr
AptaBets 15| E
Alpha+Beta . M €3
Total Nurber 3a 385

protein, are ¢, 7, o/, and 1 + J. The other classes in SCOP
such as multidomain proteins, membrane and cell surface pro-
teins, and small proteins are less than the four main classes in
amount. These four classes are named by the structure of pro-
teins [2]-[5]. The protein classification in SCOP was performed
manually or semiautomatically, which takes a greal amount of
time for such a complex task. 1t has been a pushing research
topic to classify and predict the multiclasses of proteins by ma-
ching leaming methods [2], [3]. [9L[11].

A. Training Dataset

This training dataset was built for the prediction of 128 pro-
tein folds based on the PDB selected sets. The data set was
selected by their charactenstics so that all proteins in the data
set have less than 353% of the sequence identity for the aligned
subsequences longer than 80 residoes. Following the prior pub-
lished papers [3], [96 [11]. the tramming data number 15 313 and
they should be divided into four classes with 27 folds according
Lo their structures representing all magor structural classes.

B. Testing Dataset

An independent dataset was also taken for testing the effect
of prediction. The testing dataset was based on PDB-40D set
developed by the authors of the SCOP database [2]-[3]. A total
number of 385 proteins with identity less 40%, same as those
used by Dubchak and Ding, were selected for westing in our
study. Table 1 shows the numbers of proteins in the trainimg and
testing datasets for different protein classes used in our exper-
iments. Table 11 shows the numbers of proteins in the training
and testing datasets for different folds of each protein elass used
in our experiments, where there are 27 folds for the four classes
in Lotal.

III. GLoBAL AND LOCAL FEATURES DESCRIBING THE
AMINO-ACID SEQUENCES

Before applying the machine leaming methods 1o handle
the bioinformatics problems, the features extraction of the
analyzed data is a very important task, since different extracted
features may cause different classification results, better or
worse. Two major approaches, the direct coding method and
the indirect coding method, are used in bioinformatics to
extract feawres from experimental data. The direct coding
method contains  position-depend,  sequence-length-depend,
and a vector per residue. On the other hand, the indirect coding

TABLE 11
FoLn NUMBERS OF EACH CLASS AND PATTERN NUMBERS OF EACH
FoLn ma SCOP Wincn Was PICKED Up o BE TRAINING AND TESTING
PaTTERMS 18 THIS STUDY

Classes Fold number per clazs Fald numbear per class

[Training pattem per feld) | (Tasting pattern par fald)

All Alpha 6 | 13712797 (69208958

All Bota 9 ISD.H.‘!B.T.E.%&B.Q.Q 49 (24,1213,6.8,19.4.4,
| T

Alpha/Beta | 9 Lem At 430089004, |9 2812182712814
L 11 T

Alpha+Beta | 3 | 7,13,14 3 |B27ET

Toal ey e

Mumber

method 15 position independent, length invariant, and a vectlor
PLT SEQUETICe.

A. Global Featwres—Physical/Chemical Characteristics

Inthe previous studies [9] and [11], several features have been
considered for predicting protein folds using global descrip-
tion of the chain of amino acids representing proteins. These
desenptors were computed from the physical, chemical, and
structural properties of the constituent amino acids. Different
properties of the amino acids were used as features such as the
relative hydrophobicity of amino acids. The information about
the predicted secondary structure and predicled solvent accessi-
bility was also used. They divided the amino acids into three
groups based on hydrophobicity, three groups based on sec-
ondary structure, and four groups based on solvent accessibility.
A protein sequence was then desenbed based on three global de-
scraptors: composition (C), transition (T), and distnbution (D)
[9], [11]. These descriptors essentially describe the frequencies
with which the properties change along the sequence and ther
distribution on the chain. In addition to the three amino-acid
attributes described abowve, three more attributes were usually
used: normalized Van Der Walls volume, polanty, and polane-
ability. They also used the percent composition of amino acids
as feature vectors. Let there be A7 folds in the data set. For each
fold, the data set were divided into two groups, one containing
points from the fold and the other containing the rest. So there
are W osuch partitions.

In this study, we also adopt the aforementioned six kinds of
physical or chemical characteristics (attributes) of proteins for
fold classification. There are composition (C), predicted sec-
ondary structure (5), hydrophobicity (H), nomalized Van Der
Waals volume (V), polarity (P), and polarizability (). The six
kinds of protein sequence information (PSI) are extracted from
the provided open protein database. Except for the first PSL, C,
the same set of deseriptors is used for all the other PS1s resulting
in a feature parameter vector in 21 dimensions for each of 8, H,
W, P, and Z. The first kind of PS1, C, is the sequence composi-
tion of amino acids. It is known that there are totally 20 types of
amino acids; therefore, these 20 kinds of amino acids are cor-
responding w a 20-dimensional feature vector. Table T shows
the symbols, descraptors, and dimensions of these six PSls used
In Our expenments.



TABLE I
THE DESCRIPTORS AND FEATURE DNMENSION SIZES OF EACH OF THE
S1% PROTEIN ATTRIBUTES

Characteristics Descriptors Featura
g Sisw

Compnsifian () 20 kinds of aming snids 20

Pradicted Alohz | Beta Loap 29

Secordary :

Siructurc (3) |

Hydrophabicily  Posilive  Mauwral | Nagalive 21

] :

Walume (V) Large I Middic Small 21

Polarity (P} Positive  Meural | Magative : 21

Folarizabilty (73 © Strang  Middie Wesk 21

Tatal Mumber 125

We feed these features to our classifiers from single PSI o
multiple PSls progressively. In the experimental reports of this
study, the symbol * | ™ denotes the combination of feature in-
formation. It means that we feed more than one PSI into the
classifiers once. The summed dimensions of the PSls are come-
sponding to the inpul nodes of the NN classifiers or the input
vardables of the SVM. In our experiments, we used different
combinations of PS1s as input features to each classifier. Hence,
while we used the physical or chemical charmelenstics, the two
extreme cases are: 1) the use of the composition of amino acids
only and 2) the use of all six PSIs. In the first case, the feature
dimension s X, and in the second case, the feature dimension
15 up o 125 (20+21+21+21+21+21).

