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Abstract

During deformation of an inclusion-matrix system, the velocity fields around individual inclusions mutually interfere with one another.
Such interacting inclusions rotate at slower rates than non-interacting, single inclusions. This paper presents a theoretical model that
describes the How pattern of matrix (viscous) material around interascting rigid inclusions of spherical shape in bulk simple shear deforma-
tion. Numerical simulations based on the velocity functions reveal that the volume concentration of inclusions is a crucial parameter
controlling the fow pattern around rotating inclusions under interacting conditions. At low volume concentrations (p, < 0,01, where
pe= {a/by', 2a: inclusion diameter and 2b: mean inter-inclusion distance) the flow is characterized by an eve-shaped separatrix, which,
with increase in volume concentration (p, = 0. 1), transforms into a pattern with a bow-tie shaped separatrix. At a large volume concentration
{pr, = 0.4) the separatrix assumes the geometry of a super-ellipse. We also present numerical models that illustrate the influence of volume
concentration on the (1) nature of strain distribution, (2) distortion patterns of passive folistions ,and (3) mantle structures around inclusions
inan interacting state. Based on this theory, it is shown that the rotational retardation of the inclusions slightly enhances the bulk viscosity of
the inclusion-matrix system.

Keywaords: Imtemcting inclusions: Rotation; Velocity functions: Bulk viscosity

L. Introduction 1975, Masuda and Ando, 1988; ten Brink and Passchier,
1995; Masuda and Mizuno, 1996; Jezck et al., 1999; Mandal

The studies on the deformation behavior of inclusion-
matrix rock systems deal with three principal aspects: (1)
rigid rotation and deformation of individual inclusions, (2)
flow-ficld around inclusions, and (3) bulk viscosity of the

system. It has been revealed that the shape and orientation of

the mmclusion controls its rotation, in addition to the bulk
vorticily (Gay. 1968; Reed and Tryggvason, 1974 Ghosh
and Ramberg, 1976; Ferguson, 1979; Freeman, 1985;
Fernandez, 1987; Passchier, 1987; Masuda et al., 1995;
Jexek et al., 1996; Mandal et al., 2001). There 1s also a
radically different proposition which states that inclusions
In certam cireumstances may not rotale even when the bulk
deformation 15 non-coaxial (Bell, 1985; Johnson, 1993;
Stewart, 1997; Hickey and Bell, 1999; Stallard and Hickey,
20013 As far as the flow field around rigid inclusions is
concemed, both theory and expenments show that the
deformation of matrix in the neighborhood of individual
mclusions s always heterogeneous (Gay, 1968; Ghosh,
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et al., 2001) All these studies, however, consider a single
inclusion floating in an infinitely extended, continuouws
medium and are thus applicable to rocks with very low
volume concentrations of inclusions. I inclusions are
present ina rock in higher proportions, they are likely to
mteract with one another affecting the rotation of individual
inclusions as well as the surrounding matrix flow, as
revealed in analog model experiments (Hdefonse et al.,
1992, 1993). Experimental studies also demonstrate that in
mclusion-matnx systems intermcbon may set in doe to tiling
of the inclusions during progressive shear, even when the
volume concentration s low, and the finite rotation of inclu-
sions deviates from that predicted by Jeffery’s theory on
single inclusion systems (Tikoff and Teyssier, 1994 Arbaret
et al., 1996). The mechamcal interaction of inclusions also
modifies the bulk viscosity of inclusion-matrix systems
(Happel, 1957), in addition to other factors such as geome-
trical and rheological properties of the phase components
(Treagus, 2002, and references therein).

The purpose of this paper s o investigate the effects
of mutal interaction of eguant inclusions in a multiple
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Fig. 1. Successive stages of simple shear {dextml) deformation of model
(plan view) containing agquant inclusions ina slab of pitch {viscous). Mote
that closely spaced inclusions in the row have rotated smaller than the
inclusion located at a large spacing. The rato of inclusion diameter to
inter-inclusion distance {a/b) was (.79, Scale bar = 2 cm.

inclusion system on the motation of, and flow field around,
individual inclusions, and the bulk viscosity of the inclu-
sion-matrix system. Simple expenments were performed Lo
study how the presence of inclusions in the neighborhood
could retard the motation of an eguant inclusion. The paper
also presents a theoretical model that denves the rotation
rate of rigid inclusions and the velocity functions for the
matrix flow in a multiple mclusion system, under simple

shear taking into account the effects of intemctions of
surrounding inclusions. The denved equations are used o
run numerical experiments o mnvestigate the influence of
meian distance or volume concentration of inclusions on
the flow pattern, strain shadow, foliation drag and mantke
struc ture around rigid inclusions. Finally, the paper explores
the effects of rotational retardation of ngid inclusions on the
bulk viscosity of inclusion-matnx systems.

