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Abstract. In this paper, we study the structure of the union of unbounded

nested sequences of balls, and use them to characterize some geometric prop-

erties of X∗. We show that the union of an unbounded nested sequence of

balls is a cone if the centers of the balls lie in a finite dimensional subspace.

However, in general, such a union need not be a cone. In fact, examples can

be constructed, up to renorming, in any infinite dimensional Banach space.

We also study when such an union is the intersection of at most k half-spaces,

and relate it with the number of extreme points of any face of the dual ball.

1. Introduction

We work with real Banach spaces. Let X be a Banach space. We denote by
B(x, r) (resp. B[x, r]) the open (resp. closed) ball of radius r > 0 around x ∈ X

and use B(X) instead of B[0, 1]. The unit sphere of X will be S(X). We write D

for the duality mapping for X, that is, the set-valued map from S(X) to P(S(X∗))
defined by

D(x) = {x∗ ∈ S(X∗) : x∗(x) = 1}, x ∈ S(X).

A Banach space X is said to be rotund if every point of S(X) is an extreme
point of B(X). Vlasov [15] showed that X∗ is rotund if and only if the union of
any unbounded nested sequence of balls in X is either the whole of X or an open
affine half-space.

Definition 1.1. A sequence {Bn = B(xn, rn)} of open balls in X is nested if for
all n ≥ 1, Bn ⊆ Bn+1.

A nested sequence {Bn = B(xn, rn)} of balls in X is unbounded if rn ↑ ∞.

It was proved by Beauzamy and Maurey ([6, p. 126]; see also [5, p. 183]) that
a Banach space X is smooth if and only if the union of any unbounded nested
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sequences of balls whose centers lie on a straight line through the origin is either
the whole of X or an open affine half-space.

Let {Bn} be an unbounded nested sequence of balls. Let B = ∪Bn. Then B

is an open convex set. In this paper, we study the structure of sets B that arise
as the union of unbounded nested sequences of balls, and use them to characterize
some geometric properties of X∗.

For example, as we saw above, if X∗ is rotund, then B is either the whole of X

or an open affine half-space. In particular, B is a cone.

Definition 1.2. A convex subset C ⊆ X is a cone with vertex 0 if it is closed
under multiplication by positive scalars. If C is a cone with vertex 0 and x ∈ X,
then x + C is a cone with vertex x.

In particular, we are interested in the question : Is B a cone? We show that
if X is finite dimensional, then the answer is yes for every equivalent norm on X

(Proposition 2.7). However, in general, B need not be a cone. In fact, we prove (see
Theorem 2.16 and Corollary 2.17) that a Banach space X is finite dimensional if
and only if for every equivalent norm, the union of each unbounded nested sequence
of balls is a cone.

The answer, therefore, depends on the norm or on the nature of the unbounded
nested sequence of balls. We show that if {Bn} is an unbounded nested sequence of
balls with centers in a finite dimensional subspace (Corollary 2.14), then B = ∪Bn

is a cone. On the other hand, if X∗ is k-rotund for some k, then for every unbounded
nested sequence {Bn} of balls, B = ∪Bn is a cone (Corollary 2.18). However, a
complete isometric characterization of Banach spaces in which the union of every
unbounded nested sequence of balls is a cone, remains open.

Observe that any cone has a vertex and an associated cone with vertex 0. We
show that for B as above, there is a naturally associated cone C with vertex 0
(possibly empty) such that whenever B is a cone, C is nonempty and B is a translate
of C. This brings us to the question : is C always nonempty? Here our isomorphic
result is : a Banach space is reflexive if and only if for every equivalent norm and
every unbounded nested sequence of balls, C is nonempty (see Lemma 2.20 (b),
Theorem 2.21 and Corollary 2.22). Coming to the isometric question, we show,
for example, that if X is an M -ideal in X∗∗, then for every unbounded nested
sequence {Bn} of balls, C is nonempty (Lemma 2.20 (d)). However, a complete
isometric characterization of Banach spaces in which the cone C associated with
an unbounded nested sequence of balls is always nonempty, again remains open.
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Properties of Banach spaces characterized by the structure of unbounded nested
sequence of balls like the above have also been studied in [12, 13], and have been
localized and extended in [1, 2, 4]. See also the survey [3].

The third section of the paper will be devoted to the study of some geometric
properties of X∗ in terms of unbounded nested sequences of balls in X, generalizing
the results of Vlasov and Beauzamy–Maurey mentioned above. Specifically, we show
that the union of such a sequence is the intersection of at most k half-spaces if and
only if any face of the dual ball is the convex hull of at most k extreme points.

2. Structure of
⋃

Bn

Let us first observe that, thanks to Hahn-Banach Theorem, for a Banach space
X, every open convex set B 6= X can be written as

B =
⋂

x∗∈A

{x ∈ X : x∗(x) > inf x∗(B)},

where A = {x∗ ∈ S(X∗) : x∗ is bounded below on B}. Observe that, since B 6= X,
A 6= ∅. Now, such a set B is a cone with vertex v ∈ X (not necessarily unique) if
and only if inf x∗(B) = x∗(v) for every x∗ ∈ A. That is, B is a cone with vertex v

if and only if it can be written as

B = v +
⋂

x∗∈A

{x ∈ X : x∗(x) > 0} = v + C (say).

