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SOFM-MLP: A Hybrid Neural Network for
Atmospheric Temperature Prediction
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Abstraci—Here, first we study the effectiveness of multilayer
perceptron networks (MLPs) for prediction of the maximum and
the minimum temperatures based on past ohservations on var-
ious atmospheric parameters. To capture the seasonality of atmo-
spheric data, with a view to improving the prediction accuracy,
we then propose a novel neural architecture that combines a self-
organizing feature map (SOFM) and MLPs to realize a hybrid
network named SOFM-MLP with better performance. We also
demonstrate that the use of appropriate features such as temper-
ature gradient can not only reduce the number of features drasti-
cally, but also can improve the prediction accuracy. These observa-
tions inspired us to use a feature selection ML P (FSMLP) instead
of MLP, which can select good features online while learning the
prediction task. FSMLI" is used as a preprocessor to select good
features. The combined use of FSMLP and SOFM-MLP results in
a network system that uses only very few inputs but can produce
good prediction.

Index Terms— Atmospheric science, backpropagation, feature
selection, neural networks, self-organizing feature map (SOFM),
temperature forecasting,

I INTRODUCTION

HE MEASUREMENT and prediction of lower atmo-
Tsphuriu paramelers are necessary for various kinds of
applications such as avionies, pollution dispersal, and com-
munication. Though perfect prediction is hardly ever possible,
neural networks can be used o obtain a4 reasonably good
prediction in many cases [ 1], [2]. Weather forecasting requires
estimation of temperature, ramfall, humidity, wind speed, wind
direction, atmospheric pressure, ete., well in advance. Often,
it is very difficult 1 get an accurate prediction resull because
of many other factors like topography of a place, surrounding
structures, and environmental polluton. The accuracy of a
forecasting system may be improved if it can account for all
these factors.

Here, we focus on prediction of temperature based on past
measurements of various atmospheric parameters, and our as-
sumption is that short-term changes in the dynamics will be cap-
tured 1n the data available for forecasting. Nomally, tempera-
tures are measured twice a day at different heights and places
using radiosonde (i.e.. balloon floating) techniques. Other pa-
ramelers, such as wind direction and its velocity, are also mea-
sured by the meteorologists.

We have collected the following information for a day from
the meteorology department: 1) mean sea level pressure at 1730
and 0630 Hrs; 2) vapor pressure at 1730 and 0630 Hrs; 3) rela-
tive humidity at 1730 and 0630 Hrs; 4) maximum lemperture
at 1730 Hrs; 5) minimum temperature at 0630 Hrs; and 6) rin-
fall. We have daily observation on these variables for the perod
1989 1o 1995,

In this paper, first we describe our proposed hybrid network,
which combines a self-organizing feature map (SOFM) and a
multlayer perceptron network (MLP) o realize a much better
prediction system. Then, we demonstrate that the use of appro-
priate featres can not only reduce the number of features, but
also can improve the prediction accuracy. Motivated by the me-
sults with computed features, we then use a feature selection
MLE, which can select good features online while learning the
prediction task. This, finally, resulis in a network system that
uses only very few inputs and can produce good prediction.

II. SoME POPULAR PREDICTION METHODS AND THEIR
APPLICATION TO TEMPERATURE FOREC ASTING

In this section we consider four prediction methods and in-
vesligate their effectiveness in predicting the maximum and the
minimum temperature. We use the MLP and madial basis func-
ton (RBF) networks and the autoregressive (AR) and linear re-
gressive (LR) models.

The MLP network consists of several layers of neurons of
which the first one is the input layer, and the last one is the output
layer, remaining layers are called hidden layers. There are com-
plete connectons between the nodes in successive layers but
there 15 no connection within a layer. Every node, except the
mnput layer nodes, computes the weighted sum of its mputs and
apply a sigmoidal functon Lo compute its outpul, which is then
transmitted o the nodes of the next layer [3]. The objective of
MLP learning 15 1o set the connection weights such that the error
between the network output and the target output 15 minimized.