2. Rotation of interacting inclusions: experimental
observations

We performed a setof experiments on viscous models in
simple shear to study the rotational behavior of ngid inclu-
sioms disposed with spacing allowing mutual interference of
the velocity fields around them. The model consisted of
three circular eylindrical (wooden) inclusions floating in a
viscous (pitch) slab. The viscosity of pitch was about
5% 10° Pas at room temperature (30°C). The inclusions
were placed in a row along the central shear plane with
their axes along the direction of no-strin to avord an overall
rotation of the inclusion row. The inter-inclusion distance in
the row was set between 1,15 and 1.30 (values normalized Lo
inclusion diameter) to obtain a discernible effect of mutual
mnteraction. In order o compare the rotational behavior of
the inclusions in an interacting state with that under non-
ineracting conditions, one inclusion was placed in the same
row, but at a large distance from the three imteracting
inclusions. The experiments were run in simple  shear
{(1.5% 10 s) at room temperature. During deformation
the model base was lubncated with liquid soap o minimize
the basal friction in order o obtain largely homogeneous
simple shear in the model. Marker ines were drawn parallel
and perpendicular o the shear direction 1o find the finile
bulk shear at any stage of deformation in the model.
Experiments with specific configurations of the inclusions
were repeated under the same conditions Lo test their repro-
ducibility.

In the expenmental runs, the closely spaced inclusions
always motated slower than that located away from them.
Among the three closely spaced inclusions, the central one
otated at the slowest mte (Fg. 1) doe o mechameal
coupling exerted by the rotating inclusions on its either
side. We measured the amount of finite rotation of the inter-
acting inclusions at different stages of progressive shear,
and compared it with that of the far-field one and predicted
from the theory discussed in the following section (Fig. 2).
The results cleary indicate that, at any stage of deformation
the finite rotation of each inclusion in the row s smaller than
the far-field one. Experimental runs with different inter-
inclusion distances again reveal that the difference between
the rotation rates of closely spaced melusions and the far-
ficld one is larger for smaller inter-inclusion distance. These
simple  experiments  demonstrate that there may be a
discernible retardation in the rotational motion of ngid
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Fig. 2. Plots of finite rotation of inclusions versus bulk shear, as obtained from the test model shownin Fig. 1. Note that: {i) the motations of inclusions occurring
in the row are less than that of the isolated {far-field) one and (ii) the rotation of the central inclusion with the bulk shear is closer to that obtained from the

present theorstical model.

inclusions due o mechanical interaction, even when the
inclusions are equant i shape. The following section
presents a theoretical model deseribing the flow field around
such mteracting spherical inclusions in simple shear.

3. Theoretical considerations
3.1, The model

The physical model under consideration consists of
uniformly distributed rigid, spherical inclusions of radius
a within a Newtonian viscous matnx (Fig. 3a). We assume
a non-slip conditon at the matri-inclusion interfaces. The
model 15 subjected o simple shear at a rate . We set a
Cartesian reference frame (xyz) with the x axis parallel o
the shear direction and y axis nommal to the shear plane (Fig.
3b). The bulk shear flow (), for the sake of mathematical
derivation, is resolved into distortion (e,,) and rotation ()
parts, where e, = 92and {= /2. For a homogeneous
shear flow, i.e. in the absence of inclusions, the veloc ity
components (w, v, w) along x, v and z directions for the
distortion and rotation parts are represented, respectively,
a8
¥, vy = wp =0 (la)

e Yo
My = =5

Hp = ¥; Vi = — —X; vy =10 (1h)

I | =e

The subscrpts D and R stand for distorton and motation,

respectively. The flow perturbations due o the presence of

inclusions are determined separately for the distortion (e,,)
and rotation () components of the bulk shear flow, which
are added to that of the homogeneous shear Qow (Egs. (la)
and (1b)) to obtain the flow field around an individual

inclusion. Appendix A provides the details of the denva-
tions, and an outline is given below.

