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The problem of eleciromagnetic wave propagation it a rectangular waveguide contaiming a Mick ins is considered
for its complete solubdon by reducing it to two suitable integral equations, one of which is of the first kind and
the other is of the secomd kind, These integral equations are solved approximately, by using truncated Fourier
series for the unknown functions. The reflecton coefficient is compuied numerically from the two integral squation
approaches, and almost the same nemerical results are obtained. This is alsc depicted graphically against the
wave nomber and compared with thin ifs results, which are computed by using complementary formulations
coupled with Galerkin approximations. While the reflection cocfficient for a thin ins steadily increases with the
wave number, for a thick iris it Auctates and zero reflection occurs, The number of zems of the reflection
coefficient for a thick irs increases with the thickness. Thus a thick iris becomes completely transparent for some
discrete wave numbers. This phenomenon may be significant in the modelling of reclangular waveguides.
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1. INTRODUCTION

Problems of electromagnetic wave propagation in a waveguide lead to those of determining the
solutions of the reduced wave equation or the Helmholtz equation under appropriate boundary
conditions (see Jones' } It has been shown in Jone's books that electromapnetic wave propagation
in a waveguide gives rise 1o a class of interesting boundary value problems which can be handled
for solution by reducing them to integral equations. The study of one such houndary value problem
involves the determination of the electromagnetic field in a rectangular waveguide containing a thin
iris formed by placing a thin sheet of metal paraliel to the longer side of the waveguide. This
problem has been tackled in Jones books by reducing it to two integral equations of the first kind,
one valid in the aperture portion below the iris and the other valid in the perfectly conducting metal
portion of the iris. These equations can be solved approximately by employing a truncated Fourier
expansion method. Such truncated series :mthuds of solution are particular cases of a general method,
known as the Galerkin's technique {see Jones" [p 2697).

The present paper is concerned with the problem of electromagnetic wave propagation in a
rectangular wavegnide, in which is present a thick iris ie., an obstacle in the form of a rectangular
thick perfectly conducting metal plate placed parallel to the longer side of the waveguide. This
problem generalizes the iris problem of Jones™ 2 in which the thickness of the iris is zero. This
generalization takes care of situations when a discontinuity in the medium consists of a region whose
thickness is not negligible compared to other geometrical dimensions describing the physical sitzation.
It may also be emphasized here that in practice, the effect of the thickness of the iris can be of
utmost importance. In the context of other problems of scattering of electromagnetic waves. there
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have been efforts to stady the effect of the thickness of the scatterer (see Davis and chpingmnl",
Also in the case of scattering of watet waves by barriers, the effect of the thickness of the barners
has been the suhject of investigations by several workers for quite some time (see Mei and Black®,
Guiney et al.®, Owen and Bhatt’, Kanoria et al.}).

It may be noted here that the thick iris can be viewed as a double wave%lid: discontimuity.
There exists a considerable literature on waveguide discontinuities (see Collin®, De Smedt and
Denturck'%), and various numerical techniques such as scattering matrix techniques, Galerkin or point
matching techniques etc. have been employed to tackle them. Here the thick iris problem is solved
by reducing it to that of finding the solulions of two independent integral equations, one of the first
kind and the other of the second kind. Both these integral equations are solved approximately by
truncated Fourier series expansion methods, and the reflection coefficient is evaluated numerically
by using both the approaches. It is observed that both the approaches produce almost the same set
of mumerical results. This gives a check on the correcmess of the numerical results. Also, the
reflection coefficient is depicted graphically against the wave number and compared with the thin
iris results. As the thickness increases, the reflection coefficient s seen to fluctuate against the wave
number and zero reflection occurs. Thus a thick ins becomes completely transparent for some discrete
frequencies of the incideni wave held.

2. STATEMENT OF THE PROBLEM

A Cartesian co-ordinate system is used here and it is assumed that a rectangular waveguide occupied
the region defined by 0€x<a,0Sy<h,—= <7<, except that there is a thick iris present in the
middle. The configuration of the thick iris is given by ~bSzgb 05x<a,dsy<h with 2b
representing the thickness of the iris.