In addition w0 MLF, we also use the radial basis function net-
work [ 3], autoregrassive model and the linear regression model.
In AR model, temperature at tme ¢ 15 predicted vsing a linear
function of only past temperature of a few days; while the LR
model predicts lemperature as a linear function of observations
on other parameters including temperature.

The RBF network 1s a three layered network: input layer,
basis function layer (hidden layer as in MLP) and output layer
Each node in the hidden layer represents a basis function. We
use Gaussian basis functions for all nodes. Here, the input
layer and the hidden layer are fully comected. Each output
node uses a linear activation function; in other words, each
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output node computes the weighted sum of its inputs. Let
Wi be the vector of connection weights between the input
nodes and the &th RBF node. Then the output of the &th
RBF node is dipp = expi— i — Wigs|*/7i where m,
is the spread of Lth RBF function and i is the input vector.
The output of the jth output node "'"ltn 15 then computed as

ol = Sy WA where w? is the connection weight
between I th RBF node and Jth uuLpul node.

We use the MATLAB neural network tool box o realize the
EBF net. This trmining algorithm for RBF does not use any un-
supervised processing such as clusterdng of data. The network
starts with one RBF node using one of training data points as the
center of the Gaussian function. Then it finds the data point with
the highesterror, which 1s used as the center of a new RBF node.
The comection weights between hidden layer and the output
layer are then adjusted mimimizing the square error. The process
is continued ll either the error goal in terms of sum of square
errors (S5E) 15 achieved or the number of RBF nodes attams
a given maximum value. In our implementation, the maximum
number of nodes was set 1o 50, and the error goal on S5E was
0.01.

The autoregressive model of order . e, Af{p), predicts
the current (#th) value =) of a variable & using its y previous
Lixft — 29, .x(t — gl
model can be  wnllen  as

observations such as it —
Mathematically, the ARip)
all) fay — ¥25 L eril — i) where a,’s are the coeffi-
cients. For example, in temperature prediction, the AR{p)
model computes (predicts) the maximum temperature of the
ith day [T*#~({1] based on last ¢ days maximum temperatures
TmEEG T TS Qe G

A hnear regression model can be used o predict the
temperature of the fth day as a linear function of sev-
eral other vanables. The LR model can be described as
yild = ag + 3o vl f — 10, where 15 are the coefficients.
For example, in temperature pmdu_lmn, the LR model computes
the #th day’s maximum (or minimum) temperature f M908
[or 794140 based on previous days observation on maximum
lemperature [z = 7 — 1], minimum lemperature
[iwg = T4t — 17], vapor pressure [a3 = Vil — 1], relative
humidity [y = H{t  13L rain fall [x; = &E 1L -
pressure (a2, {8 — 17, Here, g is the number of predictor
vanables used in the LR model.

We use an AR model of order three, 1.e., the maximum (or
minimum) temperature of the tth day is predicted based on the
maximum {or minimum) temperature of past three days, i.e.,
days#— 1, t =2, ¢ =3 The order three has been chosen based on
experiments. Also, in a later section, we shall see that a feature
selection mechanism rejects temperature information beyond
past three days. In this regard, one can, of course, use model
selection cnteria such as Akaike information critena (ALC) [4].

A. Data Preparation

MLF and REF Nets: Fora particular day £, we have observa-
tion on nine varables. Let us denote them by {17 € IY. Now,
let us assume that the maximum and the minimuom temperatunes
for day /, e, T**{ 1 and T}, are determined by the at-
mospheric conditions of past & days.
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TABLE 1
CUMULATIVE PERCENTAGE FREQUENCY FOR MLP NETWORKS
ilam‘;—c. - 5 ’r'liquL:L{"r ap Teanpraatio rmr_rr“s ik
b =10 == L3 -'..=2"F g = 3
e | i | e | win -maxnl Wit rax | mio
F R T ] R R s O R 2"3_6 .UHE 2;:;7 27
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430 {904 |96 817 1827 | 913 621 508 |10
= S H i
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- ki f____i gomh b Lan
B | g lamdla . et e g beg
Thus, we attempt to predict [#™ (g}, ¥™7(#1) using

