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A NOTE ON THE KHATRI-INVERSE

By K. MANJUNATHA PRASAD and R. B. BAPAT
Indian Statistical Institute

SUMMARY. We give necessary and sufficient conditions for the existence of Khatri-
inverse, pointing out an error in a condition given by Khatri. We also establish a generalized
Cramer’s rule to find minimum N-norm M-least-squares solution.

1. INTRODUCTION

We consider matrices over the complex field, unless indicated otherwise.
Let A, M and N be matrices of order mxn, mxm and nXn respectively,
where M, N are nonsingular (not necessarily hermitian). An nXm matrix
G is said to be the Khatri-inverse of 4 with respect to M, N if the conditions

(1) AGA=4 (2) GAG=G

(3) (AG)Y'M = MAG (4) (GA)'N = NGA
are satisfied, where * denotes conjugate transpose Khatri [3]. If M, N positive
are definite, then such a G always exists, is unique, and is called the minimum
N-norm M-least-squares g-irverse of A, denoted by Ayn (Rao and Mitra
[4], p. 52). The solution (or the approximate solution) of the system Ax = y
given by & = A}, vy is termed as the minimum N-norm M-least-squares
solution. We have followed the notation of Rao and Mitra [4] rather than that
of Khatri[3].

The Khatri-inverse is unique whenever it exists ; this can be seen by
suitably manipulating equations (1)-(4). In Khatri [3] it has been claimed that
the Khatri-inverse of A exists if and only if p(A*MA) = p(AN-14%) = p(4),
where p denotes rank. The condition can be seen to be necessary from equa-
tions (1)-(4). However, the condition is not sufficient as can be seen from
the example given below. The error persists in Rao and Mitra [4], p. 69-70
where the result is given as an exercise.

1 1 2
Example. Let A = [ :’ , M= ,: ] , N=I[1].
2 0 1

Then A has no Khatri-inverse with respect to M, N although p(4*MA)
= p(AN-1 A*) = p(A). InKhatri[3], G = N-1A*(AN-14*)-A(A*MA)yA*M
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is given as the formula for the Khatri-inverse. In this example the matrix G
determined using the formula is (1/9) [1, 4], which does not satisfy (3) and (4).

We now introduce some notation. Let A be an mXxn matrix and let
a={iy, ...}, f=1{jy, ..., jr} be subsets of {1,..., m}and{1,..., n} respec-
tively. We denote by A2 the submatrix of A, determined by rows indexed
by « and columns indexed by 4. The submatrix determined by rows indexed
by a and by all columns is denoted by 4% Similarly A, can be defined. The

d
determinant of a square matrix A is denoted by |A], and 5—- |A| denotes

the cofactor of ay in the A. The r-th compound matrix of A is denoted by
Cr(A). Recall that the rows of 0y(4) are indexed by the r-element subsets
of {1, ..., m}, the columns are indexed by the r-element subsets of {1, ..., n}
and the («, ) entry of Cr(A4) is given by |Ag].

We will need the following results from Bapat ef al. [1], Bhaskara Rao [2].
(i) Let A be an m xn matrix of rank . Then p(Cy(4))=1. ... (L.1)

(ii) Let A be an mXn matrix over the integral domain R. Then 4 is
regular (i.e., has a g-inverse) if and only if there exists (T3 in R such that

ZCE |43 =1 .. (1.2)
a, B
where the summation is over all r-element subsets o, § of {1, ...,m) and

{1. ..., n} respectively. Furthermore if (T4 satisfy (1.2) then G = (g¢y) is a
g-inverse of A, where

gt = E - ?a: 1451, o (13)

see, Bhaskara Rao [2], Theorem 8.

(iii) Let A be an mXn matrix of rank » over the integral domain R.
Let G be a reflexive g-inverse of A. Then for all i, j

a2
=X |Gi| — |43 .. (1.4
g a’ﬁl al aaul gl (1.4)

where «, § run over all r-element subsets of {1, ..., m} and {1, ..., n} respec-
tively ; see Bapat ef al. [1], Theorem 3.

In this paper we give a necessary and sufficient condition for the existence
of the Khatri-inverse. We also give a Cramer-type rule for computing the
minimum N-norm M-least-squares solution to the linear system Ax = y.
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2. EXISTENCE OF KHATRI-INVERSE

It easily follows from the definition that if the Khatri-inverse of 4 with
respect to M, N exists, then p(4*MA) = p(AN-14*) = p(4).

