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Case Generation Using Rough Sets with
Fuzzy Representation
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Abstract—In this aticle, we propose a rough-fuzzy hybridization scheme for case genemtion. Fuzzy set theory is used for linguistic
representation of patterns, thereby producing a fuzzy granulation of the feature space. Rough set theory is used to obtain dependency
rules which model informative regions in the granulated feature space. The fuzzy membership functions corresponding to the
informative regions are stored as cases along with the strength values. Case retrieval is made using a similanty measure based on
these membership functions. Unlike the existing case selection methods, the cases here are cluster granules and not sample points.
Also, each case involves a reduced number of relevant features. These makes the algorithm suitable for mining data sets, large both in
dimension and size, due to its low-time reguirement in case generation as well as retrieval. Supenonty of the algorthm in terms of
classification accuracy and case generation and retrieval times is demonstrated on some real-life data sets.

Index Terms—Case-based reasoning, linguistic representation, rough dependency rules, granular computing, rough-fuzzy

hybridization, soft computing, pattem recognition, data mining.

1 INTRODUCTION

A case-based reasoning (CBR) systemadapts old solutions
to meet new demands, explains and critiques new
situations using old instances (called cases), and perfun'm-:
reasoning from precedents to interpret new problems [1]. A
case may be defined as a contextualized piece of knowledge
representing an experience that teaches a lesson fundamental
to achieving goals of the system. Selection and generation of
cases are bwo important components of aCBR system. While
case selection deals with selecting informative prototypes
from the data, case generation concerns itself with the
construction of “cases” that need not necessarily include
any of the given data points. The cases in the latter one may be
constituted by some description of a collection of points,
represented En..r information granules. Since computation
needs to be perf{]rmed only on information granules, not on
the individual points, retrieval time will be reduced. The
present article concerns with the problem of case generation
and its related merits in rough-fuzzy granular framework.
Early CBR systems mainly used case selection mechan-
isms based on the nearest-neighbor principle. These algo-
rithms involve case pruning,-’grmving memndnlngies, as
exemplified by the popular IB3 algorithm [2]. A summary of
the above approaches may be found in [3]. Recently, fuzzy
logic and other soft computing tools have been integrated
with CBR for developing efficient methodologies and
algorithms [4]. For case selection and retrieval, the role of
fuzzy logic has been mainly in providing similarity measures
[5] and mod eling ambiguoussituations [6], [7]. A neuro-fuzzy
method for selecting cases has been proposed in [8], where a
fuzz].-rcaae similarity measureis used, with repeated growing
and pruning of cases, until the case base becomes stable. All
the operations are perfurmed using a connectionist model
with adaptive link structure. One may note that the literature
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on case generation is relatively scanty in both classical and
soft computing framework.

Rough set theory was developed by Pawlak [9], [10] for
classificatory analysis of data tables. The main goal of rough
set theoretic analysis is to synthesise approximation (upper
and lower) of concepts from the aquired data. While fuzzy
set theory assigns to each object a grade of belongingness to
represent an imprecise set, the focus of rough set theory is
on the ambiguity caused by limited discernibility of {:-b]ech
in the domain of discourse. The key concepts here are those
of “information granule” and “reducts.” An information
granule is a clump of objects (points) in the universe of
discourse drawn together by indistinguishability, similarity,
proximity, or ['uncl'i{mality. Information granules reduce the
data by identifying equivalence classes, i.e,, objects that are
indiscernible, using the available attributes. Only one of the
elements of the equivalence class is needed to represent the
entire class. Redudtion can also be done hr].-r keeping only
those attributes that preserve the indiscernibility relation.
S0, one is, in effect, looking for minimal subsets of attributes
that induce the same partition on the domain as done by the
original set. In other words, the essence of information
remains intact and superfluous attributes are removed. The
above sets of attributes are called reducts. An information
granule formalizes the concept of finite precision represen-
tation of objects in real-life situations, and reducts represent
the core of an information system (both in terms of objects
and features) in a granular universe. It may be noted that
cases also represent the informative and irredudble part of
a problem. Hence, rough set theory is a natural choice for
case selecion in domains which are data rich, contain
uncertainties, and allow tolerance for imprecision. Additio-
naly, rough sets have the capability of handling complex
objects (e.g., proofs, hierarchies, frames, rule bases); thereby
strengthening further the necessity of rough-CBR systems,
Some of the attempts being made in this regard are
available in [11], [12]. Recently, rough sets and fuzzy sets
have been integrated in soft computing framework, the aim
being to develop a model of uncertainty stronger than either
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TABLE 1
Hiring: An Example of a Decision Table