B. Local Featuwres—N-Gram Coding

The six types of PSL introduced above are kinds of global
features extracted by the direct encoding method. They em-
phasize more on the global properties and structures of the
amino-acid sequences, and less on the local interactions among
neighbornng amino acids. In this secunon, we shall induce the
indirect coding feawres from the amino-acid composition
sequence of proteins based on the N-gram concept. We shall
develop new local features describing the chain of amino acids
representing protems using the bigram and new spaced-bigram
coding methods. These kinds of features can well describe
the nteractions among neighboring amino acids locally in
a 3-D structure of the amino-acid composition sequence of
proteins. In extracting such local features, in addition 1o the
traditional bigram coding scheme, we also propose the new
spaced bigram coding scheme, which can betier describe
the 3-D protein structure caused by the mutual interactions
among intedeaving (every other) neighboring amino acids in
a protein sequence. This provides us with more epresenlative
and discriminative new features of protein sequences for the
problems of multiclass protein fold classification.

For a sequence composed of A7 alphabets, a bigram coding
scheme applied on it will produce a new sequence (Le., fea-
ture vector) with 7% dimensions. Each element in the feature
vector represents the number of appearance of a specific pair-
wise combination of the M alphabets in the neighboring two
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amino acids of the sequence. Since a prolein sequence s com-
posed of 20 kinds of general amino acids represented by 20
alphabets, respectively, and other types of amino acids repre-
sented by a common alphabet B or Z, 1015 a sequence composed
of 21 alphabets. Hence, after the bigram coding, we obtain a fea-
ture vector with 411 dimensions for a protein sequence. Similar
Lo the bigram codimg, the newly proposed spaced bigram coding
is o detect the appearance frequency of any two-alphabet pair
in every other (interleaving) neighboring amino acids of a pro-
tein sequence. Hence, the spaced bigram coding on a protein se-
quence also produce a feature vector with 441 dimensions, each
representing the number of appearance of a specific pairwise
combination of the 21 alphabets in the every other neighboring
two amino acids of the sequence.

Consider a segment of the amine-acid sequence of the pro-
tein with 1D number 1pga: MTYKLILNG as an example. In the
bigram coding, we count the numbers of the pairs (MT), (TY),
(YK), (KL), ete., respectively. In the spaced bigram coding, we
count the numbers of the pairs (MY), (TK), (YL), (Kl), etc.,
respectively. It is believed that the mutwal imteractions between
every two neighboring amino acids, and also the mutoal imter-
actons between every other two neighboring amino acids play
the key moles in the 3-D structure of a protein sequence. It was
even claimed that the effect of the latter type of interactions is
stronger than the former type of inleraction.

From both the direct and indirect coding schemes i the
above two subsections, we have now obtained eight types of
PSL The first six types belonging to global features represent
the physical—chemical characteristics of a prolein sequence,
and the other two types belonging o local features represent
the muwal interactions between neighboring amino acids. If
we use all of these features at once, the feature space will be of
1007 (204214214214 21+21+441+441) dimensions, which is
a large number. This motivates the study of aulomatic feature
selection for protein fold classification in this research.

IV. HIERARCHIC AL LEARNING ARCHITECTURE

In Section 11 and from Tables © and 1L we find that the fold
characteristics of the proteins are separated into four mainly typ-
ical classes named as all w, all &, o and 3 {0 /3, and o plus
& {er+30, respectively. Within each class, it contains several dif-
ferent numbers of folds init, with a total number of 27 folds. The
purpose of this work, multiclass protein fold classification, is to
classify each of the proteins into one of the 27 folds. According
to the classification characteristics of the protein data, a novel
HL A including two-level of classifiers is proposed, as shown in
Fig. 1. In the first level, o multiclass classifier for recognizing
the four protein classes is used. In the second level, we perform
detailed classification oneach class. There are four independent
multiclass classifiers used in the second level for finer protein
fold recognition, from four classes 1o 27 folds (see Table 1), The
proposed HLA is an effective learning structure, in the sense of
reducing the numbers of classifiers, avoiding the voting scheme,
and increasing the accuracy of protein fold recognition.

In Fig. 1, we illustrate how the proposed HLA s wsed in ac-
tual experimental data o handle input features. In the first level,



HUAMNG er il : HIERARCHICAL LEARNING ARCHITECTURE WITH AUTOMATIC FEATURE SELECTION

Clutgau

e 2% 1
Tevel 2

/

Dt Jiw L] 2

Lot Swdatch
Lewvel | (Metvaxk 511
L] |
Lmrg  (for raining) M I for | el 1

Pata  ifow testing)

Fig. I. Proposed HLA for protein folds classification.

a multiclass classifier (labeled as Classifier #1) 15 used w dis-
tinguish input proteins data into four classes, denoted as 1, 11,
L and IV { o, A, 03, and e |1, correspondingly ). Here we
shall adopt proper PSI introduced in Section 11 as the inputs of
this classifier in our experiments. The second level in the HLA
consists of four smaller independent multiclass classifiers (la-
beled as Classifiers #2 10 #5), each for the fold recognition of
different class of protein data classified by the Level 1 classi-
fier. In other words, Classifier #2 is 1o classify the protein data,
which are classified as Class | by Classifier #1, into one of six
fold types. Similardy, Classifier #3 is 1o classify the Class 11 pro-
tein data into one of nine fold types, Classifier #4 is 1o classify
the Class I protein data into one of nine fold types, and Clas-
sifier #5 is to classify the Class IV protein data into one of three
fold types. So, totally 27 (6+9+9+3) folds are recognized by the
Level 2 classifiers.

