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Abstract

We have compared two statistical methods of estimating the time to most recent common ancestor (TMRCA) from a
sample of DNA sequences, which have been proposed by Templeton { 1993) and Bandelt ¢f af. { 1995). Monte-Carlo
simulations were used for generating DNA sequence data. Different evolutionary scenarios were simulated and the
estimation procedures were evaluated. We have found that for both methods (i) the estimates are insensitive to demo-
graphic parameters and (ii) the standard deviations of the estimates are too high for these methods to be reliably used

in practice.

[Basu A. and Majumder P. P. 2003 A comparison of two popular statistical methods for estimating the time to most recent commaon
ancestor { TMECA) from a sample of DNA sequences. J. Gener., 82, 7-12]

Introduction

The assumption that underlies the statistical reconstruc-
tion of the evolutionary history of a set of conlemporary
populations is that new populations evolve over time by
binary fission from ancestral populations. Looking back-
wards in time, therefore, a set of contemporary popula-
tions will coalesce pairwise at different points of time,
until finally there is a coalescent event to the most recent
common ancestor (MRCA) of all the populations. Such
reconstruction can be done by vsing DNA sequence data
generated from samples of individoals drawn from cach
of the contemporary populations under consideration. The
two major features and parameters to be estimated from
such data are (i) the topology of the coalescence events
and (i) the times of coalescence to common ancestors of
the populations, including the time o MRCA (TMRCA).
Both these features and parameters are known to be affec-
ted by demographic scenarios that prevailed dunng the
process of evolution (Hudson 1991; Nordborg 2001). Co-
alescent theory (Kingman 1982ab) provides a probabilistic
framework and a method for reconstruction of evolution
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from DNA sequence data. The framework s simpler when
one is dealing with a haploid, nonrecombining DNA
molecule, such as mitochondrial DNA. Even with haploid
DNA sequence data, estimating TMRCA based on a
sample remains a major challenge. Saunders e al. (1984)
have shown that, although the TMRCA estimated from a
sample can be different from the tue TMRCA, the proba-
bility that the estimate will coincide with the true value is

(=1 (N+1 E (n—=1)
m+1) IN=1) (n+1)

where nois the sample size and N (== n) the population
size (assumed o have been large and constant over evo-
lutionary time). Thus, provided that we are dealing with
numerically large and temporally constant-size popula-
tions, even with a sample of 38 haploid DNA sequences
(), the probability of correctly estimating the true TMRCA
15 (.95, Thus the TMRCA of a sample 15 a reasonably
good estimate of the TMRCA of the population (Saunders
et al. 1984). Statistical methods have been developed 1o
estimate TMRCA from a sample. However, the temporal
constancy of population siee 15 a crucial assumption under-
Iying these methods. In practice, a population is expected
to encounter demographic pressures (such as bottlenecks



Analabha Basu and Partha P. Majumder

and expansions), resulting in violation of this assump-
tion. The purpose of this study is o evaloate the impact
of evolutionarily variable demographic scenarios on the
estimates of TMRCA obtained by using two popular sta-
tistical methods (Templeton 1993; Bandelt et al. 1995;
Saillard et al. 20000).

Methodology

The coalescent: For completeness, we provide some key
results of coalescent theory and briefly describe the two
popular statistical methods. The Kingman coalescent (King-
man 1982a.b) is a probability model for the genealogical
tree of a random sample of n genes drawn from a large
population. A genealogical tree for a sample of size n =5
15 depicted in figure 1. Time s measured continuously in
the coalescent. The time & during which the sample has §
distinct lineages (2=j<n) follows an exponential distri-
bution with parameter j(j - 102 (Tajima 1983; Hudson
1991; Nordborg 2001 ). The random variables denotng the
times for different js are independent. This description
provides a close approximation to a range of population
genctics models in which time s expressed in genera-
tions. An even larger class of models is approximated if a
unit of coalescence time is interpreted as N/~ generu-
tions, where @ is the variance in the number of offspring
produced by an individual (Kingman 19824). We shall
assume & = 1. We are primanly interested in the height
of the tree T,. 1.e. the TMRCA.
It may be noted that

I'J=ra1+'|:11 |+---+r2=£rj= und

E(t)=2jj- D}
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Figure 1. Genealogical tree of a sample of five genes.

E(T,) =2(1 - 1/n),
Van(T,) =8E1 —4(1 = 1/n)’ = 4’13 - 12 = 1.16.