(8] = ix(t — I,
bk o= 2, then we use (XL — 10 X[ —
Yo = [y

Let & be the total number of days for which observations are
available. So, wecan construet the input (.Y ) and output () data
fortmining where A = AN NN =10, XV —£k]} and
T =ITIAVYIN -1 N — BV In order to train the
network, we use inpul—uulpul pairs | A Ix‘l Y= NN —
I. N—2Z.. . %=k Inthiscase, wehave & —: pairs. Note that

= (T TR After obtaining (X, 1), we partition
zIII. (and also ¥) randomly as J'..rk‘.r.,; and X 0¥, .1 such that
XX =X X.NX. = o (X, Y is then used for
training the system and (X, ¥ 018 used o test the system. 50,
our MLP will have 9% input nodes and two output nodes. In our
N o= 24h5, ‘f.[,_«l = 2285, |a‘fr-r

x(t — 20, ....x(# — k) e KEAF
21 = 7 predict

dataset, = 270, and we use
k=%

AR Model: The maximum (or minimum) lempemure
T Jor 1] of the #th day is determined using the

maximum {(or mlmmum]l temperatures of three previous days,

Le, using T 1), TEL 20, and T 3] for
A — 1L E = 2%, and TN — B3
LR Model: The maximum (or minimum) emperature

T for i) of the #th day is determined using
previous days’ observations on the maximum  @mperature,
minimum  lemperature,  vapor pressure, relative  humidity,
change of wemperature, change of vapor pressure, change of
relative humidity, and raunfall.

B. Results

We have made several muns of the MLP net with different
hidden nodes. Table [reports the average pedormance (average
on ten runs) on the test data with number of hidden nodes,
vy = 10, 15, 20, and 25, 1t shows the comulative percentage of
prediction within different ranges. For example, the fourth row
of the “max”™ column with n, = 10 shows that on the test data
the network could make prediction with = =2 “Cerrorin 81.2%
cases. Similarly, the net with ny, = 10 can predict the minimum
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temperature with L2 "C errorin 81.9% cases on the test data. [t
1sinteresting Lo note that the networks withwy, = 10,15, and 20
perform reasonably well, but the performance degrades with in-
crease in the number of hidden nodes beyond 20. Within 12 °C
error, the best result that the networks could achieve for the max-
tmum lemperature 15 about 845,

Table 11 summarizes the performance of the RBF network
and the AR(3) and LR models. The RBF network (with 30 RBF
nodes) is found to produce a little worse results than the MLP.
The performance of the AR and LR systems is quite comparable,
and they exhibit a hitthe poorer perfommance than the two neural
models.

Although the MLP and RBF results are satisfactory, they are
not very good. One possible reason for this can be the presence
of seasonality. So, we now propose a hybrd network which can
account for seasonality of data. Our basic philosophy would be
as follows. We group the vectors in (X ) into a set of homoge-
neous subgroups. Then for each subgroup we rain a separate
feedforward network. For prediction, first we have to choose the
appropriate trined MLP and then apply the testinput to that net
to get the prediction. The pantitioning of the training data as well
as the selection of the desired trained MLP will be done using
a self-organizing feature map. So, before describing the predic-
tion network, we first briefly describe the SOFM.

1. SOFM NEIrwORK

Kohonen's self-organizing feature map has been successfully
used n numerous applications [5]-[8]. SOFM [9] has the inter-
esting property of achieving a distribution of weight vectors that
approximates the distribution of the input data. This property of
the SOFM can be exploited to generate prototy pes which i turn
can partition the data into homogeneous groups. We want 1o use
this property.

A Architecture
The self-organizing feature map 15 an algorithmic trans-

formation AL,y o AP VIAT) that is often advocated
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Fig. 1. SOFM network anchitecture.

for wvisualization of metne-topological  melationships  and
distributional density properties of feature vectors (signals)
X Ta, oo xact in I SOPM is implemented through
a neural architecture as shown in Fig. 1, and 1t 1s behieved
Lo be similar in some ways o the biological newral network.
The visual display produced by SOFM can be used w0 form
hypotheses about topological structure present m N . We
concentrate on (s % w) displays in 2%, but in principle X can
be transformed onto a display lattice in £27 for any g.