Diplama (3) | Bxperinecs () | French (] Keference [v) | Decision
| MBA Medium Yo Exoallent Aecept
s MBA Lanw Yo Meutral Reject
o MOCE Lo Yo Grood Reject
iy M&e High Yo MNeutral Aeeepl
T MSe Medinm Yes Mentral Reject.
Ty W& Migh Yen Fxeellent Regect
Tr MIA Migh MNn Croaod Aveent
T MOTE TLow Mo Fieellent Reject

[13]. Therefore, rough-fuzzy CBR system has significant
potential.

In this article, we use rough-fuzzy hybridization for
designing a melhﬂd{ll{}g‘l.-’ for case geﬂeratmn of a
CBR system. Each pattern (object) is represented by its
fuzzy membenhlp values with respect to three over-
lapping linguistic property sets “low,” “medium,” and
“high,” thereby generating a fuzzy granulation of the
feature space which contains granules with ill-defined
boundaries. Discernibility of the granulated objects in
terms of attributes is then computed in the form of a
discernibility matrix. Using rough set theory, a number of
decision rules are generated from the discernibility matrix.
The rules represent rough clusters of points in the original
feature space. The fuzzy membership functions corre-
sponding to the region, modeled by a rule, are then stored
as a case. A strength factor, repmmhng the a priori
probability (size) of the cluster, is associated with each
case. In other words, each case has three components,
namely, the membership functions of the fuzzy sets
appearing in the reducts, the class labels, and the sl‘rmgth
factor. In the retrieval phase, these fuzzy membership
functions are utilized to compute the *ilrrula:ltv of the
stored cases with an unknown pattern.

It may be noted that, unlike most case selection schemes,
the cases generated by our algorithm need not be any of the
objects (patterns) encountered, rather they represent regions
having dimensions equal to or less than that of the input
feature space. That is, all the input features (attributes) may
not be required to represent a case. This type of variable and
reduced length representation of cases results in the
decrease in retrieval time. Furthermore, the proposed
algorithm deals only with the information granules, not
the actual data points. Because of these characterstics, its
sig;niﬁcance to data mining applications is evident.

The effectiveness of the methodology is demonstrated on
some real-life data sets, large both in dimension and size.
Cases are evaluated in terms of the classification accuracy
obtained using 1-NN rule. A comparison is made with the
conventional IB3 and IB4 algorithms [2], and random case
selection method. The proposed methodology is found to
perform better in terms of 1-NN accuracy, case generation
time, and average case retrieval time.

2 RoucH SETs

Let us present here some preliminaries of rough set theory

which are relevant to this article. For details, one may refer
to [10] and [14].

2.1 Information Syﬂtﬂm
An information system can be viewed asa pair§ =< 7, A =,
or a function f: {7 x A —V, where IV is a nonempty finite
set of objects called the universe, A a nonempty finite set of
attributes, and V' a value set such that a: U7 — V, for every
a e A. The set V, is called the malue set of a

In many situations, there is an outcome of dassification
that is known. This a posteriori knowledge is expressed by
one distinguished attribute called decision attribute. In-
formation systems of this kind are called dedsion systems.
A decision system is any information system of the form

= (7, AU {d}), where d¢ A is the decision attribute. The
elements of A are called conditional attributes. An informa-
tion (decision) system may be represented as an attribute-
walue (decision) table, in which rows are labeled by objects of
the universe and columns by the attributes. Table 1 is an
example of representing a dedsion system

A' =(U {Diploma, Experience, French, Reference]} U
{ Decision})

for hiring personnels.

2.2 Indiscernibility and Set Approximation

A decision system (ie, a decision table) expresses all the
knowledge available about a system. This table may be
unnecessarily large because it could be redundant at least in
two ways. The same or indiscernible objects may be
represented several times, or some attributes may be
superflupus. The notion of equivalence relation is used to
tackle this problem.