The problem here is to determine the electromagnetic field scattersd by the iris when a
time-harmonic field of known wavelength from the direction of z=+e is incident on the itis. Then
the field is partially reflected and transmitted by the iris. For simiplicity, the incident field is
considered to be of the transverse electric type with the magnetic field having a2 component along

the r-direction, which is represented by Re {#M {3, 2) sin%e*im} where

$™ (y, = 2e7 A0, D

Here A represents the wave number of the incident field, determined by 12=k2—£2>0 in which
a

k= W(Eﬂ}lﬂ, g, it being the dielectric constant and permeability, respectively, of the interior of the
waveguide. Assuming that the boundaries of the waveguide as well as the iris are perfectly
conducting, the boundary value problem involves the determination of the rotal field represented by

Re {;u[y. z}sin-’ife‘“”‘} where the function ¢ (y, z) satisfies

(P +AH¢=0 for b<lzi<w=,0<y<h, and IzI1<b 0<y<d, . (22)
¢},[ﬂ,z}={} for = m < 7 < oo, e 12.3)
¢,=0ony=hforlzl>band on y=d for lzl<bh, . (2.4)

¢, (v, £5)=0 for d<y<h, e (2.5)
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v tb+MN=¢(v,£6-0) for Dy <d, w (2.6}
¢, 0o+ M=¢. (y,zb-0) for 0 < y < 4, o (2.7}
1/3 .

r'° Vi is bounded as r— 0, L[2.8)

where r denotes the distance from the comer points {d, £ b),

0 D+RE (1 -2) as 2o,
U S Wl
T¢'”f 3. 2) a5 I—d—ea

where R and T are respectively the reflection and transmission coefficients {complex) to be
determined in the course of the mathematical analysis.

3. SOLUTION OF THE PROBLEM

Due to the geometrical symmetry of the thick iris about the cenme plane : = 0, it is convenient
split @ (y, 2) into its symmetric and antisymmetric parts @' (3, z) and ¢° (v, 2) respectively so that

g D=0 +d¢" (v2) .. (3.
where v -D=¢ 02, Flr-D=-¢ M2 OB )

Thus the analysis here may be restricted o the region 220 only. Now ¢ (v, 7) satisfy the eq,
(2.2) and the conditions (2.3} to (2.8) together with the conditions

B103,0)=0,¢°(r,0)=0 for 0 < y < d. . (3.3)
Let the behaviour of ¢ % (v,z) for large z be represented by
¢ % (2 ~ e iAE=b)  psa fAl-b) 4o o, {34

where R’ and R® are unknown constants. By using the conditions (2.9) it is found that these constants
are related to R and T by the relations

R.T:%{R’tk“]'z"j‘b. s (A8

Now, the eigenfunction expansions of ¢ (v, z) satisfying the eq. (2.2) and the conditions
(2.3), {24), (3.3} and (34) (for z > b) in the two regions z > b, 0 < y < h and O<z<h,
O<y<d are given below :

f.aﬁ,z]=e—i-l[z—b}+R;.ac.i1{z—b}l+ z A:-‘E—Hh{z-b}cm_’lhﬂl

forz>b 0 y<h . (3.6)

where A:a {(n=1,2 .. are unknown constants, and
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[-‘f(}'rZ}}: Bycos Az +i B, cosh &, 2

& 3, 2) iBysinAz | S| iBysinhg,z
cosg%fnr Oaz<h O<y<d, N

with

PA2
§n=[";z2_3,2] *>0.on=1 2.

and H:a{u =0, 1, 2, ..) being unknown constants.

The condition (2.5) gives rise to the relations

PA(L-R" %+ Y p"zl:dms%}]—=(},d{y{h. . (3.8)
n=1

Again, the conditions (2.6) and (2.7) give nise to the rlations

1+8 %+ Y ﬂi’ams—'—":v= b3 Biaﬂi‘acmﬂj‘?.ﬂ{:ﬂ{d - (3.9)
n=1 H=1}
and SiA(1-R- A s = ¥ B u  eos2EL 0<y<d .. (310)
=1 n=10
T 5
where “0 —[ cos A b ] i -[ cmgﬂb) n>0 (ENEY
a [ roo L] a {= % » FA0) 5
|\ uﬂ) isin b e sinh £ b
A ¥ ;
Uy o —Asindb Yy ol gnsm'hgnb
and Dg -[ iﬂ.cusib]' X —[ gucﬂﬁhﬁnb N3t w {312}
n

L

Two approaches are now used to reduce the series relations (3.8)-(3.10) to integral equations
of first and second kind.