Considenng the distortion part (e} of the bulk shear,
Happel (1957) denved the expressions of the wvelocity
components of the flow perturbation in terms of spherical
co-ordinates (Fig. 3c; Eqg. (A2) in Appendix A). As our
numencal simulations are developed in two dimensions on
a section at nght angle to the direction of no bulk strain, we
consider the velocily components in terms of Carlesian
co-ordinates on the xy-plane (e z =) as:

) )

w= A —fe|2- S| |5

, ,

w =7 Am1- ‘—) + A 25 - 1) i @)
r r r

where

Filr) = (ﬁr‘A + 2rB + iir - T—‘?)

and

D
filr) = (5HA tB )

A B, Cand D are constants, which are dependent on the
ratio of inclusion diameter and inter-inclusion distance (afb)
(see Eqg. (A3)).

In order o estimate the flow perturbation for the rota-
tional part (£) of the bulk shear flow, we need o consider
the rotational behavior of ndividual inclusions in an inter-
acting state. Experiments meveal that interacting spherical
inclusions rotate at slower raes compared with non-inter-
acting ones rotating at rates close w 3/2 (Fg. 2). It can be
shown (Eq. (A9 mm Appendix A) that the instantaneous
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Fig. 3. {n) Model under theoretical consideration. The cinles represent the
inclusions floating in a matrix. The circle with a shell of matrix {shaded) in
its surrounding represents the inclusion amund which the ow is modeled
taking into account the effects of the neighboring inclusions. (h) Enlarged
view of the inclusion shown in (a) showi ng the choice of Canesian coordi-
nate reference frame (xvz) with ongin at the center of the inclusion and x
axis purallel o the shear direction, and v axis normal to the shear plane, A
shell {shaded ) of mdius & is considersd around the inclusion, on the surface
of which the boundary conditions for mechanical interaction with its neigh-
boring inclusions are imposed (see text for details). o) Relation between
the Cartesian frame rv:z and spherical coordinate system under considem-
tiomn,

rotation rate of the rigid sphencal inclusion in an intermcting
stale 1s:

o

o =(1-a)rt (3)
2

e 1% the ratio of inclusion diameter (2a) and inter-inclusion

distunce (26). Eqg. (3) shows that the rotation mte of sphe-
rical inclusions (') increases with inter-inclusion distance

iFig. 4), and assumes a value of 32, when b tends to infinity
or o tends o be zero, e, when rigid inclusions occur ina
very bow volume concentration to be in a non-interacting
state, as obtained from the hydrodynamic theory (Jeffery,
1922). On the other hand, when b =g, @' becomes zem,
implying that interacting inclusions cannot rotate indepen-
dently if they are in contact with one another. It has been
inferred  from field observatons (Bell, 19853) that under
certain cireumstances porphyroblasts rotate little in non-
coaxial deformation, and the rotational component of the
bulk deformation has been partitioned in the matnx. Our
theoretical analysis  suggests that such  non-rotational
behavior of the porphyroblasts might have resulted from
mutual mechanical coupling due to ther large volume
concentration.

From Eq. (A1) in Appendix A, the flow perturbation in
the matrix in response W0 the rotational part of the bulk shear
flow can be expressed as:

: &
_ Y a4 )
iy = _? FEpE ¥
. 1]
Y oa
Vp = ; W.f f4::|

By adding the velocity components in Egs. (1a), (1b), (2)
and (4), we obtain the flow field around a sphencal inclusion
on the xy-plane of the Cartesian coordinate system as:

— 1 - l aﬁ ¢ '{ " - ',[ ¥ i i 1
= 2 j}jf‘j ¥ .|r| F .rl r} = .tg r? Y
o 1 a° n ) X 4 f . X B x|,
i [ o o gy 0002 it o it e e i el 1

5)
Eq. (5) represents the velocity field around an individual
spherical nigid inclusion surmounded by identical inclusions
in an interacting state (Fig. 3a), which 1s valid in the regime
r<_ b (Fig. 3b). This equation can thus be used to study the
flow pattem around individoal mechanically interacting
mclusions within a multiple inclusion system under simple
shear. In this analysis we will use a parameler p,, where
p= fﬂ.lrb}lj, as 4 measure of volume concentration of
inclusions.