As shown in Fig. 1, input vectors x & % are distributed
by a fan-out layer to each of the (m = #) outpul nodes in the
competitive layer. Each node m this layer has a weight vector
(protolype) vy; attached o it Let €3, = {v;] = A" de-
note the set of m » w weight vectors. (9, is (logically) con-
nected to a display grid (3 © ViR?). (i,4) in the index set
T2 oom} s {102,000 0} is the Jogical address of a cell
There 15 a one-to-ome correspondence between the o = v p-vee-
tors vig and the o= nocells ({4 7] L e, Oy o il

The featwre mapping algorithm starts with a random inital-
ization of the weight vectors v;;. For notational clarity, we sup-
press the double subscripts. Now, let = © A" enter the network,
and let s denote the current iteration number. Find v that
best matches X in the sense of minimum Eoclidean distance in
£ This vector has a (logical ) “image™ that is the cell in {7y with
subscript +. Next, a topological (spatial) neighborhood N, 5
centered at + is defined in {4y, and its display cell neighbors are
located. A 3 x 3 window, & (1), centered al v comesponds Lo up-
dating nine prototypes in f1%. Finally, ¥, , | and other weight
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Fig. 2. Hybrid neurl net for tempeniture forecasting.
vectors associated with cells in the spatial neighborhood &)
are updated using the rule

Via=Via o1 Hedelx v 1 (1}

Here, » is the index of the “winner™ prototype

voooarg mind ||x — v .||} (2)
I‘-—\'I,—-‘
b

and || + is the Euclidean nom on A", The function H.{s)
which expresses the strength of interaction between cells + and
¢ in (ks usually decreases with s, and for a fixed 2 it decreases
as the distance (in £4y) from cell » to cell 7 increases. Hoals) s
usually expressed as the product of a learning parameter ¢, and
a lateral feedback function g, (disti+. 71} A common choice for
da 15 geldistir, 41 = o distImdlfe) ey and o, both decrease
with 5. The topological neighborhood 2, [ 4] also decreases with
5. This scheme, when repeated long enough, vsoally preserves
spatial order in the sense that weight vectors which are met-
rically close in It? have visually close images in the viewing
plane. We repeat the SOFM for (300 v » n) steps [9].

IV, SOFM-MLP HYBRID NETWORK

The architecture of this hybrid network is shown in Fig. 2. 1t
has eight layers. The first layer with p nodes scales the data: it
15 the scaling interface between vser and the system at the imput
side. The second and third layers constitute the SOFM layer The
output of the scaling layer is fed as input to the SOBFM layer. So,
the second layer has p nodes. There are complete connections
between layers 2 and 3 as discussed earlier for the SOFM net.

Let the number of nodes in the output layer of the SOFM net
be K. So, there are & MLP networks, each of which receives p
inputs. Consequently, the fourth layer has K nodes. These Kp
nodes constitute the input layer of a set of & MLP networks.
Without loss of generality, we assume that each of the & MLP
networks has only one hidden layer, although 1t could be more

=]
MIAYT Ao¥g ATVOS

MLF LAYER

than one and itcan vary for different MLP nets. Let the nodes in
layer four be numbered as N, © 1,2, ... Kp Nodes N o
Ay, will be the input nodes of the first MLP (A9 ); nodes &, |
to &, will be input nodes of the second MLP (3:); Similarly,
nodes N p —- -7 0 Ny, will be the input nodes of Jth MLP,
Ay As mentioned earlier, p = B

The sjth input node of MLP 3, gets the jth normalized input
(say, @) and passes it on o the first hidden layer of M;. The
output of the ¢th node of the SOFM (say, ;) 18 connected 1o
the output of every node of the last layer of A, . The product
of the MLP output and the SOFM output then moves to layer
7. The product can be computed wsing an additional layer with
two neurons foreach MLP. Since only one of the SOFM outputs
will be one, and the rest will be zero, only one of the MLPs will
pass its output unattenuated to layer 7. The remaining (& — 1)
MLPs will transfer zero to layer 7.