In general, a g-dimensional data set 15 used o train the HLA
represented by Level 1 and Level 2inFig. 1. Letthe training data
be X = X000 X0 Nl Xy, where X 1s the traming data cor-
responding 1o class £ First we train the Level 1 elassifiers using
A The Level 1 classifier divides the data into four classes. Note
that the division of X made by the Level 1 classifier may not
exactly comespond o Xp, = X T7ALD YV I7 Y The Level 2
classifiers are independently trained; the ith Level 2 classifier is
trained with X, Once the training of the second level classifiers
15 over, the system 1s ready o be tested. A g-dimensional data
point is now fied into the Level 1 classifier which will classify
the point w one of the four classes; say, it is classified o Class 3.
Then the training data point is fed to the third classifier (Clas-
sifier #4) in the second level. [t should be noted here that, for
such architecture, if the Level | classifier makes any mistake,
then Level 2 classifiers cannot recover the same. The proposed
HLA is guite general in nature and, hence, for both Level | and
Level 2, we can use any classification network; in fact, we can
use any nonneural classifier, wo.

The concept of the proposed HLA 15 neither the same as the
cascade network nor as the divide-and-conguer network. The

P
=
L

constituents of the HLAs are all independent networks. It likes a
sieve o sieve the data out of the input training data w several dif-
ferent groups. In fact, this HLA is suitable for data sets that can
be grouped into a smaller number of classes, where each class
can further be divided into a set of clusters. The problem we
handle, multiclass and multifold classification of protein strc-
tures, has this kind of characteristic. Also, since the proposed
HLA houses a set of multiclass classifiers as the basic building
blocks, it dose not need a stochastic voting mechanism after a
long series of two-class classifications normally used in bioin-
formatics.

In our experiments, we shall use NN and 5VM, all belonging
to the machine learning family, as the basic building blocks
of our HLA. We shall introduce these classifiers and the ex-
perimental results in Sections IV-A and 1V-B. No matter what
kind of classifiers we choose, the overall classification resulls
are better than those of the one-versus-others method (Ov0)
method with NN, and are even better than those of the existing
maodified OvO method [9]. Such higher classification accuracy
is obtained by using fewer classifiers with smaller network size.
The extra decision mechamsm such as voting scheme 15 also
avoided.

A. Newral Nemorks

NNs have been developed for many years and been used well
in various applications. Many researchers continue o apply dif-
ferent algorithms and develop different strucres to enhance the
ability of NNs. Here we use NN models as the muluclass clas-
sifiers in the HLA. Some brief introductions about two popular
NN models are given below.

1y Mululayer perceptron (MLP) 15 a classic and widely used
NN model. Such a network can solve nonlinear regres-
sion, and construct global approximation to the nonlinear
inpul—output mapping [18], [19].

2) The radial basis function network (RBFN) is a three-layer
network. The hidden layer nodes use a basis function, the
Gavssian function, as the actuvaton function. Unlike the
MLP network, the output nodes are linear. The RBFN,
suggested by Moody [20], 15 very suitable 1o be used as
classifier. The RBFN used here can grow its hidden nodes
automatically. When data are fed into the network, the
sum square error (SSE) will be calculated with the cost
function, and the backpropagation (BP) learning rule is
used to minimize the SSE until the restrict number of
nodes or the preset value of S8E amived [21], [22].

B. Support Vector Machines

An SVM s a new-generation learning algorithm based on re-
cent advances in statistical learning theory. In the early 19905,
their introduction leads 1o a recent explosion of applications and
deepemng theoreucal analysis. Basically, the SVM s a typical
two-class classifier and a kind of universal feedforward network
which was developed by Vapnik and hiscolleagues at Bell Labo-
ratores, and has been improved by other researchers. 10is a kind
of machine kaming algorithm, while i operation, the SVM will
construct a hyperplane in a high-dimensional features space as
the decision surface between positive and negative patterns. The



structural nsk mimimization ability makes the SVM a very ef-
ficient classifier in various applications including biosequences
analysis, ete. [23]-[26].

With the further improvements by other researchers recently,
the SWM has the ability to do multiclass classification directly
[27]. which s the model adopled here m our HLA as the con-
stituent multiclass classifiers. In practice, the SVM algorithm is
used m three types of learning machine: 1) polynomial learning
machines; 2) RBFNs; and 3) two-layer perceptrons (MLPs). In
this study, we choose the RBFNs for the SVM algorithm and act
as the kernels (building blocks) of the proposed HLA.

V. ONLINE FEATURE SELECTION THROUGH GATING

Due to the large number of input dimensions in the multi-
fold classification of protein structures, especially for the com-
bined global and local features, 1t 1s essental o perfom impor-
tant feature selection automatically. In general, feature selection
methods could be classified mto two major categories. One 15
based on statistical information of features; the other s based
on classifiers. These two major methods have their differences
in concepts. The former is based on statistics crteria o find out
the opumal subsel, and the latter i1s based on the learned weights
to find out the useless features or point oul the mostimponance
features by the preseteriteria. The latter methods commonly use
NNs to complete the feature selection work [14]-[17].