With every subset of attributes B C A, one can easily
associate an equivalence relation Iz on U Ip = {{z,y) € [/
for every a € B, a(r) = a{y)}. {g is called B-indiscernibility
relation. If (x,y) € I, then objects = and y are indiscernible
from eachother by attributes B, The equivalence classes of the
partition induced br'l.-r the B-indiscernibility relation are
denoted by [z]g These are alko known as granules. For
example, in the case of the decision system represented by
Table 1, if we consider the attribute set B = { Diploma,
Exrperience], therelation I defines the following partition of
the universe

f” e I{I.ll'lla!m.'m. Erperience |

= {{ry,ma}t. {xs,ms} . {xs 1 {m )}, = b {22} )
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Fig. 1. Roughrepresentationof a set with upper and lower a pproximations.

Here, {rs, x5}, {rs. 2}, {xs}. {::1}. {x2}. {27} are the gran-
ules obtained by the relation 5.

The partition induced by the equivalence relation [ can
be used to build new subsets of the universe. Subsets that
are most often of interest have the same value of the
outcome attribute, ie., belong to the same dass. It may
happen, however, that a concept (e.g., “Reject” in Table 1)
cannot be defined crisply using the attributes available. It is
here that the notion of rough set emerges. Although we
cannot delineate the concept crisply, it is possible to
delineate the objects which definitely “belong” to the
concept and those which definitely “do not belong” to the
concept. These notions are formally expressed as follows.

Let A = (L7, A) be an information system and let B C A
and X C 7. We can approximate X using only the informa-
tion contained in B by constructing the lower and upper
approximations of X. f X C [/, the sets {r e U : [z]p € X}
and {x el : [2]; N X # W}, where [z],; denotes the equiva-
lence class of the object = £ IV relative to g, are called the B-
lower and B-upper approximation of X in § and denoted by
BX, BX, respectively. The objects in BX can be certainly
classified as members of X on the basis of knowledge in B,
while objects in BX can only be classified as possible
members of X on the basis of B. This is illustrated in Fig, 1.
Considering the dedsion system Hiring (Table 1), if B =
{Diploma, Erperience} and X is the concept Reject, then:
BX = {zxa, {ry, 7}z }and BX = {zy {xy, x5}, {7a, 74}, 15}

2.3 Reducts

Indiscernibility relation reduces the data by identifying
equivalence classes, i.e., objects that are indiscernible, using
the available attributes. Only one element of the equiva-
lence class is needed to represent the entire class. Reduction
can also be done by keeping only those attributes that
preserve the indiscernibility relation and, consequently, set
approximation. So, one is, in effect, looking for minimal sets
of attributes taken from the initial set A, so that the minimal
sets induce the same partition on the domain as done b}r A.
In other words, the essence of the information remains
intact and superfluous attributes are removed. The above
sets of attributes are called reducts.

Reducts have been nicely characterized in [14] by
discernibility matrices and discernibility functions. Consider
U={r,....,x} and A ={a,.. ., i, } in the information
system & =< 7, A > . By the discernibility matrix M(S) of &
is meant an n x n-matrix (symmetrical with empty diag-
onal) with entries ¢,;s as follows:

o= {a € A:a(x) #alx;)}. (1)

A discernibility function fs is a function of m Boolean
variables &,..... d,, corresponding to the attributes a,,
vo oy iy, respectively, and defined as follows:

Y TR T j\{\{qn,-j; USRS < G w},
i2)

where Y/(r;;) is the disjunction of all variables & with a £ ¢},
It is seen in [14] that {a;,, ..., a;, | is areduct in & if and only
if @, A ... Aa;, is a prime implicant (constituent of the
disjunctive normal form) of fs.

2.4 Dependency Rule Generation

A prindpal task in the method of rule generation is to
compute reducts relative to a particular kind of information
system, the decision system. Relativized versions of
discernibility matrices and functions shall be the basic tools
used in the computation. d-reducts and d-discernibility
matrices are used for this purpose [14]. The methodology
is described below.

LetS =< 7, A > beadecision table, with A = € U d,and d
and ( its sets of decision and condition attributes respec-
tively. Let the value set of d be of cardinality I, ie.,
Vi={d.da ..., di}, representing ! classes. Divide the deci-
sion table § = < 7. A > into [ tables &, = <07, A, =,i =

Lieary I, corresponding to the [ decision attributes d;... ., i,
where I/ = [ U.. . Uljand 4; = C U {d;}.