Since we assume only one hidden layer, the nodes in layer
six are the output nodes of the MLP nets. Each MLP, AL, will
have two output nodes. Let us denote these nodes by UE; where
the index ¥ corresponds to the ith MLP, A, and
I corresponds o the minimum @mperature and 2 corresponds
to the maximum lemperature. Layers 4-6 together consttute
the MLP layer in Fig. 2. The outputs of this MLP-layer are
then aggregated i layer seven which has just two nodes one
for the minimum temperature and the other for the maximum
temperature. Let us denote these two nodes by e and M. Now

1,4, where

nodes €39, Vi = 1,2, ... K are comnected tonode w and (3%,
Y= 12, & are connected o node 3. All connection

weights between layers 6 and 7 are set o unity and nodes o
and A compute the weighted sum of all inputs as the output
which are then passed o the scaling layer. Note that the net-
work architecture ensures that the aggregated output that s fed
o the scaling layer 15 nothing but the output of the MLP corme-
sponding to the winning node of the SOFM net.

Al this point, readers might wonder why ame we using a sell-
organizing map, why not a clustering algorithm! The prototypes
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generated by SOFM not only preserve topology but also density.
We want o exploit this density preservation property. Because
of the density matching property of SOFM, if a particular re-
zion of the input space contains frequently occurring stimuli, it
will be represented by a larger area in the feature map than a re-
zion of the input space where the simuli occur less frequently
[3, p. 460]. Consequently, of there 15 a dense area m the input
space SOFM will place more prototypes there. So, we will have
more competitive MLPs for dense regions. Hence finer details
of the process can be modeled better and this will resultinanen-
hancement of the overall pedformance. k-means type clustering
algonthms do not have such a density matching property.

A. Training the SOFM-MLP Hyvbrid Net

First X, is normalized by the input nomalization (i.e.,
scaling) layer. Then with the normalized X, the SOFM net is
traméd. Onece the SOFM tramming s over, Ay 15 parttioned into

K subsets, X,'_:'!': f=1,2.... K as lollows:

]

}'L','_:f': ={x; ¢ R* | |x%: — | = miu x; — %, 1.
a1

In other words, A E“ is the set of input vectors for which the
{th prowtype, v; of the SOFM becomes the winner. Let ¥ [&)

I'!.'\
be the set of output vectors associated with vectors in X1
Now we train A multilayer perceptron nets A, Mo Mg,

where A is trained with [XTL_:I}, ?;E_” ). Mote that each of A,
1 =1.2...., % will have the same number of nodes in the input
layer, i.e., p = %% and the same number of nodes in the output
layer, i.e., 2. But the number of nodes in the hidden layer for
different A4, could be different. This training is done offline and
during wraining; we do not consider the output of the SOFM. In
fact, we do not feed the mput to SOFM for raining the MLP.
Omnee the traming of both SOFM and f& MLPs 15 over, we are in
a positon 1o use the hybnd net for prediction of temperatures.

Suppose an input vector X({1 = ™ comes (this will be gen-
erated based on nine observations on each of the past & days).
Now %01 is applied to the first layer. The first layer normalizes
it, and the normalized input then goes to the SOFM layer. x(#)
makes the output of only one of the K SOFM output nodes (say,
of the {th node ) high (1) and sets therest (£ 1 outpuls) o zero.
The nomalized x(¥] and output of the <th SOFM node are now
fed tothe sth MLP M 0 = 1,2, ..., K. Consequently, only the
{th MLP will be active, and rest of the MLPs will be inactive.
The integrated output from the MLP layer will be nothing but
the output of the ith MLP, which will then be scaled back to the
ongimal scale by the output scaling layer—and we get the pre-
diction for the maximum and the minimum te mperatures of day
Do