In a standard MLP network, the effect of some features (in-
puts) can be ehiminated by not allowing them into the network,
L., by equipping each mput node thence, each feature ) with a
gate and closing the gate. For good features the associated gates
can be completely opened. On the other hand, if a feature is
partially important, then the corresponding gate should be par-
tially opened. Pal and Chintalapudi suggested a mechanism for
realizing such a gate so that “partially useful” features be iden-
tfied and attenvated according o their relative usefulness [13],
[16]. [17]. In order w0 model the gates, we consider an atlenu-
ation function for each feature such that for a good feature the
functon produces a value of one or nearly one; while for a bad
feature, it should be nearly zer. For a partially effective feature,
it should have a valoe that 15 mtermediate o these extremes. To
model the gate, we multply the input feature value by s gate
function value and the modulated feature value is passed into the
network. The gate functions attenuate the features before they
propagate through the network, so we may call these gate func-
tions atlenuation functions. A simple way of identifying useful
zate functions is to use sigmoidal functions with a tunable pa-
rameter, which can be leamed using training data. To complete
the description of the method, we define the followings in con-
nection with a MLP network.

Let F; : It — 0.1] be the gate or attenuation function associ-
ated with the ith input feature, £; have an argument sy, FY ;)
be the value of denvative of the attenuation function at i, e be
the learning rate of the attenuation parameter; ¢ be the learning
rate of the connection weights, =, be the ith input of an input
vector, ' be the attenuated value of @, 1., ' = ;J,'Flfu':l, '“:?j be
the weight connecting the §th node of the first hidden layer to
the ith node of the input layer, and f‘; be the ermor werm for the
jthnode of the first hidden layer. It can be easily shown that ex-
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Fig. 2. Pmoposed HLA with gating network for online feature selection. The
arrows on gates represent the variable online feature selection function.

cept for '“‘?_1 . the update rules for all weights remain the same as

that for an ordinary MLP. Assuming that the first hidden layer
has ¢ nodes, the update rules for -u.:? and ai;; are
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Although for the gate functon, several cholees are possible,
we use here the sigmoidal function Fleael = 1A 4 70,
The  gate parameters are so mibalized that when the taming
starts, F{wr) 1s practically zero for all gates; e, no feature s
allowed o enter the network. As the backpropagation leaming
proceeds, gates for the features that can reduce the error faster
are opened. Note that the learning of the gate function con-
tinues along with other weights of the network. At the end of
the training, imporant features can be picked up based on the
values of the attenuaton function [13], [16], [17].

This feature selection mechanism is put in front of every mul-
ticlass classifier in the HLA such that each classifier can se-
lect the most important features for its respective classification
problem as shown in Fig. 2. In other words, before a set of
training data are sent into a classifier in the HLA for training,
they are passed into the feature selection mechanism (i.e., the
gating network) first. According o the results of feature selec-
tion, only the tmining data corresponding o the selected impor-
tant features are used for the training of the classifier, which is
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REBFN or SWVM in our HLA. Also, in the testing phase, only the
same selected important features are fed into the classifiers. It
is noted that since every classifier in the HLA aims at different
classification job, the imponant features selected for each clas-
sifier might not be the same, although every classifier faces the
same orginal input training data before feature selection.

VI. MEASUREMENT INDICES OF CLASSIFICATION ACCURACY

In bioinformatics, because the two-way classifiers are usu-
ally used, several different accuracy measurement methods were
proposed to account for the confusing situations of “true posi-
tive” or “false positive”™ [ 7]. In our HLA classification approach,
such confusing conditions will not happen. Therefore, the accu-
racy measurement in our experiments 15 quite clear and simple.
Let us use a function A {accuracy) to indicate the classification
correctness of a protein pattern fed into the HLA. Then the total
number of comrectly classified proteins can be expressed as

£ = Allevel 2 level 1)
= A{level 21 Ailevel 14 level 2} (3)

where -1 is a conditional function whose value is one only when
a protein pattem is correctly classified by the classifiers in both
Level 1 and Level 2 of the HLA, and is zero otherwise.

Based on the above concepts, the accuracy measurement of
the proposed approach is defined as follows. If the number of
testing proteins belonging to the F;ih fold is iy, but the tested
classifier only recognizes «, proteins as the Fth fold, then the
accuracy rate of this tested classifier is set as « /N for the F;th
fold. In addition w the calculation of individual accuracy, the
total classification aceuracy can be briefly caleulated as follows:

A o=rg =gy — o — il

1

Zﬁ, {in this case, & 27,8 JB85) (4)
a1
L T I N T B,
= z;:; (in thiz caze, & = 27) (3)
i1
. i
£l =— (5]
TN (®)

where A 15 the total number of westing proteins data, C7 s the
total number of correctly classified proteins in (3), and ¢} is the
classification ( prediction) accuracy.

VII. EXPERIMENTAL RESULTS

To test and demonstrate the proposed technigues for mul-
ticlass protein fold classification, several experiments are de-
signed and performed and the results are reported and discussed
in this section. These expenments are based on the protein data-
base. SCOP, introduced in Section 11, To demonstrate the three
novelties of the proposed technigues, our experiments are di-
vided into three parts focusing on the proposed HLA, new local
features of protein sequences, and automatic feature selection
mechanism, respectively, in Sections VII-A-C.