Let {ri1,.... ¥} be the set of those objects of U; that occur
in &.i=1,..., I. Now, for each di-reduct B = {by,..., b}

(say), a discernibility matrix (denoted by M, (B)) can be
derived from the d-discernibility matrix as follows:

c; = {e € B:a(x;) # alz)}, (3)

For eachobject x; € =, ..., 7, the discernibility function
f; is defined as

m=MNMVe):1<iisn j<ie#0} @
where \/(;) is the disjunction of all members of ¢;;. Then,
fi is brought to its disjunctive normal form (d.n.f). One
thus obtains a dependency rule v, viz. d; — F, where P; is
the disjunctive normal form (d.nf) of [, jei..... £

The dependency factor df; for +; s given by

_ card(POSg (d;))

e AT )

where POSE (d;) = Uy, B(X), and B;(X) is the lower
approximation of X with respect to B. B; is the set of
condition attributes occuring in the rule » :d; — B,
PS8y, (d;) is the positive region of class & with respect to
attributes B, denoting the region of class ; that can be surely
described by attributes B;. Thus, df; measures theinformation
about dedsion attributes d; derivable from the condition
attributes of a rule B,. df; has values in the interval [0, 1], with
the maximum and minimum values corresponding to
complete dependence and independence of 4 on B,
respectively.
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TABLE 2
Two Decision Tables Obtained by Splitting the
Hiring Table &S [Table 1)

i £ b s Decision
@1 | MBA | Medium | Yes | Excellent | Accept
g || MSe Uigh | Yes | Meutrul | Accept
wr | MBA [ ligh Mo Good Aceept
(8]
i £ b s Pleeision
e || MBA T Yrs | Meutral Rrjorct
iy | MCE L Yes | Good Reject
w2z | MSe | Medium | Yes | Neutral Beject
xg | MSe High | Yes | Excellent | Beject
oz | MCE | Low Mo | Lxeellent | Reject
{b)

(@) S jerepe AN B) Sgin

Example 1. The methodology for rough set rule generation
is illustrated here. Let us consider the Hiring decision
system A' = (I, { Diploma(i), Experience(e), French(f),
Reference(r)} U {Decision}) of Table 1. Vieivim =
{Accept, Reject} is the value set of the atrribute
Decision; Vi is of cardinality two. The original
decision table (Table 1) is thus split into two decision
tables &y (Table 2a), and &g (Table 2b). Since all
the objects in each table are distinct, they could not be
reduced further. MNext, for each decision table, the
discernibility matrices M. (") and Mp..(C) are
obtained using (3). Among them, only the matrix
Mg () is shown in Table 3, as an illustration. The
discernibility function obtained from M ... (C7) is

Jawep =(IVeVT)AleVIVTIAY fYrT)
=leni)Viean HVENfIVE

idisjunctive normal form).

The following dependency rules are obtained from
f."-"f'!'.l?l

Accept — e M
Aceept — et f
Accept — i n f

Accept — 7.

3 LincuisTic REPRESENTATION OF PATTERNS AND
Fuzzy GRANULATION

As is evident from the previous section, the rough set
theory deals with a set of objects in a granular universe. In
the present section, we describe a way of obtaining the
granular feature space using I"uzz].-r linguistic representation

TABLE 3
Discernibility Matrix M., for the Split Hirng
Decision Table S« (Table 2a)

Ohjects | oy Ty o
x Ler | g f.r
T4 i fir
Ly

of patterns. Only the case of numeric features is mentioned
here. (Features in descriptive and set forms can also be
handled in this framework.) The details of the methodol-
ogies involved may be found in [15], [16].