In all the above expressions time is measured i units of
N generations.

It is clear that as n inereases E(T,) very rapidly con-
verges o 20 Also, T, the TMRCA, has a large variance
relative to the mean and this ratio does not decrease much
with increase in sample siee.

The times at which mutations oceur are modelled in
the coalescent by assuming that these times form a Poisson
process of constant mate [, where 1L is the mutation rate
per sequence per generation. This means that the number
of mutations that may have sccumulated on 4 branch of
time kength [is a realization from the Poisson distribution
with mean (. For DNA sequence data, if we assume that
mutation rate has remained constant across sites and over
time, then W ois equal to the sequence length times the
mutation rate per sile per generation.

Although there are several methods available for esti-
mating TMRCA from a sumple of DNA sequences (Fu and
Li 1997; Tavare e al. 1997), two methods are widely used
(e.g. Mountain et af. 1995; Saillard et af. 2000) primarily
because of conceptual simplicity and ease of interpretation.

Under the infinite sites model (Ewens 1979), all infor-
mation in two DNA sequences is captured by the total
number of segregating sites (5,). Since E(5.IT,) = 8T,
one estimator of T,, which for a4 sample of two sequences
15 the TMRCA, 15 5.8, This and similar approaches
(Hammer 1995) are not capable of utilizing prior histori-
cul demo graphic information.

Using Bayes's theorem, Tajima (1983) noted that if &,
= k then the distribution of T, 15 gamma with parameters
I + & and 1+ 8. In particular,

E(TS, = k) = (1 +kN(1 +8),
Var(TJS, = k) = (1 + k(1 + ).

Templeton (1993) considered the problem of estimating
the TMRCA of n (= 2) sequences by extending the ana-
Iytical results that hold for n = 2 and calculated the num-
ber of differences for each pair of sequences whose
common ancestor 15 the root of the tree and then averaged
these pairwise differences. He also observed that this
vilue, .E, of k£ vared hittle uvcrnpluusiblu reconstructed
trees. He then substituted & by & in the previous equa-
tons for E(T,15, = k) and Var(T.l5, = &), In a different
study Hammer (1995) estimated the TMRCA for multiple
sequences by substituting the largest value of £ among all
pairs in the previous equations. This 1s not a proper app-
roach, because Donnelly and Kurte (1997 have shown
that the maximum number of differences between a pair
of sequences chosen from this set of 7 sampled sequences
goes o nfinity as n goes to infinity. This s true even
when T, 1% bounded.
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A popular alternative to the above procedures of esti-
mating TMRCA is to use median-joining network (MIN)
analysis (Bandelt er al. 1995). In this analysis, a genea-
logy of n individuals is considered as an ultrametric tree,
in which the lengths of links are scaled to ome and cach
interior node comesponds to a coalescent event. I there
are k (=2n - 2) links of lengths 1, £, .. . § ime units
and if the clade defined by the ith link carries n; indi-
viduals (i = 1. 2, .. .. k) then the coalescent time ¢ can be
expressed as

t={mt +nt+ ..+t )in.

If 1 denotes the mutation rate, expressed as the expected
number of (scored) mutations in a sequence segment per
tme unit, one may associate to the ith link a Poisson-
distributed random variable X; with pamimeter [ = rlL.
The random varable X = (n X, + nXo+ ...+ 0, X 0/n has
the expected value

EX)={{nt, + mat +. ..+ miinju=

and variance
ViXy= lfnfr, + Mgr3 +...+ :zﬁr,..}l.-"nz}j.i,

assuming independence of X, X, .. L X

Simulation method: We evaluated the pedformance of these
two methods (Templeton 1993; Bandelt er al. 1995) for
estimating the coalescent times from DNA sequence data.
The data set consisted of nucleotide sequences from homo-
logous segments of DNA sampled from different indi-
viduals. The data generated are similar w0 haploid nucleotide
sequences, such as of the mitochondrial DNA HWVS]
(http:/fwww hvrbase org).