TABLE IV
PROTEIN FOLD CLASSIFICATION ACCURACY OF VARIOUS SINGLE-LEVEL
CLASSIFICATION APPROACHES, WHERE THE INPUT PSS FED INTO THE
CLASSIFIER AREC + 3 +H 4 P 4+ v — 4

- Classifer
Recuraty e
CHO—H5—H+P+V+Z) (%]

MLP  GRMM  RBFMN 3V

S0 1.2 a1.4

A. Experiments on HLA

In the expedments of this subsection, we shall perform ex-
tensive tests on the effectiveness of the proposed HLA with dif-
ferent constituent classifiers fed with different combinations of
conventional global PSL features. In the experiments, we use
four different multiclass classifiers as the basic building blocks
in the proposed HLA, respectively. They are MLP, RBFN, Gen-
eral Regression Neural Network (GRNN) [18]-[22], and SV M,
mtmoduced in Section IV, The used MLP has three lndden layers
with 40, 80, and 40 sigmoid nodes, respectively. The used RBFN
has only one hidden layer, where various numbers of hidden
nodes are tested as stated below. The used GRNN also has only
onge hidden layer The used S5VM s the mulaclass SVM pro-
posed i [27] In each case, the whole HLA 1s trained com-
pletely. Especially, the nodes and training epochs of NNs are
chosen carefully during the experiments 1o avoid the oveditting
problem.

In our experiments, the proposed HLA with different basic
building blocks (classifiers) is used w0 recognize the protein
folds given in the SCOP database. Six different combinations
of features were used as the input vectors o the classifiers,
respectvely. They are C, C+5, C+5+H, C+5+H+P,
C+5+H+P+V, and C+5+H+P+V+ £, where each
character represents a kind of PSI defined in Table 111, and
“+" means combination. For perdformance comparisons, we
also use each of MLP, RBFN, GRNN, and SVM to classify the
proteins into 27 folds directly without using the proposed HLA,
where 27 output nodes are used in cach NN model. We call
this the single-level approach. Table IV lists the classification
rates of various single-level approaches, where the full set of
PSIs are used as input features. 1t is observed that the average
classification accuracy ¢} is only about 50%. The classification
accuracies of the proposed HLA with various NN or SVM
classifiers with respect 1o different combinations of PSls are
listed in Table V. 1t is observed that the HLA can increase the
classification accuracy (2 by about 7%. Also, more PSls result
in higher £} values.

The results obtained by the proposed HLA are also better
than those by the OvO method, unigue OvO method (uOvO),
and all-versus-all method (AvA) methods proposed in [9]. These
methods require a series of SVMs or NNs and a voting mech-
anism. The comparison results are given in Table VI Table VI
shows that the overall classification results of the proposed ap-
proach are nommally better than those of the compared coun-
terparts. Especially, the proposed HLA with the RBFN classi-
fiers achieves the best classification accuracy, 56.4%, which is
higher than the best result(53.9%) achieved by the AvA method
with the two-class SVM classifiers [AvAISYVM)| proposed in
[9]. The higher classification accuracy of the proposed approach



TABLE V
PROTEIN FolD CLASSIFICATION ACCURACY OF THE PROPOSED HLA WITH
Varous NN or SVM SUBCLASSIFIERS, WHERE [NFFERENT COMBINATIONS
aF PSIS ARE TESTED. THE CORRESPONDING CLASSIFICATION ACCURACIES
OF WVARIOUS SINGLE-LEVEL CLASSIFICATION APPROACHES ARE ALSO
SHOWH FOR COMPARISONS

Accuragyitat Singic-love! Hisrarchical
l.garning, f.garning

Clagsitiors & Y13 Architoemirg Aorchiteenieg
i L, 444
[ b A LR}
[+5—H 5201 E33

RBFM
Cis I K 543
Livs-FLEPr Y 49,1 Faa
CISTNP ¥V £ 424 sa4d
CIRMM R =P 20 44.x 432
SWM CHR-H-PHY A 51,41 R
TABLE W1

PrOTEIN FOLD CLASSIFICATION ACCURACY COMPARISONS OF
THE PROPOSED HLA AND THE EXISTING APPROACHES, WHERE “Uhn0¥
STANDS FOR THE ONE-VERSUS-OTHERS METHOD, U0 FOR THE
UniQuE ONE-VERSUS-OTHERS METHOD, AND “AVA™ FOR THE
AlL-VERSUS-ALL METHOD

Z C+5 | G5 | C45rH | Co5eH | C+5+H+

Fagh a5l Acoumscy) ) | ey | +H +P +P+Y | PHU+E
(a] (%) [ [%}

Clr=aficrs
D) (MM 25| 3G8 | db4G 41.1 41.2 41.8
O (3WMY | 435 | 432 [ 452 | 432 445 44.0
uCn OISV | 494 | 486 | 51 49.4 508 496
AvA BV 449 | 521 | B0 56.5 55.5 53.9
RBFM 403 | 436 | 507 2.0 289 1 454
[Singla-level) ™
HLA  (MLP) 327 | ARG | AT.5 43.2 43.6 447
HLA [ABFM) | 449 [ 338 | 53.3 54.3 55.3 564
HLA (GRMM] | ----- e | - 45,2
HLA (WA | - | e i i Fan

Muly 7 Tl Troes e paeees Diodechids o af, 2000 [9]
0 Lking KL dirsely oo elossify dee paceeing ine 27 falds e, single-leved appicaczi.

15 obtained by wsing fewer classifiers with smaller size. Also,
the extra decision mechanism such as the volting scheme 15 also
avoided.

