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SUMMARY. In thia paper ie loped & method of d i from a random sample from a
p-varjate normal populstion & region regarding which it oan be asserted that, with probability 8, a
proportion not lesa than « of the indi iduals in the population are ined in it. Soluti to some
related problems are given in the final saction.

1. INTRODUOTION

In most statistical populations, whether they be populations of income or of
blood preesure or of tensile strength of metal castings, a preponderant majority of
individuals are concentrated over a relatively narrow range. This enablea us, in many
situations, to act as if individuals falling outside such intervals did not exist. Theo-
retically, information concerning such regions is implicit in the probability distribution,
though actual determination of them is often a matter of some mathematical difficulty,
esp>cially when the diatribution is not unidimensional. The problem of tolerance
regions is that of determining from only a random sample from the population, a
region, regarding which we can assert that, with probability #, a proportion not less
than @ of the individuals in the population are contained in it.

The earliest formulation of the problem of tolerance regions is that of Wilks
(1941). Wilks discovered a simple method of determining non-parametrio tolerance
regions for univariate populations. The corresponding multivariate problem was
solved by Wald (1943). In Wald (1942) can be found an asymptotic solution of the
problem of tolerance regions for parametrio families of multivariate distributions.
Tukey (1047, 1948), Tukey and Scheffé (1945), Fraser (1051, 1963), Fraser and Worm-

leighton (1961), Murphy (1948) and Kemperman (1866) report later work on the problem
of non-parametric tolerance regions.

Though a general (asymptotio) solution of the problem of tolerance regions
for a parametrio family of distributions was given by Wald (1942), specialisation of
hia solution to particular families of distributions does not generally lead to the best
or the simplest solution possible. On the other hand, the non-parametric solution can
be inefficient, as demonstrated by Wilks (1941), when applied to such special families.
For thees reasons, Wald and Wolfowitz (1946) worked out & separate solution for uni-

veriate normal distributions. Our purpose in this paper is to work out such a solu-
tion for multivariate normal distributions.
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2. NoOTATION

Wae shall denote by g,(x, T) the density function of the multivariate normal
distribution of dimension p, having 4 for mean vector and Z for dispersion matrix.

For any region R in the sample space, we shall set
vR; p,Z) = I}{" I gdu, ) dzydz,. . dz,. ..oo@en
The function f(z; A, m) is defined as follows :

e § (W
T T zimHi-1 g (22
WA S Gme 2
It is the demsity function of the non-central chi-square variable of noncentrality
A and degree of freedom m. Also, we shall set

flz; A, m) =

F(z; A, m) = ff(tt; A, m)du. ..o (2.3)
[]

The equation F(P@; A, m); A, m) =6 o (2.4)
defines the function P(6; A, m).

3. PROCEDURE FOR DETERMINING THE TOLERANCE REGION

Let 2 be the arithmetic mean of N observations of a random vector z = (x,, ..., ;)
distributed according to the density function g,(¢, £). Let ¥ be a realisation of an
independent Wishart variable of » degrees of freedom having nE for its expectation.®

Denote by R, the region of all z-vectors satisfying the inequality

(z—2)7 (z—z) < k. o (31)

Let v = Pla; § N"1p,p), o (3.2)
and v = P(1—4; 0, n p). .. (3.3)
Set K = (v/vy)p. .. (3.4)

Regarding the region Ry, we can make the following assertion :
prob (Rg: 4, Z) > a) = A. . (35)

The difference between the two members of (3.5) is small provided n and N
are at least moderately large.

The constant v, can be determined from the table of the percentage points
of the chi-square distribution given by Fisher and Yates (1853). If N is large
P(a; N-'p, p) = P(a; 0, p). Hence when N is large, v, also can be determined from
these same tables. If (p/N) is not small enough, we have to resort to methods
developed by Patnaik (1949) and Abdel-Aty (1954). The short tables which they give
would be of help in determining v,

® The matrix of sum of p! from a random sample of aize n+ 1 satiafiea
Qur requiremsnte,
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4. PROOF OF EQUATION (3.5)

Lot M be any non-gingular matrix. Let R, , be the region of all z-vectors
satisfying the inequality

E—2M)M' V M) (z—2MY < k. o (1)
Then, By p, Z) = (R, y; p M, M’ M). .. (4.2)

We now choose 4 so that AT 4 = I and A’ V A 18 a diagonal matrix. Let
the diagonal elements of A’V 4 be £(i = 1,2, ..., p). We can assumo, without loss
of generality, that #, <4 < ... <t, The region Ry, is then the region of all
z-vectors satisfying the inequality

? (zi—a)'t < k, e (43)

where a; is the i-th component of the veotor 2 4.

Denote by R; the region of all z-vectors satisfying the inequality

)lf (@—a) < k. o (44)
Set, k= (n/ve)ply, k° = (v/vy) 1£ L ... (4.6)
and kT = (v /v,)pt,. ... (4.8)

Equation (4.2), together with (4.3) and (3.4), leads to the following :

prob (W(Ri/; # 4,1) > a} < prob {\(Rg; p, ) > a}  prob {(W(Ri-; p4, 1) > a}.
(4.7)

Since ¢, < (S t)fp < t,, we have also

prob {\(Ry; pd, I) > a} < prob (M Rj-; pA, I) > a} < prob {W(B.; pd, Iy > a}.
. (4.8)