3.2, Flow patterns around interacting inclusions

The flow patterns around spherical ngid inclusions are
principally of two types: one with eye-shaped separatrix
and the other with bow-tie shaped separatrix. It has been
shown that the type of flow depends on the matrx theology
(Passchier, 1994; Pennacchioni et al., 2000) and the nature
of bulk deformation (Mandal et al., 2001 ). Numerical simu-
lations, based on the velocity functions in Eq. (53) indicate
that the Alow pattern depends also on the volume concentra-
tion parameter of inclusions p,. At p, << 0.01 the flow
pattem is charactenzed by an eye-shaped separatrix with a
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Fig. 4. Mon-linear variation of rotation mie { @) of inclusions with inter-inclusion distance as obtained From theometical calculations, Mote that for large inter-

inclusion distances {e.g. ath < {.1) the mtation rate of inclusion is close o /2.

finite dimension only across the shear plane (Fig, 5a; cf.
Masuda and Ando, 1988; Mandal et al., 2001), which is
similar o that around a non-interacting inclusion. With
increase inop,, bwo stagnation points appear on either side
of the inclusion, defining finite dimensions of the separatnx
(Fig. 5b). AL p,= 0.1 the flow assumes a typical patlem
with a bow-tie shaped separatnx (Fig. 5c¢; of. Passchier,
19943, The separatnx 1% nearly elliptical in shape with s
long dimension lying along the shear direction. With further
merease in volume concentration the stagnation  points
defining the long dimension of the separatrix shifl towards
the surface of the rigid inclusion reducing the size of the
separatnix (Fig. 5d). The shape of the separatrix bounding
the close particle paths also vanes with increasing volume
concentration of inclusions. At a low volume concentration
the shape is defined by an ellipse, which tends to assume the
geometry of a super-ellipse (Lisle, 1988) with increase
volume concentration (Fig. 5a and d).

4. Geological implications
4.1, Strain distributions

Based on the above theory, numerical model expenments
were run Lo investigate the influence of volume concentra-
tion of rigid inclusions on the nature of strain distnbution in
the matrix around an inclusion. The initial models had
small circular markers in a Cartesian gnd. The model was
deformed by incremental shear strain according o the velo-
city functions in Eq. (3), following the same procedures
desenbed in an earlier publication (Mandal et al., 2001).
The shapes and orientations of the deformed markers reveal
the nature of strain heterogeneily around a ngid inclusion m
an interacting state. When the volume concentration of rigid
mnclusions 15 bow (p, < 0.01), the stmin distnbution (Fig.
Ga) 15 similar to that observed around a non-interacting,

single inclusion in numerical as well as physical model
experiments (Masuda and Ando, 19858; ldefonse et al.,
1992, Mandal et al., 2001). With increase in p,, there is
an overall imerease im finite straim around an inclusion
under the same finite bulk shear. At a large value of p,
[ =0.4) models show a strongly heterogeneous strain disto-
bution, forming curved zones of large finite strain on either
side of the ngid inclusion (Fig. 6d). In addition, the XV
planes of finite stmin ellipses away from the inclusion
verge antithetically with respect o the shear direction
{Fig. 6d).

4.2, Distortion pattemns of passive foliations

Previous studies reveal that the mitial orientation of the
foliation and the mtio of pure shear and simple shear mtes
control the distortion pattern of the foliation around an
inclusion (Ghosh, 1975; Masuda and Ando, 1988; Mandal
et al., 2001 ). Our numencal models indicate that the volume
concentration of rigd inclusions 1 an additional factor that
could control the distortion pattern to a large extent. At low
volume concentrations (p, << (L01) the distortion pattem 1s
charactertzed by inwardly convex curvatures of the passive
foliation (Fig. 7a), as observed in earlier numencal and
physical model experiments (Ghosh, 1975 Masuda and
Ando, 1988, Mandal et al., 2001). With increase o p,,
there 1% an overall back rotation of the foliations with respect
to the bulk shear direction (Fig. 7b and ¢). At large volume
concentrations tight folds, verging synthetically to the shear
sense, develop near the surface of the rigd melusion (Fig.
7d). Secondly, the foliations show a large-scale S-like
distortion (Fg. 7d).