In Table V1. the architecture of the used RBFN-based HLA
consists of five RBFN classifiers as shownin Fig. 1, with a total
of 366 hidden nodes. The RBEEN can find the proper number of
hidden nodes by itself during the training process. In our HLA,
the largest RBEN is Classifier #1 in Level 1, which contains 145
hidden nodes. The smallest RBFN is Classifier # 5 in Level 2,
which contains only 13 hidden nodes. More detailed informa-
tion about the node numbers are given in Table VI For compar-
1soms, the total number of lidden nodes used in the single-level
REBFN s 125, which achieves 49.4% classification accuracy,
and cannot be better even with more hidden nodes. Also, in
the AvA{SYM) method proposed in [9], which achieved 339%
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TABLE VII
MUMBER OF MODES USED 1IN THE RBFNS OF THE PrROPOSED RBFN-BASED
HLA

Level in Liwed 1 Levesf 2

R REFN# pry  ReFw |REFN | RBFN | 1O
- 2 8 #4196

Murnber of

Hitstar: 145 a8 101 g9 0 18 | 966

Mades : :

Murnbier of

Output 4 & 0 a K] 27

Mados :

TABLE VIl
COMPARISONS OF THE PROTEIN FOLD CLASSIFICATION ACCURACY OF THE
PropOSED RBFN-BASED HLA AND THE SINGLE-LEVEL RBFN WiTH
TrAmMmG DATA AND TESTING DATA EXCHANGED, WHERE THE FuLL
SET OF PSIs ARE LSED

w::::d Sirgle-level REFN | REFMN-Bazed

Clagsification, HLA

Tuotal Mumbar 174313 133/313

ACCUrEeY %t 55,5 5.5
TABLE 1IX

REQUIRED TRAINNG TIME OF THE SINGLE-LEVEL RBFN AnD EacH RBEN 1M

THE PrOPOSED HLA, WHERE THE TomAL S1x PSIS ARE USED A5 NETWORK

INPUTS, AND THE TRAINING 15 PERFORMED IN A PERSONAL COMPUTER WITH
INTEL PENTIUM IV CPL UNDER 1-GHZ CLOCKS

Classiliar CRU Timea (sec.)
Sirg le-lewval G55
RABFM-Based Level 1
HLA RBFM #1 126.9
RBFM 42 11
Lovel 2 REFM #3 15.3
RBFM #4 8.4
REFM #5 0.3
Towl CPUTIme | 1520

classification accuracy, a total of 351 two-way SVM classifiers
were used. In another experiment, we further compare the clas-
sification accuracy of the RBFN-based HLA with those of the
single-level RBFN. In this expenment, we swilched the roles of
tramning data and testing data used in the previous experiments.
The results are listed in Table VI indicating the superiorty of
the proposed approach agam.

In Table IX, we also show the raiming tme meguired by
the single-level RBFN, and the taming tme required by each
RBEN in the HLA, where the training was performed in a
personal computer with Intel Pentum 1V CPU under 1-GHz
clocks. The results indicate that although Level 1 RBFN
in the HLA consumed longer training time, the training of
each Level 2 RBFN converged very quickly. This reflects the
underfined “divide-and-conguer” philosophy of the proposed
HLA. Although the total truning tme of the RBFN-based HLA
15 longer than that of the single-level one, this 1s the expense
paid for higher classification accuracy. It is worthy 1o mention
that the smgle-level RBEN could not perform better even more
training Lime were laken m our experiments.
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TABLE X
CLASSIFICATION ACCURACIES OF THE RBFN-BASED HLA Wit VarIOUS
COMBINATIONS OF GLOBAL FEATURES |[C+H4+ 5+ P+ V4 2] ann
Local FEATURES [BIGRAM-CODED FEATURE (B) AND SPACED
BiGrAM-CODED FEATURE (5B 1]

FBFMN-Baszed HLA

Gilhal Local | PRIs+BE | P3ls+B+
Faatures featuras | feature bl
15 FSls) B
M. of Faaluras 1254 441 125+441 | 125+441
+441
Accuracy of a1.6 7R.2 az1 B2.5
Level 1
Accuracy | Group 1 G7.2 0.0 T 738
af Level = = =
2% Group 2 221 6.4 62,4 B3.2
Group 3 58.6 G60.0 G2.B 62.0
é Group 4 46,4 565 54.B 83.2
Cwerall Accuracy (Fu) 6.4 a8.2 637 ER.G

As compared to the popular OvO method, and the modified
uCv O method and AvA methods proposed in [9], the proposed
HLA with embedded multiclass classifiers has another impor-
tant advantage. Due w the removal of the voling mechanism
required by the OvO, uOv0, and AvA methods, the numerical
output value of the classifiers in the proposed HLA can indicate
the reliability or confidence of the prediction. Since each pro-
tein is predicted with different reliability, such a reliability score
is necessary for practical classification/prediction systems. For
example, a low rehability score for a new protein may indicate
that it does not belong 1o any fold in the system.

B. Experiments on New Protein Features

In Section VILA, we flind that the HLA housing RBFNs
or SVMs achieved the best mesults among the compared
counterparts. In this subsecuon, we shall focus on the HLA
with these two building blocks fed with the combination of the
conventional global features and the new local features of the
amino-acid sequences of proteins proposed in Section 111 In ad-
ditional to the six types of PSI desenbing the physical/chemical
characteristics of proteins used in Section VI-A, two new sels
of local features obtained by the bigram coding and spaced bi-
gram coding schemes are considered 1o add to the input vectors
of the HLA. Table X shows the classification accuracies of the
RBFMN-based HLA with these combined features. Four different
combinations of input features are tested: 1) the conventional
six types of PSI (ie, C+S+H+P+V+Z) (125 dimen-
sions); 2) the bigram-coded feature vector (441 dimensions);
3) the combination of 1) and 2) (125 + 441 dimensions); and
4) the combination of 3) and the spaced bigram-coded feature
vector (125 + 441 + 441 dimensions). Table X shows that the
new local features did improve the accuracies of protein fold
classification, obviously. It is observed that the addition of the
bigram-coded feature o the orginal six PSI features increase
the accuracy by 7.3%, which s even 9.8% higher than the result
reported in [9]. Especially the full set of features including
the global and local features improves the accuracy by 11.7%