Let a pattern (object) F be represented by n numeric
features (attributes), e, F = [F), F5, ..., F.]. In other words,
Fis a point in an n-dimensional vector space. Each feature is
then described in terms of its fuzzy membership values
corresponding to three linguistic I’uzz],r sets, namely, low (L),
medium (M), and high (H). Thus, an n-dimensional pattern
vector is represented as a 3n-dimensional vector [15], [16]

F _“"lﬂl-lm'l:.F| Js ﬂ’lj.llﬂ'f.l'l'lrl.ll I:F| Js .“J!I igh I:F| ) ﬂ.!{m' I:F;'.:I' ﬂ-ﬁ'w.l'l'lrl.'l {F;' ::I'

(6)
where jr,im_l[ﬂ-jl, T (#7),and p,}';l.unl[ﬂ-j indicate the mem-

bership values ufm,;-'i-“;; the fuzzy sets low, medium, and high
along feature axis j. p(F;) € [0, 1]. It means each feature F is
represented by three [{, 1]-valued membership functions
representing three fuzzy sets or characterizing three fuzzy
granules along each axis; thereby constituting 3" fuzzy
granules in an n-dimensional feature space. These functions
introduce anexpert’sbias, to anextent, in the representation of
the original n-dimensional points.

For each input feature F), the fuzzy sets low, medium, and
high are characterized individually by a s-membership
function whose form is [17], [18]

2(1 —Q) for 2 < |[Fj—¢| < A
pF) =a{Fiie A= i g(u)z for 0 |F:, e 3
0, otherwise,
™
where A= () is the radius of the 7-function with ¢ as the
central point. For each of the fuzzy sets low, medium, and
high, A and ¢ take different values. These values are chosen
so that the membership functions for these three fuzzy sets
have overlapping nature (intersecting at membership value
{1.5), as shown in Fig. 2.

Let us now explain the procedure for selecting the
centers () and radii (A} of the overlapping mfunctions. Let
m; be the mean of the pattern points along jth axis. Then,
my, and m; are defined as the mean (along the jth axis) of
the pattern points having coordinate values in the range
[Fi....m;) and (m;, F; |, respectively, where F; _and Fj
denote the upper and lower bounds of the dynamic range of
feature F;. The centers and the radii of the three =functions
are defined as
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Fig. 2. =MMembership functions for linguistic fuzzy sets low (L), medium
(M), and high (H) for each featune axis.
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Here, we take into account the distribution of the pattern
points along each feature axis while choosing the corre-
sponding centers and radii of the linguistic fuzzy sets.
The aforesaid three overlapping functions along each axis
generate the fuzzy granulated feature space in n-dimension.
The granulated space contains 3" granules with fuzzy
boundaries among them. Here, the granules (dumps of
similar objects or patterns) are attributed by the three fuzzy
linguistic values “low,” “medium,” and “high.” The degree of
belongingness of a pattern to a granule (or the degree of
possessing a property low, medium, or high br].-r a pattern) is
determined by the corresponding membership function.
Furthermore, if one wishes to obtain crisp granules (or
crisp subsets), a-cut, 0 < a < 1, [18] of these fuzzy sets may
be used. (n-cut of a fuzzy set is a crisp set of points for
which membership value is greater than or equal to o)

1 1 1
H o K pedtiom Y frigh
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=
_EP| i o
¢ ;/ L Hy Ml | Wy | . pointx
= — | ]
Bl N '
TR BEf
| j
e B T '
=5 Ilra-"""- 3 FJ.
z 0 | L g ML | HLs
i
! ; “
o wn g
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Fig. 3. Generation of crisp granules from linguistic (fuzzy) representation
of the features £, and £.. The dark region (1f,;. M) indicates a crisp
granule cbtained by 0.5-cuts on the ! and p* functions.
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Fig. 4. Schematic diagram of rough-fuzzy case generation.

MNote that the concept of fuzzy granulation has been
explained earlier in different ways and effectively used in
rough-fuzzy framework [19], [20].

4 CasE GENERATION METHODOLOGY

Here, we describe a methodology for case generation on the
fuzzy granulated space as obtained in the previous section.
This involves two tasks, namely, 1) generation of [‘uzz].-r rules
using rough set tl’hf_-nr].-r and 2) mapping the rules to cases. For
obtaining linguistic rules, we have converted fuzzy member-
ship values of the patterns to binary ones, ie., fuzzy
membership functions to binary functions using an a-cut.
This is illustrated in Fig. 3, where 0.5-cut is used to obtain
# = 9crisp granules (subsets) of the two-dimensional feature
space from the linguistic representation of the input features.
Although we have adopted this procedure, one can generate
rules directly from fuzzy granules [21], [22].