It can be noted that the external foliations may be
entrapped by growing porphyroblasts, giving rise 1o diverse,
complex types of inclusion trail structures reported from
many metamorphic termams (e.g. Hickey and Bell, 1999
Earlier theoretcal and numencal studies indicate that the
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Fig. 5 Conmrasting How pattems amund inclusions with increasing values of g, (wheme p, = a Y, 2ar inclusion diameter and 2 mean inter-inclusion
distance). (a) Flow pattern with eye-shaped separatriz, {(b) How pattern with two stagnation points (o) lying on the central shear plane, on either side of the
inclusion, {¢) pattern with typical bow-tie shaped sepamtrix {of. Passchier 1994 ), and (d) pattern with the separatrix approxi mating the geometry of a super-

el lipse.

miti] orentation of foliation, the shape and orentation of

inequant porphyroblasts and the bulk vorticity of deforma-
tion or the geomelry of overprnnting crenulations are the
principal factors governing the inclusion trail structure
(Samanta et al., 2002, and references therein). The present
study suggests that the volume concentration of porphyro-
blasts 1s an additonal factor determining the distortion
pattern of the extemal foliation and thereby the inclusion
trail patterns within the growing porphyroblasts.

4.3, Mantle structures around porphyroclasts

Several physical factors, such as clast-size reduction rate,
nature of bulk deformation, clast-shape ete., have been

recognized to control the development of different types
of mantle structures around porphyroclasts (Passchier and
Simpson, 1986; Passchier, 1994; Bjornerud and Zhang,
1995; Masuda and Mpzuno, 1996; Mandal et al., 2000h).
In this section we investigate the development of manthke
structures in multiple porphyroclast systems. A set of
expenments was conducted under simple shear by varying
the volume concentration of porphyroclasts al a constant
clast-size reduction rale. When the volume concentration
15 low (p, =0.01), the mantle stroctwres develop with inei-
pient d-type tails (Passchier and Simpson, 1986), which
with progressive increase in bulk shear tums into a typical
&, and the mantle finally becomes composite, showing §—d
tails (Fig. 8a). With increase in volume concentration the
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Fig. & Vanations inm the stran distnbutions around an inclusion for differemt values of g, at same bulk shear (v = 1). Note that with increase in volume
concentration the finite stmin around the inclusion increases. Also, note in{d) that the vergence of long axis of the strmin ellipse away from the inclusion | lower
part of top-right and upper part of bottom-left corners) becomes antithetic to sense of bulk shear.

mode  of anes  discernibly. Al
py=10.1, the mantle at the initial swge is neardy of d-type
(Passchier, 1994), that turns into a typical §-structure in
the course of progressive bulk shear (Fig. 8b). When the
volume concentration s large (p, = 0.2}, the manthke struc-
ture shows single d-type ils on cither side of the
porphyroclast throughout the deformation (Fig. 8c). We
performed another set of experiments at a higher size
reduction mate of porphyroclast. In this case al a low
volume concentration {(p, =0.01) the mantle develops
with o-type tails, as seen in carlier physical and numer-
ical expeniments (Passchier and Simpson, 1986; B jornerd
and Zhang, 1995; Mandal et al., 2000b). With progressive
increase g, the tail structures tend to be symmetrical,
and attain a ¢-type geometry (Fig. 9). In both sets of
experiments, for higher values of volume concentration

mantle  development

the tails show an overall distortion at a large finite bulk
shear (Figs. 8c and 9).