TABLE X1
CLASSIFICATION ACTURACIES OF THE SVYM-Basen HLA WiTH VARIOUS
COMBINATIONS OF GLOBAL FEATURES (C+ H 4+ 54+ P+V + 2 anD
Local FEATURES [BIGRAM-CODED FEATURE (B) AND SPACED
BiGrAM-CODED FEATURE (SB)]

SVM-Based HLA
Global Local PSls+B  PSke+B+
Fealures faaturas  fealure &6
(6 PSls) B
Ma. of Featuras 125 441 126+441 1254441
+§41
Accuracy of 1.3 TTH 43.4 H4.4
Level 1
Angaracy | Group i &60.7 574 738 73.8
al el
2% Giroup 2 49.8 538 5840 G0.7
Group3 | 566 | 80C @ 648 85.5
Group 4 452 587 528 5841
Orearal Bccuracy(%) 53z LT /2.3 g42
TABLE XII

CLASSIFICATION ACCURAQIES OF THE RBFN-BasED HLA WimTH [NFIERENT
GLOBAL FEATURES SETS (C+ H+ 54 P+ V4 £ SELECTED BY
THE GATING NETWORK

REFM-Based HLA MNumber of Faature Salectad
50 LT aa 125
Accuracy of bevel 1 7a.z2 803 808 B1.6
{%a]
Accura Ciass 1 47 .5 508 TaB GB7.2
o A 479 513 56.4 521
Level 2
Sl Class 3 310 g3 545 a6
Clagz 4 444 54 4 By A 484
Cnverall Soourasy (%) 491 824 530 SE.d

and achieves 65.5% classification rate in total. Table X1 shows
the experimental results of SVM-based HLA corresponding to
those on Table X. This table also shows the advantages of the
newly proposed local protein features in Section 111

C. Experiments on Automatic Feature Selection Scheme
{ Gating Network)

Secuons VII-A and VI-B clearly indicate that the protein
fold recognition problems always contain large feature dimen-
soms, from 125 1o 125 + 441 + 441, In this subsecton, we shall
test the automatic feature selection scheme proposed in Sec-
tion ¥V 1o reduce the feawre dimensions for HLA. We shall
first consider the HLA fied with the conventional six types of
Pl (e, C+5+H+P+V +£) (125 dimensions). Table XII
presents classification performance of the RBFN-based HLA
with different feature sets. The performance of Level 1 HLA
isee Fig. 1) shows that with 67 features (305 reduction), the
decrease in performance 15 only 1.26% while with 65% features
the test accuracy s reduced by only 0.76%. This clearly suggests
that the gating network can do an excellent job of selecting im-
portant features. Let us now consider the overall classification
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TABLE XII
WALUES OF THE GATING FUNCTIONS FOR THE MOST IMPORTANT 15
FEATURES AFTER DNFFERENT ITERATIONS
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TABLE XIV
PERFORMANCE OF ORDINARY MLP ON DIFFERENT SUBSETS OF FEATURES AT
LEVEL | oF HLA TO SHOW THE IMPORTANCE OF EacH P51

Fasitsa Gat rg Fesiuse | Gatogundlicn | =eaturs | Gating functic~
Mumbear ‘uncticn murnber va .5 aflar M. mbe- vEiueE afar
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fteoadivrs
0 ;O0PEST e QA 10 in
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41 (AR Ll b (LOGHCE 28 1.0
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77 C a0zacd w2 Q0GIE34 24 10
U (A IES R A0 O ULSEES © SuU 1.l
i C J030<3 i Q00s335 =0 10
92 G anR2i 41 L0SSES Al 1.0
i} L0320 103 LN <) au 10
2r G INGRSAC =2 170 AR 1.n
3 0.0CA1 .6 it 10 11 1.0
2z L O0BaTS ] 10 ul 1.0
26 1.4 el 14 a I.u
3 1.0 | 10 Al 1.n
35 1.0 o 11 A3 1.0

performance (with 27 folds). For this case we get 53% Lest ac-
curacy with 67% features, which s just 3% less than whatl we
can achieve taking into account all 125 features.

We have made several runs of the gating networks and results
reported comesponding o some typical output. We emphasizee
the fact that depending on the initialization, two different sets of
features may be picked up by the gating network in two different
runs. This isabsolutely fine, since if there are two correlated fea-
tures, a and b, the net may pick up feature a m run 1 and feature b
inrun 2. Moreover, depending on the choice of the threshold, the
number of selected features may be different. Table X1 shows
15 of the most important features of a typical run of the gating
network after TOOD, 1500, and 4000 iterations. 1Lis imterestng 1o
note that after OO iermations, eight of the top most 15 important
features come from the predicted secondary structure. OF these
eight, one of the features, number 27, disappears from the list
of important features with iterations. Probably the gate come-
sponding to some other correlated feature opened faster. Aller
4000 iterations, of the important 15 features, nine come from
the predicted secondary structure. Thiscleardy wells that the local
secondary structure, as expected, hasa strong impact on the final
folds. In this hist of 15 important features, we have representi-
ton from polarity, polarizability, volume, and hydrophobicity.
In this investgation, we inibalized the gating function with a
vialue of (L0 124,

Table X1V depicts the classification perfommance at level 1
(into four classes) by the MLP network with different sets of

MLP C | CiS | SB[ S50 | C15H [ Ca3iH
H HIr [P M Z
Corract Classified
Murmber 2d3 | 308 | 305 vl 02 o
Agnuracy (%) 63.1 [ ap.n | 73R var ] Ta4 an.a
TABLE XV