B. Results

Table 11 depicts the performance of the SOFM-MLP
network on the test data when each of the B (%) MLPs uses
sy = 10,0y = 15, and ny = 20 nodes in the hidden layer.
For the SOFM layer, we have used eight nodes, and thereby
the traming data were partiioned oo eight homogeneous
subgroups. For this dataset, the choice of eight was made based
on a few experiments. In this case, use of more than eight nodes
results in some clusters with very few data points. Each MLP

e

TABLE 11l
CUMULATIVE PERCENTAGE FREQUERCY TABLE FoR SOFM-MLP WHEN
OBSERVATIONS FROM THE PAST THREE Days ARE USED A5 INPUT
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5 : B et cotiic i
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15 trained ten umes with different mandom imtalization, and
Table 111 represents the average prediction accuracy over these
runs. Comparing Table HI with Table L we find that within
+1 “C error, the SOFM-MLP shows an improvement between
2.7% o T.8% over the direct vse of MLP. This improvement
is reduced w about 2.2% w0 7.4% within +2 *C error. If we
consider the maximum deviation and the average deviation,
we also find consistently better results for SOFM-MLP. Com-
paring SOFM-MLP (Table III) with another local predictor,
the RBF network (Table 11), we find that all three architectures
of SOFM-MLP significantly outperform the RBF net for all
deviations less than equal o £27 C.

V. PREDICTION WITH COMPUTED FEATURES

So far, we have used the entire information available for the
past three days to predict the temperatures for the next day. As
a result, the number of input features becomes 27, making the
learning task a difficult one.

For any leaming task, the use of appropriate features is a key
factor toward determining the success of the learning process. In
this case. also, if we can use some derived features that are better
suited for the task athand, then we may expect to get betler pre-
diction. With a view toachieving this, we have used local gradi-
ents of the temperature sequences as features. The local gradient
is computed as follows. Suppose TR0 — 4], T — 3],
P Dand MR 1] are the maximum emperatures
recorded for the last four days. Then, the temperature gradi-
ents or changes in temperature are T 1) T™%0 0 3,
PR =y =T = D and R = 2 =T E—
Similarly, three such components can be computed for the min-
imum temperature. Here, we use 15 features containing nine
features giving the atmospheric conditions of today (day +) and
six tempermture gradients as discussed above. The advantage
with this scheme is that: 1) it reduces the number of input fea-
tures, and 2) it gives an idea o the MLP network about the
changes m the maximum and the minimum temperatures. This
can make the learming task simpler. Our results mthe next sec-
tion reveal that it 1s indeed the case.
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A. Results

Table IV shows the performance of the MLP and
SOPM-MLP on the test data with the new features dis-
cussed above. Comparing Table 1V with Table 1, we find that
with a smaller architecture (small number of input units), the
performance of the ordinary MLP is consistently betier. For
deviations less than or equal to 1.2 *C, the pedformance of the
MLP network with gradients as features 15 consistently better
than the corresponding MLP using 27 features. This is clearly a
significant improvement because with the new features we are
using a much smaller network.

Comparing columns of SOFM-MLP in Table IV with
Table 111, we find that for deviations less than or equal o
+15 *C, SOFM-MLP using gradient as features exhibils
consistently  better  performance than the comesponding
SOFM-MLP using all 27 features. For deviations less than
or equal to =2 °C, the performance of SOFM-MLP more or
less remains the same. Table IV also reveals that the maximum
deviation and average deviation are betier for SOFM-MLP
than direct use of MLP.

VI ONLINE FEATURE SELECTION AND HYBRID NETWORE

We have observed two things: the hybnd network works
better than MLP, and the choice of good features improves
the prediction accuracy. Therefore, if we can do online feature
selection, ie., select the good featres while learning the pre-
diction task, we can probably further improve the pedormance
of the network, and this can also tell us about various important
features responsible for temperature vanations. This may help
us to get a better insight into the lemperature varation process.
We try to do these now.

A. Onfline Feature Selection Net

There have been several [10], [11] attempts to use neural net-
works for feature selection. These methods are offline in nature.
Here, we use an online feature selection method due to Pal and
Chintalapudi [12]. We use the acronym FSMLP (e.g., for fea-
ture selection MLP) for the Pal-Chintalapudi modification of
the standard MLP that can select features,