5. Bulk viscosity of rocks containing rigid inclusions

Treagus (2002) has recently presented a  theoretical
model, based on the principles of self consistent mechanics
(SCM) of composites, giving the expression of bulk viscos-
ity of two-phase viscous mixtures as a function of phase
viscosities amd shape and concentration of particles or
clasts. In this section we show that the theoretical analysis
given in Section 3 can also be utilized to denve the bulk
viscosity of suspensions containing mechanically interact-
ing spherical ngid inclusions (cf. Mandal et al., 2000a). Gay
(1968) gave a mathematical equation for measurement of
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Fig. 7. Distortion patterns of passive foliations (initially pamllel to the shear direction) in the nei ghborhood of an inclusion. Mote that the distofion pattem at
lowr values of g, is exactly similar to those obtained from models based on single-inclusion system {Masuda and Ando, 1988; Mandal et al., 2001, but

becomes increasingly complex at higher values of g, {y = 1.

bulk viscosity using an interaction factor, given by Happel
(1957). The factor, however, has been formulated by consid-
ering only the distortion part of the bulk deformation, where
the effect of mechanical coupling of rmotational moton of
rigid inclusions has not been taken into account. It is evident
that such a coupling is likely to develop additional resistive
forees in the flow and thereby modily the bulk viscosity, as
outlined below.

The caleulation of viscosily requires estimation of encrgy
involved in the flow of the bulk volume under consideration
(Jeffery, 1922). In our case we consider strain energies asso-
ciated with distortional and rotational parts of the bulk
shear, as expressed in the velocity functions in Egs. (A2)
and (ALD) in Appendix A, By taking the volume integrals
over the st components in the perturbed matrix flow the
energy required per unit tme can be oblaned from the

following equation.
L

t=vayt+ava| [ [ +eutehs
ea JO i [ﬁ}

+ %(?ﬁﬂ 25 '}f'f-n'r + ’}".'!J.ﬁ)] "1-"’5“5'*-14"*-15'*-1(!3

The second part of Eq. (6) represents the encrgy asso-
ciated with the perturbed flow field around ngid inclusions.
Utilizing Eq. (A10), we get the stmin components of the
flow  perturbation due w the mtational interaction, and
after substituting their expressions in Eq. (6) have:

. 3 afa)’ ;

It is evident from Eq. (7) that the energy developing due
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Fig. 8. Progressive development of mantle structures amund porphyroclasts under varying clast concentrtion. The size reduction rave of porphyroclasts was

kept constant at (0,125 unit/s {1 unit= 10" 3¢ initial radius of porphyroclast ),

to rotational interaction tends o be zero as the inter-inclu-
sion distance b becomes large, and will not affect the bulk
viscosity of rocks containing ngid inclusions in low volume
concentrations. Considering the strain components for low
perturbation due to the distortion component €,,. as in Eq.
(A6), one can have after Happel (1957):

Ep=Vny

|25 i‘ Halb)' + 10— (8411)alby
10 5 \ 10(1 — (ab)'®) — 25(a/b)(1 — (alb)®)
(8)

Now, the energy required for the bulk flow is:

a el

-E.'r = V T?JJT fg}

where 17, is the bulk viscosity of the rock. Balancing £, with

—
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Fig. 9. Trnsition from - to d-type geometry of mantle structures with
increasing volume concentration. The size reduction mite of porphyroclast
wis (175 unitfs,

the total energy involved in the perturbed and unperturbed
flow (Egs. (7)—(9)), we get the expression of the bulk
VISCOSILY a8

N = Nl + 55p40 + 15pafm) (10
where o, and s, are interaction factors, which have the
following expressions.

_ 4a+ 10— (84/11)a’
—10{L — o) — 25¢%(1 — n%)’

m g = a®(1 —a’)

iy and af; represent interaction factors corresponding to
distortional  and  rotational  parts of the bulk  shear,
respectively. In the absence of rotational interaction, i.e.
Wo=10, the expression of bulk wviscosity would be:
M = Ml + 5.5p.40 ), as given by Happel (1957} It may
be noted that this expression of the bulk viscosity differs
from the classical one: m, = Rl + 25p,) (Einstein, 1911
Jeffery, 1922; Taylor, 1932). This discrepancy has been
discussed in detail by Happel (1957). The present study is,
however, intended o show the effect of rotatonal mterac-
tions on the bulk viscosity of rocks undergoing rotational
deformation. The analysis reveals that the bulk viscosity of
mclusion-matnx  systems  vanes  non-linearly  with  the
volume concentration parameter p, (ef. Treagus, 2002),
and the variation follows closely that predicted by Happel
(1957). However, the mtational interaction factor i,
slightly enhances the bulk viscosity (Fig. 10).