The schematic diagram for the generation of case is shown
in Fig. 4. One may note that, the inputs to the case generation
process are fuzzy membership functions, the output “cases”
are also fuzzy membership functions, but the intermediate
rough set theoretic processing is performed on binary
functions representing crisp sets (granules). For example,
the inputs to Block 2 are fuzzy membership functions. Its
outputs are binary membership functions which are used for
rough processing in Block 3 and Block 4. Finally, the outputs
of Block 4, representing cases, are again fuzzy membership
functions. Each task is discussed below.
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4.1 Thresholding and Rule Generation

Consider the 3n fuzzy membership values of a n-dimensional
pattern F;. Then, select only those attributes having values
greater than or equal to Th (= (1.5, say). In other words, we
obtain a 05-cut of all the fuzzy sets to obtain binary
membership values corresponding to the sets low, medium,
and high.

For example, consider the point x in Fig. 3. Its
dn-dimensionall fuzzy represention is F = [(.4, 0.7.0.1,
0.2,0.8, 0.4]. After binarization it becomes F}, = [00,1,0,0,1.0],
which denotes the crisp granule (or subset) at the center of the
3 = 3 granulated space.

After the binary membership values are obtained for all
the patterns, we constitute the decision table for rough set
rule generation. As the method considers multiple objects in
a class, a separate ng x dn-dimensional attribute-value
decision table is generated for each class di (where n;
indicates the number of objects in di). Let there be m sets
4 N (3, of objects in the table having identical attribute
values, and card{(X) =ng,i=1,..., m, such that ng =

.=y, and 37 ng, = ne. The attribute-value table can
now be represented as an m x dn array. Let T M g
denote the distinct elements among ng ... ., ""f-'-. such that
T =g > ... > e . Let a heuristic threshnld function be
defined as [23]

i 1
T
T=|—= | 9)

s0 that all entries having I’requmc}r less than Tr are
eliminated from the table, resulting in the reduced attri-
bute-value table. The main motive of introducing this
threshold function lies in reducing the size of the case base
and in eliminating the noisy patterns. From the reduced
attribute-value table, thus obtained, rough dependency rules
are generated using the methodology described in Section2 4.
More details on the methodologies for rule generation from
high frequency reducts in large databases are available in
[24]. Indiscernibility matrices of large size may also be
handled using the “value reduct” approach [10].

We now describe the technique for mapping rough depen-
dency rules to cases. The algorithm is based on the
observation that each dependency rule (having frequency
abovesome threshold) represent acluster in the feature space.
It may be noted that only a subset of features appears in each
of the rules, this indicates the fact that the entire feature set is
not always necessary to characterize a cluster. A case is
contructed out of a dependency rule in the following manner:

1. Consider the antecedent part of a rule; split it into
atomic formulas containing only conjunction of
literals.

2.  For each atomic formulae, generate a case—contain-
ing the centers and radii of the fuzzy linguistic
variables (“low,” “medium,” and "hlgh"} which are
present in the formula. (Thus, multiple cases may be
generated from a rule.)

3. Associate with each such case generated, the
precedent part of the rule and the case strength
equal to the dependency factor of the rule (5). The
strength factor reflect the size of the corresponding
cluster and the significance of the case.

2497
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Fig. 5. Rough-Fuzzy case generation for a two-dimensional data.
Thus, a case has the following structure:
case)
Feature i: fuzzset;: center, radius;
Clpss &
Strength
|
where fuzzset denote the fuzzy sets “low,” “medium,” and

“high.” Note that the use of these fuzzy sets for represent-
ing the cases introduce “expert's bias” in the generated
“rase knowledge.” The method is explained below with the
help of an example.

One may note that while 0.5-cut is used to convert the 3n
fuzzy member-\-.hlp functions of a pattern to binary ones for
rnrugh set rule generation (Section 4.1), the unglna] fuzzy
functions are retained in order touse them in I"urrepre-:aentmg
the generated cases (Section 4.2). These are also illustrated in
Fig. 4, where the outputs jf are fuzzy sets
(membership functions).