It is easy to demonstrate that

prob {v(Ry. ; pA, I) > a}—prob (M Ry ; g4, I) > a}
tends to zero as n—c0. Therefore, a fortiors,

|prob {v(Ri-; #4,I) > a}—prob {W(Rg; 4, T) > a}|

tends to zero a8 n—co. Hence, equation (3.5) will be established if we show that

prob (v(Ry; pd, I} > a} = p. ... (4.9)
Now, v(Ry; pd, I) = F(k; w, p), ... (4.10)
where w= Hz2—p)Z Y (z—up). . (411)
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Therefore, ,
pmb{v (Re; 24, 1) > a}
— prob (F(k"; w, p) > a},

= B, prob {»,vz'v > P(a; w, p)|w}, where v = & 4,
1

= E,prob {v > vy! Pla; w, p)|w},
= 1—E, F(pw;! Pla; w, p); 0, np),
= 1—EB, F(vo7" Pla; $N"'p, p); 0, np)
— B fw—3iN-p)[(3/04) Flvgwy'Pla; A, p); 0, np)lyysip
— 1B w— NP0 OAYF vy Pl A, ); 0, np)himsiuys - (4.12)

by Taylor’s theorem. Here y(w) is a function of w bounded by §N-1p and w.

Because of (3.2) and (3.3), the second term of the last member of (4.12) is
1—pA. The random variable 2Nw has the chi-square distribution with p degrees of free-
dom. From this it follows that the third term is zero. Finally, it is possible to prove
that (83/0A%)F(vvi! Pla; A, p); 0, np) is bounded. Further, E(w—3}N-'p)? = }p/N2
Therefore, the absolute value of the fourth term is less than B/N?, where B is some
finite positive number. This proves that, if terms of order two in (1/N) ocan be neg-

lected, then
prob (W Ry-; 24, 1) > a} = B. ... (4.13)

5. ALTERNATIVE PROCEDURES

Let E(t. ty, ..., ¢;) be any ‘average’ of ¢, 1, ..., ¢, Let v, be a number such

hat
prob {E(ty, by, ..., &) < vg) = 8. ... (B.1)
Set B = v/og. . (8.2)
We can then prove, by arguments exactly similar to those employed earlier, that
prob (W(Ryew; p, Z) > a} = B. ... (8.3)

The procedure discussed in Section 3 corresponds to the choice of the
arithmetic mean for £. This choice has the advantage that the exact value of v,
oan be determined quite easily using tables of the percentage points of the chi-square
distribution. Some alternative choices for £ are considered below.

I E(ty, By« ) = (b by -y £)10%.
Hoel (1937) shows that the density function of E(t,, ¢, ..., ¢,) is epproximately
cipin—r+1) {F(&p[(n—p-{—l])}“ E,W"'-’“’"’e“!, (5_4)
where ¢ = §p{l —p—1)(p—2)/n). .. (5.5)

If p =1 or 2, (6.4) is the exact density function of E(t, 4, ..., t,). We oan thus deter-
mine v, from tables of the chi-square distribution.

() E(h,tg,...,z,):p/(% t‘-l)_

In this oase, pE js distributed approximately as a ohi-square with
{np—p(p+1)+2} degrees of freedom.
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6. BouxDS FOR prob {v(R;; 4, I) > a}
If we negleot terras of order two in (1/N),
prob (4 > vy/p) K prob {v(R,; #, T) > &}  prob (¢, > vy/p). . (6.1)
These inequalities are just another version of inequalities (4.7), obtained by the appli-
cation of equation (4.10).
We give below simple expressions for the distribution funotions of ¢, and
t,, in the case p = 2. Pillai (1054) gives recurrence relations connecting distribution
functions of different orders.
If p = 2, starting fror the joint distribution of ¢ and ¢, which is given, for
instance, by Fisher (1939), we oan show that
prob (4 > ) = [1—F(2; 0, 20)]—[T{)/T(§n)}e/20 1 e=¥ - [L—F(L; 0, n41))
(8.2)
and that,
prob (t; > &) = [1=F(2t; 0, 20)]+[T(§)/T§n)](4/2)H*-V e~¥ F(2, 0, n4-1)
(6.9)
From (3.3), (6.2) and (8.3) we see that both extreme members of inequalities
(8.1) are very nearly equal to £ even for moderately large values of n. Therefore, the
middle member is more 8o.

7. RELATED PROBLEMS AND OONOLUDING REMARKS

In some situations we face a slightly different problem. Here £ = ¢%A where
A is & known positive definite matrix and o? an unknown positive number. An un-
biased estimate s of o2, independent of the eatimate 2 of 4, is available. The quantity
ns? is a realisation of a ohi-square variable with n degrees of freedom. A situation of
this kind arises, for example, if we want to determine a tolerance region for the distri-
bution of estimates of regression paremeters in & linear model. The procedure of
Section 3 applies to this case also if we set
A=V, (1))
and v, = P(a; 0, »). .o (1.2)
A problem olosoly related to that which we have been discussing in Sections
1 to 8 is that of determining from a random sample from the population & (random)
region R rogarding whioh we oan make the following assertion :
EvR; p, 5) = a. . (1.3)
The region R, of Section 3 will satisfy this requirement if we ohoose k o that
kN(n—p+1)/[[p(N+1)] is the upper 100(1—a) percent point of the F-distribution
with p and —p+ 1 degrees of freedom. Fraser and Guttman (1856) prove that among
regions satisfying condition (7.3), R, is, in meny respeots, beat.
In the practioal application of the procedurs of Section 3, it would be con-
venient to have at hand a table of values of K for various values of N, n and p. Such
8 table we hope to make available at a luter date.*

* Tablos roquired in the univariate oass are given by Woissberg and Boatty (1000).
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