In a standard MLP, the effect of some featres (inputs) can
be eliminated by not allowing them into the network. If we can
identify “partially useful” features, then they can be attenuated
according 1o their relative usefulness. This can be realized by as-
sociating an adaptive gate to cach mput node. The gate should
be modeled in such a manner that for a good feature, it s com-
pletely opened, and the feature is passed unattenuated into the

el; while for a bad feature, the gate should be closed tightly.
On the other hand, for a partially important feature, the gate
could be partially opened. Mathematically, the gate 15 modeled
by a function & with a tunable parameter. The degree o which
the gate is opened determines the goodness of the feature. We
multiply an mput feature value by its gate function value, and
the modulated feature value 15 then passed into the network.
The gate functions attenuate the feares before they propagate
through the net, so we may call these gate functions as arreni-
atorfunctions. A simple way of idenifying useful gate functions
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TABLE 1V
CUMULATIVE PERCENTAGE FREQUENCY TABLE ok MLP anp SOFM-MLP
UsinG TEMPERATURE GRADIENTS AS FEATURES
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15 o pse =-type (or sigmoidal) functions with a tunable param-
eter, which can be keamed vsing the traning data.

Let F': A+ [{1,71] be an attenuation (gate) function associ-
ated with an input node. If « is the node input, then +7'[~) is
the node output. Thus, x8'[~; ) can be viewed as the activation
function of the th input node, where -, s a parameter (nol a
connection weight) of the activation function. Thus, the input
layer nodes act as “nearons”™ (1.e., have intemal calculations).
Notice that once ~; is known, £~ acts as a fived multiplier
for all input values of the sth feature.

The function F' can have various forms.

In the exper-
iments described below, we use the attenuvation functon
Fivd =101 | = ¥ Thus, the éth input node atlenuates = by
an amount 177'[’;-,} & (I, L], where ~; is a parameter 1o be learned
during training. If F'i=;) is close o zero, we may choose 1o
eliminate input feature &, : this is how the FSMLP accomplishes
feature selection. How do we learn ;7 The backpropagation
formulas for the MLP can simply be extended backward into
this modified input layer 1o adjust the ;s during training.

Let vy, = number of nodes in the first hidden (not input)
layer; 1+ = leaming rale for the parameters of the attenuator
membership functions; 3 learning rate for the connection
weights; #: K (L1 = attenuator function with .J.rguanl
=+, for input node & i)
weight connecting fth node of the input layer to the _-,ulh node of
the first hidden layer for the fth ileration; and ﬁ] = ermr Lenm
for the jith node of the first hidden layer.

It can be easily shown [12] that the leaming rule r{}FLUHHDL-
tion weights remains the same for all layers except for e T
The update rules for 11-__“.;":-‘{1‘.; and ~; are

derivative of T at ~;

r*-—.lll“”f—lj—'r,uxﬁ Flaglt— 100 (3}
i s E
Wb wib= L | 3 wgt 8] | Fllsit =135 @)

Jasr

A L2, oo p are imbalized with values that make
P I close W zero f{}r.ill t. Consequently, o F ) is small at
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TABLE VW
FSMLP ATTENUATION FACTORS FOR NETWORK WITH 15 INPUTS
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the beginning of training. 50, FSMLP allows only a very small
“fraction” of each input feature value to pass into the standard
part of the MLP. As the network trains, it selectively allows only
tmportant features o be active by increasing their attenoator
weights (and, hence, increasing the multipliers of {r.} associ-
ated with these weights) as dictated by the gradient descent. The
traming cian be stopped when the mean squared error 15 low or
when the number of ierations reaches a maximum limit. Fea-
tures with fow attenuator weights are then eliminated from the
feature set. In this imvestigation, we only consider those features
whose attenuation values at the end of the taming are kess than
9%,

B. Results

In omder w select the good features, we tmimn the FSMLP using
the entire dataset. And after the features are selected, we train
the SOFM-MLP with the selected set of features. Table V dis-
plays the attenuation factors of the 15 features after training.