Example 2. Consider a data having two features F, F; and
two classes as shown in Fig. 5. The granulated feature
space has P =9 granules. These granules are character-
ized by three membership functions along each axis, and
have ill-defined boundaries. Let the following two
dependency rules be obtained from the reduced attribute
table:

]
ool ﬂ'l.'u'f.rl'lrl.'l

closs) — Lya Ha, df = 0.5
clossa — Hy A Lo, df = 0.4,

Let the parameters of the fuzzy sets “low,”
and “high” be as follows:

“medium,”

Feature 1: Cf = ﬂ.l, )l.;_, = {].Fﬁ, CAf = {]..':, )l._llj' = ﬂ.?, CH = {].?,
Apg =04
Feature 2: Cf = ﬂ.ﬁ, )l.;_, = {].Fﬁ, CAf = {].—'1, )l._llj' = ﬂ.?, CH = {].ﬁ,
Ap = (5.

Therefore, we have the following two cases:

mse 1]
Feature No: 1, fuzzset (L): center=0.1, radius=0.5
Feature No: 2, fuzzset (H): center=09, radius=0.5)
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Class =1
Strength = 0.5
J

case 3

Feature No: 1, fuzzset (H) center=(0.7, radius=04
Feature No: 2, fuzzset (L) center=0.2, radius={(.5
Class =2

Strength = 0.4

|

5 Caske RETRIEVAL

Each case thus obtained in the previous section is a
collection of fuzzy sets { fuzzsets} desaribed by a set of
one-dimensional m-membership functions with different «
and A values. To compute the similarity of an unknown
pattern F (of dimension n) to a case p (of variable
dimension mn,, n, < n), we use

I

I'll Z ('“i"-'&'."c-l ':F:IJ)!

=

sim(F.p) = (10}

where p:'."::#_,{F_,-J is the degree of belongingness of the
jth component of F to fuzzset representing the case p.
When p' =1 for all j, sim(F.p)=1 (maximum) and
when g =0 for all j, sim(F,p) =0 (minimum). There-
fore, (10) provides a collective measure computed over
the degree of similarity of each component of the
unknown pattern with the corresponding one of a stored
case. Higher the value of the similarity, the closer the
pattern F is to case p. Note that fuzzy membership
functions in (10) take care of the distribution of points
within a granule; thereby providing a better similarity
measure between F and p than the conventional
Euclidean distance between two points.

For classifying (or to provide a label to) an unknown
pattern, the case closest to the pattern, in terms of sim(F, p)
measure, is retrieved and its class label is assigned to that
pattern. Ties areresobved using the parameter Case Strength.

6 REsSULTS AND COMPARISON

Experiments were performed on three real-life data sets,
including the ones with a large number of samples and
dimension. All the data sets are available in the UCI
Machine Learning Archive [25]. The characterstics of the
data sets are summarized below:

1. Forest Covertype: Contains 10 dimensions, seven
classes, and 586,012 samples. It is a Calgraphica.l
Information System data representing forest cover
type {plne,-"hr, etc.) of the US. The variables are
carlngraphlc and remote sensing measurements. All
the variables are numeric.

2. Multiple features: This data set consists of features
of handwritten numerals (“0"-"9") extracted from
a collection of Dutch utility maps. There are
2000 patterns, 649 features (all numeric), and
10 classes total.

TABLE 4
Rough Dependence for the lris Data
G = Taalln g df =08
O +— MiaLlon _n-{j [if = [LEl
0y « H) AH, df = 0.77

1. Iris: The data set contains 150 instances, four
features, and three classes of Iris flowers. The
features are numeric.

The cases generated using the rough-fuzzy methodology
are compared with those obtained using the following three
case selection methodologies:

1. Instance-based learning algorithm, IB3 [2].

2. Instance-based learning algorithm with reduced
number of features, IB4 [26]. The feature weighting
is learned by random hill climbing in IB4. A
specified number of features having high weights
is selected.

1. Random case selection.

A comparison is made on the basis of the following:

1. 1-NN classification accuracy using the generated/
selected cases. For all the data, 10 percent of the
samples are used as training set for case generation
and 90 percent of the samples are used as a test set.
MNumber of cases stored in the case base.

Total CPU time required for case generation.
Average CPU time required to retrieve a case for the
patterns in test set.