CLASSIFICATION ACCURACIES OF THE RBFN-BAsED HLA WTH VARIOUS
COMBINATIONS OF GLOBAL FEATURES |C+ H+ 54 P+ V + 2] anp Local
FEATURES |BIGRAM-CODED FEATURE (B) AND SPACED BIGRAM-CODED
FEATURE (5B1] SELECTED BY THE GATING NETWORK

HEFM-Buased HLA [Gialsd)

Fenlures Glabal Fealures PS5ls + PSls +B +
B P2l B B
Mo, of Fzatures = E7 S0 1 B R242 | BF--242 1205
Acouraiy of 7as | 803 [sos | =03 2.1
Lewel * (%)
feraraty [ Qlass 1 | 475 | 0B | Bl 738 BZA
ol Lenel 2 : 5
(%) Cipss 2 | 4783 | 5.2 I 4.2 | a6~ 31
Ciazsd | 510 | 53,1 534 G6.& E7.G
Clagss 4 495 | 546 BU.4 41.4 At 4
Crvarall Accuracy (% | 490 | 525 530 ) 605 | G626
1

features. Table XIII reveals the fact that use of more features
15 not necessanly good. It also says that the distnbution of pre-
dicted secondary structure and composition constitules a good
setof featwres. This 1s also consistent with the results obtaimed
from the gating network.

We shall now apply the gating network scheme o the enlarged
input vectors combining the global and local features. The me-
sulting classification accuracies of the RBFN-based HLA are
presented n Table XV, With the same preset threshold value,
the gating network reduces the dimension of the six types of
P51 1o 67 from 125, the dimension of the bigram-coded feature
Lo 242 from 441, and the dimension of the spaced bigrnm-coded
feature 1o 205 from 441, The dimension reduction reduces the
classificanon accuracy of the RBFN-based HLA by 2.9% using
only about hall of the original features.

In the above expenments, we used the same threshold value
in the gating networks for all the basic classifier units of HLA,
which will produce different input vector sizes for different clas-
sifiers at different levels of HLA. In another experiment, we
try 1o use the same size of feature vector for each classifier of
the HLA though the gating networks. The results and compar-
1soms with different combinations of protein features are given
i Table XV 1L 1s observed that the classification accuracy 1s
further improved. Table XVID shows the required number of
nodes in each RBFN classifier of the RBFEN-based HLA with
respect to different gated features. The wtal number of the me-
quired nodes 1s found w be gquite small. This demonstrates the
efficiency the proposed HLA with automate feature selection
mechanism (gating network).
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TABLE XWVI1
PERFORMANCE COMPARISON OF THE RBFN-BASED AND SVM-Basen HLA
WITH GATING NETWORK UsinG FIXED THRESHOLD Or FIXED SI1ZE
OF FEATURE DMMERSION

\\ Learning RBFM-Based HLA SWM-Based HLA
. Owerall Accuracy (%) | Overall Acouracy (%)
Architedture 5 = .
., Fixed Fixed Fixed Fixed
. Threshold | Dimensio | Threshold | Dimension
Features n
Global featuras Eg.4 L] 47.3 31.7
{P3l=)
PSls + Bi-gram 5.9 [ ] Lg.2 8.4
cadad lealures
PSls + Bi-gram
coded features + £1.3 62.5 §1.0 B2
Spaced Bi-gram
odediiealures | 1 i
TABLE XWI

REQUIRED NODE MUMBERS 1N EacH RBFN oF THE RBFN-BAsED HLA
FOR INFFERENT GATED GLOBAL FEATURES

e, Feature

..........___Ei?t_e [at=1::3] B &7 a0 123

HLA
Laval i Classifier #1 136 124 112 143
Leval 2 iassifier #2 22 &5 42 35
Ctassifior #3 ) o8 1 101
Ciassiliar #4 | 77 | a2 a4 e
Classiliar #3 12 & 2 13
Taotal Mumbar R 3247 15 356

VIIL CONCLUSION

In this paper, we proposed a new HLA with online feature
selection mechanism to solve the multiclass protein fold classi-
fication problem. We also derived new local features from the
protein sequences o enhance the classification rate. The pro-
posed HLA 15 a general learming concepl, which can imtegrate a
set of baseline classifiers (such as NN or SVM) in an efficient
way o attack highly complex classification problems. Further-
more, the proposed modified bigram coding scheme for protein
sequences are based on a concept of entropy, which can well
describe the cubic structures of proteins in space. Such kinds
of information were usually missing in the conventional global
features of prolein sequences.

The extensive experimental results based on the SCOP data-
base demonstrated the superiority of the proposed protein fold
classification scheme, in both leaming mechanism and new pro-
tein features. The classification accuracy of the novel scheme is
also higher than that of the popular OvO method, the modified
uCv( method and AvA method. In addition, due wo the use of
the multclass classifiers as the basic building blocks, the pro-
posed HLA does not need alarge number of two-class classifiers
and a voting scheme. As a result, the computation time for a
prediction can be reduced and each prediction can be associated
with a numerical value to assess the reliability or confidence of
the predicuon.

The experimental results also showed that the online feature
selection mechanism in HLA was quite effective in reducing the
dimensionality of the input data features. Such online feature
selection capability can give a bettier msight into the folding
process. So far the bioinformatics researchers did not have any
tools for such online feature selection and, consequently, they
are used 1w consider different intuitive combination of features.
Since consideration of all possible subset is computationally not
feasible, it is often impossible to find the best set of features. The
proposed system opens up the possibility of compuling many
more features from the amino-acid sequence and then allowing
the system o pickup the desirable ones. Iis application domain
is extended to all other areas of bioinformatics also.
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