Approach 1
Let A" % (1=1,2,..) be represented by

; d
A:a:_;h ff"af’}"Tm“"”‘* e (3.13)
0

then using the generalized identity
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1 1
80 =543 2, cos L 0<y<h . (314)

n=1

it i5 found that the relations (3.9) and (3.10) reduce to integral equations of the first kind in
F59(5, as given by

d
[ FPe@ M. ndi=1for0<y<d - (3.15)
0
where F‘"‘{:]:-L—(\fl,ncmd . (3.16)
]+ g5
M@y,n|__1{ —cotdb
and [ Ma@‘,}]_id[ tanﬂ.&]

% 1 ( cothé b rey  rme . | rEY  rmi
+ 2 Z][érd( tanh &, b COS 3 cos p +_u,.-'1ms h COS Pl R (3.17)

Also, the relations (3.8) give rise to the relations

d
| Fewa=c" .. (3.18)
0
-
where c:‘“‘:—fji,f:l"'rr . .. (3.19)
I+ R"%

It is important to note that, since M"“ (¥, 1) are real, the functions #*° (1) and the constants
C*? are all real quantities. The solution of the integral equations (3.15) can be utilized to obtain

C"? from the relations (3.18), and these i turn produce the acmal reflection and transmission
coefficients | Rl and | T |, respectively, from the relations

AR+ CC ., _ANIC-C0
IR = : NTimSm
2 2 2 2 4 172
with a=[ (& P+ AP+ )+ an 1 . (3.20)

obtained by using the relations (3.5) and (3.19). The relations (3.20) also produce the physical
equality (R +1TE=1.

The functions F*2{()=(0,<t1<d) are now approximated by truncated Fourier series
expansions in the form
N

Fin= Z a:acmi?,ﬂ-:md . (3.21)
q=0
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where a';'a {g=0,1,2,... N} are unknown constants satisfying the linear systems

N

Y 4 Kna=d 8y, m=0,1,2,...N .. (322)

g=0

K 1 a4 ; = coth £ b
s mg |_df ~cotAb d_ r 2
where K:::q hl[ tan A b ]%5&"4' El [ur[ tmh{rb]5m5f€+prh Prmg
r=
PR L))

£ e 242
m+q| rd_ L rd
(— 1) [ﬂ‘h} 2 3 1 for P # mor g,
= -2) Hoz) |
Prmg =1 h h
ﬁ for E—m—
a oA
L0 otherwise,
und d =dé,,. e (13243
Afier finding the unknowns a;a fg=0.1.... ) by solving the linear systems (3.22), the
constants C*“ are determined approximately from the relations
N
=Y apd, - (3.25)
g=>0

obtained by using the approximations {3.21) in the relations {3.18). The reflection and transmission
coefficients 1 R | and | T | are then computed by using the relations in (3.20). This completes the
method used in the first approach.

Approach 11

In this approach the senes relations (3.8), {3.9) and (3.10) are reduced to a set of second
ind integral equations, which are then solved approximately by the truncated Fourier series
EXpansions.

Let A;'a (r=1,2,..) have another representation as given by

i k

g.:.ammﬂﬁfm_L I g;‘{r}cnsﬂTmtﬂ . - (3.26)
q

“h H, h

where the functions g';'a {(#) and g;" (t) (d < t< h) are unknown, then the series relations (3.8) become
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h A
; 1 \ ;
_ii-R"Y-=L | g‘;"mm\»% [ &wuvona
25" 4 d
1 s
+5-8 0)=0,d <y<h . (32T
where Ur.t)=— lim e *"u cos %‘Ecﬂ—;ﬁ. .. {3.28)
e=+0

Substitution of the integral representations (3.26) for A in the series relations (3.9) and
(3,100 produces two expressions for each of the constants B‘:‘a{n:[}, I,..} in terms of the wnknown
functions g‘:'a{r] and g;’a () by using the results of Fourier series expansions.