6. Summary and conclusions

Our analysis confirms that, in multiple-inclusion systems
the volume concentration of inclusions has a significant
control on the flow patiern and deformational features
around individual imeclusions, as mevealed from physical
mode]l experiments (Idefonse et al, 1992, 1993; Arbaret
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Fig. 10 Mon-linear variation of bulk viscosity of rocks, nomalized to matrix viscosity (n,/n) with volume concentration pammeter g, (=a'lb') The
caleulated plots based on the present model lie slightly above that obtained from Happel s model {dashed line).

et al., 1996). When the present model 15 applied 1o a system
with low volume concentrations (p, < 0.01), it yields
results similar o those obtuined from single mclusion
models (e.go Masuda and Ando, 1988, Bjomerud, 1989;
Mandal et al., 2001).

The flow pattem around an inclusion in a multiple-inelu-
sion system 1% characterized by an eye-shaped separatnx at
low volume concentrations (p, << 0,01}, which is identical
Lo that around a single, equant inclusion under simple shear
(e.g. Mandal et al., 2001). With increase in volume concen-
tration the effect of mechanical intemctions sels in, giving
rise Lo i pattern with a bow-tie shaped separainx, which is
phenomenologically similar to the mfluence of pure shear
component in the general type of non-coaxial deformations
{e.g. Mandal et al., 2001). In the present case, however, the
stagnation points in the flow, defining the long dimension of
the separatrix always lie on the central shear plane (cf.
Passchier, 1994), which is not the case in single inclusion
system under general deformations (Mandal et al., 2001).
Separatrix of super-clliptical shape is another charactenstics
of interaction. The effect of mutual mechanical interaction
15 also evident from the overall distortion of structures, like
porphyroclast tails, foliations around the inclusions (Figs.
Td and 8e), which cannot be explained by models based on
single inclusion systems.

Our analysis 15 valid for rock systems containing equant
inclusions. Earlier studies show that the flow patterns and
strain distribution around inequant inclusions are much
more complex (Tldefonse, 1992, 1993; Mandal et al.,
2001 ) Again, the shape of the inclusions affects the rotation
behavior, and the mechanical imteractions of ineguant
inclusions are thus likely to be significantly different from
that predicted from the present model. The other limitations
of the present study are: (1) the matrix s considered as

Newtonian viscous, and mechanically isotropic in the theo-
retical model; (2) 4 non-slip condition prevails at the matnx-
mnclusion mterfaces; (3) in the multple inclusion system the
inclusions are assumed o be non-clustering, and float as
isolated bodies, which, however, may cluster at large finile
shear in progressive deformation (Arbaretet al., 1996) when
the present theory will not be applicable; and (4) the theo-
retically derived rotation of interacting mclusions do not
exactly match with that obtained from physical experi-
ments, which 1s probably doe o differences in the numerical
and expenmental set-ups.
The main conclusions of the present study are:

1. Lamb’s (1932) hydrodynamic theory can be utilized to
study the deformation of rock systems conlaining mulli-
ple spherical inclusions that may mechanically interact
with one another.

2. The volume concentration of ngid inclusions is found to
be an important physical parameter controlling the flow
pattern around individual inclusions. At low volume
concentrations the flow pattern around an inelusion 1s
charactenzed by an eye-shaped separatrix, which s
replaced by a bow-tie shaped separatnx with increase
in volume concentration. At large volume concenlrations
the separmatrix, enclosing the closed particle paths,
assumes the geometry of a super-ellipse.

3. For a given bulk shear the stran distobution around a
spherncal rigid inclusion becomes increasingly heeroge-
neous with volume concentration, which conform o
carlier expenmental observations (Idefonse et al., 1992),

4. Fora mven rate of size reduction, the mantle structures of
ecquant porphyroclasts change with increasing volume
concentration. When the size reduction rate is low, the
mantle is characterized by composite 8- tails at a low
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volume concentration, which becomes typical § tils at
larger volume concentration. Al higher size reduction
rates, a-type tails form when the volume concentration
is low. The tail sbructure transforms into ¢-type with
increasing volume concentration.