Table V meveals that only eight of the 15 features are impor-
tant for prediction of the next day’s temperature [t or
Fiag ) The network rejects the maximum pressure, minimum
pressure, and mimmum relative humidity, but not the maximum
relative hurmdity. It 1s very reasonable to expect that the max-
tmum relative humidity can have mfluence on the wmperature
vanation but not the mimmuom relatve humidity. The network
can capture these mformation. Sunilarly, of the six lempera-
ture gradients, the network picks up only the two most recent

ek

TABLE VI
CUMULATIVE PERCENTAGE FREQUENCY TABLE For MLP
AND SOFM-MLP UsinG SELECTED FEATURES
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temperature gradients, 1.e., the difference of the maximom @m-
peratures of today and yesterday [0 P 1] and
the difference of the minimum temperatures of today and yes-
terday [T 1 — 75071 — 1%). This tells us that only very local
(with respect Lo time) varation of lemperature has effect on pre-
dicting the temperature. OF the accepted features, FSMLP has
given the maximum importance o the minimum lemperture
of today [£"""'[#]]; the next important feature is the maximum
temperature of today T9%%((), This is also very logical, as we
are predicting the maximum and minimum temperatures. The
third most imponant feature selected by the network, as a mete-
orologist will expect, 15 the maximum vapor pressure of woday.

In our earhier expenments, we did not vse any validation set
Lo guard aganst overtraming or memorization by the network.
In order to demonstrate the fact that our eadier results do not
suffer from overtraining and memorization, and to see the effect
ol vahidation, we now use a validation set. We now use 70 points
for validation and 200 points for testing.

Foreach network, the tmuning 15 stopped when the prediction
error on the validation set stans mmcreasing. We have made ten
experiments each with MLP and SOFM-MLF. Interestingly, in
all but two cases, the trmining errorand validation error exhibited
identical behaviorn

Table VI depicts the average performance of MLP and
SOFM-MLF using the selected features i conjunction with
a validation set. Simce in these cases we have used only eight
mput features, we have restricted the maximum number of
nodes in the hidden layer w12 only.

Comparing Table VI with Table IV, we find that m this
case, too, there 15 a4 marginal improvement in performance
for SOFPM-MLP with the selected features. Comparing the
columns for SOFM-MLP with those of MLP in Table VI,
we again find that SOFM-MLP outperforms the conventional
MLF. The most important point 15 that we can use only a few
features 1o get good resulis.

Fig. 3 depicts the plot of predicted maximum @emperature av-
eraged over ten runs comesponding to Table VI for the frst 50
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Fig. 3. Predicted maximum tempemture {avemged over ten nuns using
SOFM-MLFP) along with Ge ( 3o, | Jor) length where o is the standard
deviation.

test points when ry, = ML The vertical line indicates the length
fer, (% o hr) where 7 1s the standard deviation of the pre-
dictions for that particular day. In Fig. 3, we show only 50 points
for visual clarity; the characlenstics of the figure remain the
same with all 200 points. Fig. 3 shows that the prediction by the
SOFM-MLP network is guite consistent and is not influenced
much by the initialization of the network.

WVII. CONCLUSION AND DISCUSSION

We proposed a hybnd neurmal network model that combines
the self-organizing feature map and the multilayer perceptron
network for emperature prediction. In this context, we have
used some derived features to enhance the prediction accuracy.
The importance of feature analysis is further demonstrated using
an online feature selection technigue. The proposed method has
been compared with both local and global predictors and has
been found 1o produce a much better prediction than others.

To summarize our contribution and observations we can state
the following.

1) Denved features could be more effective than aw fea-
res. For example, use of gradient as features instead of
the raw observations can reduce the required size of the
network and make the training task simpler yet achieving
better performance over the raw features.

2) Feawre selection is an imporant factor for better pre-
diction of atmospheric parameters. In this regard, our
FSMLP tums out to be an excellent ool that can select
zood features while leaming the prediction task.

3) Nonlinear models such as MLP and EBF are better than
the AR model.

4) Global predictor like MLP is found o perform better than
the local predictors such as RBF network.

5) The proposed hybrid SOFM-MLP network consistently
performs better than the conventional MLP network. Our
comparison with another local predictor, the RBF net-
work, further demonstrated the supenrority of the pro-
posed hybnd network.

&) The combined use of FSMLP and SOFM-MLP results
in an excellent paradigm for prediction of atmospheric
parameters.
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7) There are couple of other areas where we need w0 do
expenments. For example, we plan o use FSMLP and
SOFM-MLP for prediction of other atmospheric param-
clers.

We would also like w investigate their usefulness in different
pattern recognition problems.
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