We have used a forward propagating algorithm to gen-
crate simulated DNA sequence data. In this algorithm a
nucleotide sequence of specified length and base compo-
sition 15 created by a4 multinomial andom number generator
with cell probabilities equal o the probabilites of the four
bases. A completely homogencous founding population
of a given size 15 then formed by making the appropriate
number of copies of the mndomly generated nucleotide
sequence. The founding population then evolves in accor-
dance with the Wnght-Fisher model (Ewens 1979), 1.¢. a
new generation i formed by sampling from the previous
generation with replacement. The numerical size of the
succeeding generations 15 controlled after the founding
population 15 created. In this study we have considered
two demographic scenarios: (i) constancy of population
size over generations and (i) exponential growth in size,
allowing for variability in the growth parameter over
generations; that s, when the size of a new generation s
determined, we mndomly selected the approprnate number
of sequences from the gene pool of the previous generation
with replacement. Then, wsing the assumed value of the

mutation rate, we calculated the expected number of muta-
tions per generation, and determined the number of new
mutations to be introduced in each generation. If the expec-
ted number of mutations per generation 15 denoted by v,
then we randomly chose and mutated [v] or [¥] + 1 sites,
where [v] denotes the largest integer = v, Choice between
[¥] or [¥]+ 1 was made mndomly by generating a mndom
number i from the uniform [0, 1] distribution, where [v]
wias chosen if o owas less than v —[v]. Suppose there are
N, individuals in generation ¢, cach with data on a sequence
of L nucleotide sites. To introduce a new mutation in
generation £, a sile was chosen with probability 140N, = L)
and mutated. If x; is one such observation, then the muta-
tion 1% introduced at the nueleotide position ((x /L) —[x/
Lly=L of the [x/L]th individual. While introducing the
mutation, we did not consider any prior information on
mutational histones of the site or the individual, thus
allowing for parallel, recurent and back mutations Lo
occur. This process was repeated for a stipulated number
of generations. The population thus generated was treated
a5 the present population and a random sample of size n
was drawn without replacement. This sample of n sequen-
ces wis then used to estimate the TMRCA of the popula-
tion. The estimatled TMRCA was compared to the actual
number of generations used in the simulation.

Simulation parameters: Since estimates of TMRCA can be
affected by various parameters, we have ivestigated the
effects of variation in four crucial parameters. These are:

(1) The number of bases (L) of the nucleotide sequence;
we have vsed two different values of L, namely 200 and
400D

(1) Variability in population size over generation, which
wis introduced through o parameter o, We have used an
exponential growth model. In this model, if N, dtg{}lus
the population size in generation ¢, then N, = Ne . Eln
order thgl N, 1% an integer, we huvu{{:h{}sun ui}lhcr [Ne |
or {[Ne ]+ 1) Choice between [Ne | or [Ne | +1 was
made randomly by generating a random nﬂumhcr o from
the uniform [0, 1] distabution; N, = [Ne | was chosen
if owas < fN_.l:“}l - [N,i:ai: otherwise N, = [N,l:ﬂi + 1 was
chosen. We have used three different values of o, namely
0, 0,001, 0.005.

(111} The number of generations (g); three different val-
ues of g, namely 250, 500 and 1000, were used. :
{iv) Mutation rate (u); two values were used, p= 10"
per site per generation and =35 x 10 i per site per gen-
eration. These values mughly correspond o the observed
rates in human autosomal and mitochondnal hypervari-
able segment-1, respectively. We note that, although the
relevant theoretical equations are functions of N, we have
vaned N and N independently to study the effect of paral-
lel and back mutations, which are possibly introdoced when
Woas large.
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Table 1. Mean (£ s.d) values of TMRCA estimated by Templeton’s (7} and median-joining-network (T3 methods for various
sets of parameter values.