If the two expressions for each of Hf;u fr=1,2,..) are equated, then one obtains for cach
nfn=1 2,..

i
J et o “em-g" 0L @n ] dr=0, . (329)
d

which, after summing over n from 1 0 ==, produce the relations

a n
y o] :;;T“m Li“‘(:,n)-u-g‘;"’(:}L;“’(:,n}}dr:u, . (330
n=1 d
us,a P,
i L Gm=r—ig 3 B, 0, 008 . (331)
un r=1
5a 1 5 L™ rme
Ly @m== 3 —cos—— - (3.32)
k r=1 Hy "
[ . sin(ﬂ}
+1 h E
1" = 5 for —=#n,
with @ = [,E-[%) J . (333)
d rd _
_ E for h =M.

The relations (2.30) are satisfied if one selects
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T 5%
n=1

g =—g"m . (3.34)

od

3 0%
=1

Again, equating the two expressions for B'Ea for the symmetric and antisymmetric cases and

using the relations (3.34) between g:"ﬂ{r} and g;a{ﬂ, it is found that the real constamis C*9 are

5 \ il .
related to the unknown functions g; (" by the relations

h
..:a=1"li; ~cotAbtmAb) + | GA W B . (335)
{,.
d
5,
I
where G;"‘{:]=——f?-—{}-—,d<:-:k, - (3.36)
PAR(1~ R
Y Lien
WS (=159 (0 + N9 () "L . (3.37)¢
3 e
r=1
with 159 (y=—1 (cot A b, — tan A B} + — E L i S BT (3.38)
! _zlhz ' rhd lrﬁr h ) Iﬁ-’ A
F=
i 04y _ o B ormd rmi
N “ (=5 5+ (ot b —tan Ab) S - sin —-=cos —7— |. .. (3.39)

r=1

The relations {3.27), after using {3.34), give rise to integral equations of the second kind for
the unknown functions g;'a{:] {actually G;'a (1)), as given by

L]

&0 2 b

A
. f vl L-von"
d

5 o dt=1, d<y<h. .. (3.40)

'L'I1 g {t,n)
1

The functions G’2 ¢ (¥} {d < y < h) are determined approximately by using the truncated Fourier
seties expansions, as given by
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N

e }

f-r—ra'[.‘ﬂl-‘- 2 EJ:? "IT}-_E"—'—,J-:}’{J: . (34N
=0

where b;’a {g=0.1,2,... M) are unknown constants satisfying the linear systems

N
z =(h~d) &, m=012 ..N . (34

sa (h—dy 1h-d
qu = 24 {Sﬂm %FET“ +r5[]m) ‘S.-nq

o

. b 2 e
slim S e u By | cus{‘?’;{”;ﬂ n= cos - dr... (343)
es40 2 5 2 5
] ¢ “| 3 Byl
'\HE]
L rEb=d)
o e rih—dr Sml h L R
xh 2 h '
with B = mﬁ—[ﬂf‘-:-ﬂ] o (344)
{448 h /}
iyrh=d .ia d . r'{hh-— d_

After obtaining the constants b';'a (g=0,1, .. N} by solving the linear systems (3.43), the

constants % are determined approximately from the relations
11 5 f grih—1
5o o Tin—t
T e (345
e Th {(—cotAb tan A b)Y+ ZU bq £ W (£ cos e d dt {3.45)
q:

cbiained by uvsing the approximations (3.41) in the relations (3.35). The reflection and transmission
coefficients 1R | and i Tl are then obtained by using the relations m (3.200. This completes the
method used in the second approach..

4, NUMERICAL RESULTS

Since {IRI2+1TE= 1, it is sufficient to compute the reflection coefficient [ R only for various values
of the different parameters. For numerical computation, one has to compute infinite series of the

form K" given by relations (3.23) if the first approach 1s wsed and qu given by the relations

(3.43) lf the second approach is used. These seties are computed numerically by truncation. An
accuracy of four figure is achieved by taking two hundred terms in these series.

The Table 1 displays a representative set of numerical estimates of IRl for the thick iris
problem, computed by using the aforesaid two approaches, for ¥ = 0, 1, 2, 3. 4 and some particular
values of the non-dimensional parameters A h, d/h and bfh. Ir is observed from this table that the
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numerical estimates of | R | computed by wsing both the approaches, converge fairdy rapidly with N,
and for N 23, an accuracy of almost three decimal places is achieved.