5. In simple shear deformation the mechanical interaction
of rigid imclusions retards their motational moton which
slightly enhances the bulk viscosity of the inclusion-
malnx system.
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Appendix A. Derivation ol velocity functions

The general expressions of the velocily components in the
flow perturbations around a spherical rigid inclusion are as
follows (Lamb, 1932):

1 e ap,
R Z{Efln 1) ax
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(n+102n+ 1020+ 3) ax il
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We obtain the solution of velocity components (Eqg. (A 1))
in two steps: one for the distortion part, and the other for the
rotational part of the bulk shear low. In obtaiming the fow
perturbation in response o the distortbon pan (€,) of the
bulk shear fow we follow the mathematical approach of
Happel (1957). Consider a spherical coordinate system (r,
d, b ) with the origin at the center of the spherical inclusion
under consideration (Fig. 3¢), which has the relation with
the Cartesian space as: x = reosfl, v =r cosdh sind and z =
rsinds sinf.

Employing the following condition: x£, + v{, +z£. =0,
where & &, and £ are the components of varticity vector at
a point on a sphencal surface around the inclusion, Happel
has given a solution of Eq. (A1) in terms of the spherical
coordinates as:

. b 3Dy .
vw=|lA+2B+ 5C— 3 )'}-’L‘usd: sinfl cosd
r

D
vy = (_":.r"zﬂ. +rB + o )']i-'uusd: (cos26 — sin2d) (AZ)

|"'J

A, B, Cand D are constants and their expressions are as
follows:

P a’ g 3[4+ 10 1
T 222 10 + d4a’ P T4 10+ 4a’ P s

D
= (—:':rjaﬂ. —rB— — )?sindn cost

s 5.:1j o 5:45
== ia P T 10+ 44
(A3)
where
8= 10 + 4a’
10(1 — a') — 254°(1 — o)
and « = alb.

We now consider the flow perturbation that develops in
response to the rotational part () of the bulk shear flow. The
fluid in the shell under consideration experiences concentric
motion due to the rigid mtation, following the condition:
xte + yv + zw = 0. This is satisfied if p, and ¢, in Eq. (Al)
are tuken to be zero. In that case:

uzz_i'?x” 3 \'%:

S oa T oz
T N S (L. O (Ad)
B T’

Ay, ay,

W= Zr = —x—

© dx dy
The perturbation is phenomenologically similar to that
develops armound a rotating rigid nclusion within a stationary
fluid medium. The expression of y,ischosen in such a manner
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that the perturbation decreases with increasing distance from
the surface of inclusion. Following Lamb’s (1932) approach,
wie ¢ hoose the expression of the solid harmonie function y,, as:
¥oa= KZIr', K is a constant term, the expression of which
needs to be determined by using boundary conditions. Substi-
tuting the expression of y, in Eq. (A4), we find:

K K

=== V=5 w=10 [AS)
" r

It can be shown from Eq. (AS5) that the motion develops a

flow field around an inclusion rotating at an angular velocity

/2 in a stationary medium, the velocity components of
which are:

3 |
a a
— = reosd; Ve = ——
" e

v, =10 vy = reos fsing

(TER
I | =e

{AB)

We are now in 4 position o determine the angular
velocity of mechanmcally interacting spherical inclusions,
utilizing the mathematical functions in Eq. (A6). Consider
the spherical volume as in Fig. 3a. In the absence of any
mechanical interaction the velocity components in the fuid
at the surface of the shell (r = &) doue to mtational compo-
nent £ in terms of the sphencal co-ordinates are:

v =0 V= Tbu{}sda: Vv, = — zbsimi-uusﬂ (AT

The tangential velocity component in Eg. (A7) acts
oppositely to retard the body rotaton of the fluid shell
From Egs. (A6) and (A7), we can then write:

: 3
w' beosd = Y beosdy — ﬂq Y beosd [{AH)
2 2
where w' is the effective rate of rotation of the inclusion at
the center of the shell.
The equation finally takes a simple form:
3 z
w=[1-%]X (A9)
B2
Eq. (A9) shows that the inclusion rotates at a slower rate
than single inclusions mtating at a mate of /2. The perturba-
tion due to rotational ineraction can be considered as the
velocity differences in the matrix developing due to the
difference in the rotation rate. It then follows from Eq. (AS):

o
¥ a
v =10 ViR = 5 3.3 cosgh;
(ALY
y o
Vap = — = ——5 cosfsing
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