Sequence No. of CGirowth p=10 ’ p=3x10 :
ength generations rate = . < =
(L} g) o) Hhtsd. Hhitsd. Correlation Ntsd. Thtsd. Correlation
0 6l +3160.1 38 £313.9 095 216 £ 1324 178 £123.7 .98
250 LRI 363 + 3385 355 £329.5 .89 198 £ 1358 1081144 U.85
0.005 346 4+ 27832 276 2341 086 187 & 106.1 95 +£75.6 .88
1 531 £503.1 583 +0620.0 093 T4+ 1798 3T +£202.2 0,80
204 S00 0.001 07 £4127 446 £ 4142 087 26+ 1784 298+ 1917 a4
0005 428 +£ 3462 251 + 3064 0.85 o4+ 1396 303 +£112.0 1.00
0 Q08 £ 8080 1167 + 1080.0 0493 629 +£318.6 639 +£376.2 .94
1000 0001 B25 4 6845 HO) + BOS5.4 096 498 £322.8 505 £370.7 .94
0005 BSH £ 3942 644 3125 100 IO+ 1785 6% £ 153.0 0.9y
1 21B+2123 374 £4225 0493 205 £91.0 342 £ 167.5 0.96
250) 0.001 231 +£1774 305 = 2940 0.82 199 + 890 217 +139.0 0.88
0.005 225+ 1675 2HE £ 3452 081 206 £ 747 215+ 103.5 0.8y
{0 429 + 3707 B33 £905.4 092 3BT £ 1623 TOI £331.7 0495
A0 500 0001 439 £ 3008 962 £7743 0.8 351 £150.0 620 +300.6 0495
0005 7542014 59 +317.6 100 437 £ 1248 681 £2158 0.9y
0 637 +£4643 1331+ 1031.4 095 611 £219.0 119 +£518.0 .94
10 (.00l T51 £5273 1520+ 11940.5 0491 6o £ 204 8 1129 £ 4443 0.96
0.005 B34+ 2MTH 1262446412 LOO G912 +£81.6 1375 +£ 1456 .99
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Figure 2. Frequency distributions of TMRCA estimated by two methods on simulated DNA sequence data, with simula-
tion parameters L = 200 nucleotides, p= 1 3 per site per generation and g = 500 generations (marked with an arrow on
the X-axis), comprising 100 replications of each data set (a) o= 0, Templeton’s estimation method; (b) &= 0.005,
Templeton’s estimation method: (¢} o =0, MIN estimation method: (d) o = 0.005, MIN estimation method.
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Results and discussion

Simulated data were generated vsing different combina-
tions of the parameter valoes stated above. For each simula-
ted data set, estimation of TMRCA was carned oul using
two different methods (Templeton 1993; Bandelt et al.
1995). TMRCA was estimated from a sample of n = 100
sequences. Since both estimation procedures crucially
depend on the number of segregating sites, for a data set
to be Cinformative’ the sample of sequences must have at
least two segregating sites. We encountered noninforma-
tive data sets in our simulation muns, especially when g
and W were both small. QOur comparisons are all based on
1) informative data sets; that s, 100 data sets each of
1O sequences containing at least bwo segregating sites.
We first note that a large number of simulation runs
wis required to generate 100 informative data sets, because
often the generated data set did not contain even two seg-
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regating sites. This number was particularly large when
cither g or L was small. For the MIN analysis, a further
problem was encountered for an informative data set that
had a single segregating site. For such a data set, while it
wias possible o caleulate k. it was not possible to draw
the network (using the MIN software) and, therefore, Lo
estimate TMRCA from the MJIN. We had to discard such
data sets from the MIN analysis. To keep the results
comparable, however, we generated 100 informative data
sets on which both methods of estimating TMRCA could
be implemented.

Our results are summarized in table 1. It is evident
from table 1 that the standard deviations of the TMRCA
estimates were very large, irrespective of the parameter
values used in the simulation. Generally, both methods
underestimated the rue TMRCA, except for short sequence
lengths (L = 200, 500 and a short c#'t]luliumkry tme (g =
250, 500 with a low mutaton rate (g = 10 ). However,
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Frequency distributions of TMRCA estimated by two methods on simulated DNA sequence data, with

simulation parameters L = 40 nucleotides, n =5 = 10 : per site per generation and g = 500 generations (marked with
an arrow on the X-axis), comprising 100 replications of each data set. (a) o= 0, Templeton’s estimation method; (1)
o = 0.5, Templeton™s estimation method: (c) o= 0, MIN estimation method: (d) o= 0.005, MIN estimation

method.
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the means of the estimated TMRCA values were nol sig-
nificantly different from the true values because of the
large standard deviations. The correlation coefficient of
the TMRCA estimates by the two methods is large for all
sets of simulation parameter values. Thos, both methods
seem o be unreliable to a similar degree in practice and
it 15 difficult to choose between the two.

The means of the esimated TMRCA values for most
combinations of simulation parameter values decreased
as the mutation rates increased. This is becaose with a
higher mutation rate there is a higher probability of parallel
and back mutations, especially when the lengths of the
sampled sequences are short. Both methods were ruther
insensitive to the population growth parmeter (o), and
there was no consistent trend with respect to o of either
the mean values of the TMRCA estimates or the standard
deviations, although in many cases the standard devia-
tions decreased with increase in . The frequency distri-
butions of the TMRCA estimates (figures 2 and 3) were
all highly positively skewed with a very long upper tail
for both methods. Our results indicate that in practice
considerable caution needs to be exercised in interpreting
coalescence times estimated by either of these two popu-
lar methods.
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