Theorem 1. Let A be an mXxn matrix of rank r and let A = BC be a
rank factorization of A. Then the following conditions are equivalent :

(i) A has Khatri-inverse with respect to M, N

(ii) B*MB, CN-C* are nonsingular and

(B*MB)B*M = (B*M*B)"'B*M"*, e (20)
N-1C*CN-1C*)"! = N*-IC*(CN*-1 C*)? .o (2.2)

Proof. Let G be the Khatri-inverse of A. Since G is a reflexive g-

inverse it can be written in the form G' = UV such that
VB =1and CU = I o (23)
From (1) and (3) we get
AGMYAG)'MA = A
ie.,
BCGM'G*C*B*MBC = BC
which implies
(CGM-G*C*)(B'MB) = 1

so that B*MB is nonsingular. By (3) we get MBV = V*B*M and hence

B*MBV = B*M (since B*V* =1I). . (2.9)
Also,

MB = V*B*MB (since VB = I). .. (2.5)
From (2.4), (2.5) we get

V = (B*MB-'B*M = (B*M'B)"'B*M*
since B*MB is nonsingular. Similarly we can prove that CN-1C* is non-
singular and
U = N-'C*CN-C*~! = N*-1C*CN*-1C")-.
Conversely if (ii) of the theorem holds then it can be verified that
G = N-1C*(CN-'C*"{(B*MB)"'B'M

is the Khatri-inverse of A with respect to M, N. []

Corollary 2. Let A be an mXn matrix of rank 1. Then A has Kharti-
inverse with respect to M, N if and only if tr(N-LA*MA) is nonzero and the
matrices B, C, M, N satisfy (2.1), (2.2) ; in which case

G = [tr(N-'A*MA)|'N-4*'M

18 the Kharti-inverse.
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Proof. Let A = BC be a rank factorization of A. Note that &r(N-!
A*MA) = |CN-C*| |B*MB| whereas N-! C*(CN-1C*)1 B*MB)-'B'M
= tr(N-! A*MA)'N-! A*M and the result follows from Theorem 1. []

Corollary 3. Let A be an mXn matrix of rank r. Then A has Khartri-
inverse with respect to M, N if and only if  |(N-* A*M)}| |Ag| is nonzero
. a,B

and (2.1), (2.2) are satisfied.
Proof. By Cauchy-Binet formula we get
|CN1 C*| |B'MB| = X |Cy| [N71B]|C™ |B| | M,| | B
,p,7,0

s

= I |(N7TA*M) {| | 4g]
a,p

and hence the result follows from Theorem 1. [
We now prove the main result of this paper.

Theorem 4. Let A be an m X n matriz. Then the following conditions are
equivalent :

(i) A has Khatri-inverse with respect to M,N
(i) p(A*MA) = p(ANA*) = p(A) and the equations

A(A*MA)-A'M = A(A*MA)-A*M*, ... (2.6)
N-1A*(AN-'A*)-A= N*-14*(AN*-14*)-A . 2.7

are satisfied for any choice of g-inverse. Furthermore in such a case
G = N1 AYANA*)-AA*MA)-A*M .. (2.8)

is the Khatri-inverse for any choice of g-inverse.

Proof. If (i) is satisfied, then as remarked earlier, p(A*MA) =
p(AN-14*)=p(A) holds. Therefore the matrices A(A*MA)-A*, A(A"M*A4)-A*,
A*(AN-14*%)- A, A*(AN*-! A*)~A are invariant under the choice of g-inverse.
It follows that (2.6) and (2.7) are equivalent to (2.1) and (2.2) respectively
and (ii) is satisfied by Theorem 1. Conversely, if (ii) is satisfied then it can
be verified that G given in (2.8) is the Khatri-inverse. []

In the next result we give a formula for the Khatri-inverse which
is similar to the formula for the Moore-Penrose inverse given in Bapat et al. [1].

Theorem 5. Let A be an mXn matriz of rank r and let u
= tr[Cy (N7 A*MA)]. If G = (gi), the Khatri-inverse of A with respect to
M N exists, then u 7%= 0 and

_ _ 0
97 :a§ u 1 [(NIA‘M)g ij‘ IASI e (29)
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Proof. Let G be the Khatri-inverse of A with respect to M, N. Then
it easily follows from the multiplicative property of the compound matrix
that Cy(@) is the Khatri-inverse of Cp(4) with respect to Cr(M) and Cy(N).
Since Cy(A4) has rank one and since the Khatri inverse is unique whenever it
exists, we have from Corollary 2,

|Ge| = wt |(N7* A'M)|

for all subsets «, § of {1, ..., m}, {1, ..., n} respectively. It follows from (1.4)
that G must be given by (2.9). [

Remark. If M, N are positive definite then it follows from Theorem 2
that the Khatri-inverse of A with respect to M, N exists and as noted earlier
it i also refered to as the minimum N-norm M-least-squares g-inverse.
Theorem 3 can be used to give a generalized Cramer’s rule to obtain the mini-
mum N-norm M-least-squares solution to the linear system Ax =1y. In
fact it is easily verified using (2.9) that

Gyy=_ T ut|(N-1AMY| | 43|

o, B i€

where A is the matrix obtained by replacing the i-th column of A by y.
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