For the purpose of illustration, we present the rough
dependency rules and the corresponding generated cases in
Tables 4 and 5, respectively, for the Iris data, as an example.
Comparitive results of the rough-fuzzy case generation
meth{n:lnlugv with other case selection algorithms are
presented in Tables 6,7, and 8 for the Iris, Forest Covertype,
and Multiple features data, respectively, in terms of number
of cases, 1-NN classification accuracy, average number of
features per case (nay), and case generation (fy.) and
retrieval (¢,.) times. It can be seen from the tables that the
cases obtained using the proposed rough-fuzzy methodol-
Ogy are much superior to random selection method and IB4,
and close to IB3 in terms of classification accuracy. The
method requires significantly less time compared to IB3 and
IB4 for case generation. As is seen from the tables, the
average number of features stored per case (n..) by the
rough-fuzzy technique is much less than the original data
dimension (). As a consequence, the average retrieval time
required is very low. IB4 also stores cases with a reduced
number of features and has a low retrieval time, but its
accuracy is much less compared to the proposed method.
Moreover, all the cases involve equal number of features,
unlike ours.

N FE S

7 ConcLUsSIONS AND Discussion

We have presented a case generation methodology based on
rough-fuzzy hybridization. Fuzzy set theory is used to
represent a pattern in terms of its membership to linguistic
variables. This gives rise to efficient fuzzy granulation of the
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TABLE 5
Cases Generated for the Iris Data

case 1{

Feature No: 1, fuzzsef(L): center—=3.19, radins=il 63

Feature No: 2, fuzzset (1} conter=3.43, radius=0.37
Feature No: 3, fuzzset (L): center=0.37, radins=0.42
Cogs=1

Strength=0.81

}

crge 2]

Feature No: 1, fuzzset{M): center=3.05, radivs=0.34
Feature No: 2, fuzzsef (L) conter=170, radins=2.05
Fealure No: 4, fuzzsel (M) center—1.20, radius—(1G8
Closs=2

Strength=0.81

)

ease 3

Fealure No: 1, fuzzsel{H): center=>6.58, radius=0.74

Frature No: 4, fuzzset (H): center=1.74, radins=(1.5
Cloys=3

Strength=0.77

]

feature sapce. On the granular universe thus obtained, rough
sets are used to form reducts which contain informative and
irreducible information both in terms of features and patterns.
The fuzzy linguistic rules obtained from the reductsrepresent
different clusters in the granular feature space. Granular
clusters (regions), modeled br].-r the rules, are mapped to
different cases, represented by fuzzy membership functions.
Notethat the above representation introduces expert's bias in
the case knowledge, i.e., in the cases ultimately generated.
Since the rough set theory is used to obtain cases through
crude rules (i.e., it deals with information granules, and not
the original data), case generation fime is reduced. Also,

TABLE &
Comparison of Case Selection Algorithms for Iris Data

Algorithm Mo, of | gy | Classification | fpen | tee
Cases ACCUTACY [gec) | [sac)
Rough-luezy | 3 267 | 98.17 .2 (105
IB3 3 500 2480 | 001
1E4 3 a0.01 4.01 | (.01
Random 3 &7.19 0t | 0u

TABLE 7
Comparison of Case Selection Algorithms for Forest Data
Algorithm No,of | ngyy | Classification | tge, | b
Cases ACCIEACY (sec) | {acc)
Romgh-fuweey | 542 4.10 | 67.01 244 | 44
B3 HE ] 10 (i, 58 453 | 3.0
1B4 44 4 LG 2L | 4.5
Bandom O48 10 41.02 17 2.0
TABLE 8

Comparison of Case Selection Algorithms
for Multiple Features Data

Algorithm Moo of | ngy | Classification | tye, | b
Cases accuracy (sec) | (sec)
Rough-fuzzy | 30 20,87 | 7T 1096 | 10.05
B3 ad [l T8} 4112 | M7
4 22 1 4100 SUEIQ- .02
Random Al G4% | Al.02 201 | 607

since each case involves a reduced number of relevant
features, only the informative regions and the relevant
subset of features are stored. As a result, case retrieval time
decreases significantly. The algorithm is suitable for mining
data sets, large both in dimension and size, where the
requirement is to achieve an approximate but effective
solution fast.

Mote that we have used three fuzzy property sets “low,”
“medium,” and “high.” One may consider hedges like
“very,” “more or less” to generate more granules, ie., finer
granulated space. However, this will enhance the computa-

tional requirement for both case generation and retrieval.
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