Tanie 1 : Reflection coefficient W1

Ah=01 dth = (512 bh = D1
N Approach 1 Approach 11
0 0.0402 0.0315
1 0.0385 06377
2 00381 0.0382
3 (L0376 0.0384
4 00370 0.0384

In Figure 1, IR for a thick iris, computed through approach T and approach II, is depicted
against the wave number A4 taking dth = 0512, bk = 0], N = 4 in the (N + 1»term Fourer
series expansions. It is observed that the two approaches produce almost the same numerical resules.
However, slight flucturation occurs in the curve of IRl generated by approach H. This may be due
10 a number of truncations made in various series appearing in the mathematical analysis of the
approach II. Also the numerical calculations in the approach U are much more extensive than those
in the approach L. In fact, the approach I takes less time to compute the numerical results for IRl

IR

0.6

0.4

0.2

b I X i . .

Fic. 1. Reflection cocfficient vs wave number for vh = O.1, dh = 0.512

compared to the approach II. However, the approach II provides a very useful check on the
correctness of the numerical results. The approach I is used to calculate the reflection coefficient in
the thick iris problem for various values of the different parameters to generate the Figures 2 and

3 below.
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In Figure 2, IRl for a thick irs is plotted against d/h for different values of Ak and the
fixed values of the thickness parameter b/t = 0.1. It is observed that for a fixed Ah, | Ri decreases
lo zero as dfh increases to 1. This is physically plausible since as the height of the gap below the
thick irs increases, most of the incident wavefigld s transmitted through the sap. It is also observed
that more than 80 percent of the energy is transmitted even through a4 narrow gap when the
wavenumber is as low as 0.1 and the thickness of the iris is one-fifth of the height A of the
waveplide.

In Figure 3, iRl for a thick iris is plotted against the wave number A& taking dfh = 0.512
und various vaues of the thickness parameter & / h soch as b/ h = 001, 0.1, 0.5, 0.7, 1.0, 2.0.
For the purpose of comparison with the thin iris results, iR for a thin iris (obtained by uvsing Jones
method) is also plotted against A/ taking  / k& = 0.512. For a thin iris, |[Rl increases steadily with
Ak This nalure of IR remains almost the same for a thick iris so long as the thickness remains
less than one-fifth of the height of the waveguide. However, as the thickness further increases, IR
starls fluctoating and assumes zero values. The frequency of occurrence of zero values of fRI depends
on the thickness parameter bfh. The number of zeros of IRl increases with the increase of A/ This
may be atributed due to the interference of incident wave field by the two edges of the thick iris.
As the thickness increases, the distance betwreen the two sides increascs and this produces multiple
reflections of the incident wave field by the two sides, which results in the fluctuation of the
reflection coefficient against the wave number.

5. CONCLUSION

Appropriate solutions have been obtained for a rather complicated boundary valve problem in the
theory of electromagnetism, associated with the propagation of waves of transverse efectric type in
a rectangular waveguide in the prsence of a thick iris. Two approaches, one leading to an integral
equition of the first kind and the other to an integral equation of the second kind, have been used
to tackle it. The integral equations are solved numerically and numerical estimates of the reflections
coefficient are obtained ultimately. The two approaches produce almost the same numerical tesults,
However, the first approach, based on a first kind integral equation, appears to be more economic
than the second approach, based on a second kind integral equation, from a computational point of
view. Becavse of this, the curves of the reflection coefficient for the thick iris problem, have been
generated by using the first approach. One potential advantage of the numerical technique employed
here s that it appears to be simple and straightforward, and there is scope for checking the
correctness of the numerical results as two different approaches have been utilized to compute these.

The thickness of the iris plays a significant role. So long as the thickness is small compared
to the height of the rectangular waveguide, the reflection coefficient IRl increases uniformiy with the
witve number as in the case of the thin iris problem. However, as the thickness increases, IR starts
fluctuating and assumes zero values for a discrete set of wave numbers. Thus for a number of values
of the incident wave frequency, the thick iris becomes completely transparent, This phenomenon may
have some significance in the modelling of rectangular waveguides. A somewhat similar phenomenon
pocurs in the case of water wae scatiering by a thick rectangular barrier resent in water of uniform
finite depth (cf. Mei and Black®, Kanoria e/ al.®, Mandal and Kanmoria'l),
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