If B(x, r) (or B[x, r]) is an open (closed) ball in X, then it is easy to prove that,
for every x∗ ∈ S(X∗),

inf x∗(B(x, r)) = inf x∗(B[x, r]) = x∗(x)− r.

We will use these facts without reference in the sequel.

Our first result is about unbounded nested sequences of balls whose centers lie
on a line.

Definition 2.1. An unbounded nested sequence of balls {B(xn, rn)} in a Banach
space X is called straight if there exist x0 ∈ S(X) and {λn} ⊆ R such that xn =
λnx0 for all n ≥ 1. Such x0 is called the direction of this sequence.

Theorem 2.2. The union of a straight unbounded nested sequence of balls is always
a cone.

Proof. Let {Bn = B(λnx0, rn)} be a straight unbounded nested sequence of balls,
B = ∪Bn, and A = {x∗ ∈ S(X∗) : x∗ is bounded below on B}.
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Translating the balls if necessary, we may assume 0 ∈ B[xn, rn]. That is, |λn| ≤
rn. Observe that x∗ ∈ A if and only if there exists c ∈ R such that for all n ≥ 1,

inf x∗(Bn) = λnx∗(x0)− rn ≥ c,(1)

or, equivalently, for all n ≥ 1,

λn

rn
x∗(x0) ≥ 1 + c/rn.

Since rn −→∞, the right hand side is eventually positive. It follows that eventually
λn and x∗(x0) has the same sign. Thus if {λn} has both a positive subsequence
and a negative subsequence, then A = ∅, that is, B = X. If λn > 0 eventually, it
follows that

lim
n→∞

λn

rn
= 1 and x∗(x0) = 1,

that is, A ⊆ D(x0). It now follows from (1) that the sequence {λn−rn} is bounded
below. And therefore, from (1) again, A = D(x0). Similarly, if λn < 0 eventually,
then A = −D(x0).

Thus, we may assume λn > 0 for all n ≥ 1, and A = D(x0). Put

C =
⋂

x∗∈A

{x ∈ X : x∗(x) > 0}

and observe that x0 ∈ C, C is a cone with vertex 0, and for every x ∈ B, x+C ⊆ B.
Moreover, for any x∗ ∈ A,

inf x∗(B) = inf
n
{x∗(xn)− rn} = inf

n
{λn − rn} = α (say) > −∞,

and then

B =
⋂

x∗∈A

{x ∈ X : x∗(x) > inf x∗(B) = α = x∗(αx0)} = αx0 + C

is a cone with vertex αx0. �

Let us now isolate some general facts contained in the above proof. Fix an
unbounded nested sequence of balls {Bn = B(xn, rn)} in a Banach space X, and
let B = ∪Bn. Let

A = {x∗ ∈ S(X∗) : x∗ is bounded below on B}

and

C =
⋂

x∗∈A

{x ∈ X : x∗(x) > 0}.

Then

B =
⋂

x∗∈A

{x ∈ X : x∗(x) > inf x∗(B)},

and if C is nonempty then it is a cone with vertex 0, and for every x ∈ B, x+C ⊆ B.



STRUCTURE OF NESTED SEQUENCES OF BALLS 5

As before, we may assume 0 ∈ Bn, or, equivalently, ‖xn‖ ≤ rn eventually. Now,
x∗ ∈ A if and only if there exists c ∈ R such that for all n ≥ 1,

x∗(xn)− rn ≥ c,

that is,

x∗
(

xn

rn

)
≥ 1 +

c

rn
(2)

Let x∗∗0 ∈ B(X∗∗) be a w*-cluster point of the sequence {xn/rn} ⊆ B(X). It
follows from (2) that for every x∗ ∈ A, x∗∗0 (x∗) = 1. And hence,

lim
∥∥∥∥xn

rn

∥∥∥∥ = ‖x∗∗0 ‖ = 1

Therefore, if lim inf ‖xn/rn‖ < 1, then B = X. And if B 6= X, then x∗∗0 ∈
S(X∗∗) and A ⊆ D(x∗∗0 ) ∩X∗. In this case, we can say more about the set A.

Lemma 2.3. If B 6= X, the set A is a nonempty convex extremal subset (a face)
of S(X∗). Moreover,

A = {x∗ ∈ S(X∗) : {x∗(xn)− rn} converges}.

Proof. Let x∗, y∗ ∈ A and λ ∈ (0, 1). Choose c ∈ R such that (2) holds for both x∗

and y∗. Then,

(λx∗ + (1− λ)y∗)
(

xn

rn

)
≥ 1 +

c

rn

Since, {xn/rn} ⊆ B(X), it follows that λx∗ + (1 − λ)y∗ ∈ S(X∗) and therefore,
λx∗ + (1− λ)y∗ ∈ A. This proves A is convex.

To show that A is an extremal subset of S(X∗), let x∗, y∗ ∈ S(X∗) and t ∈ (0, 1)
such that tx∗ + (1− t)y∗ ∈ A. Then tx∗ + (1− t)y∗ ∈ S(X∗) and therefore,

inf(tx∗ + (1− t)y∗)(Bn) = (tx∗ + (1− t)y∗)(xn)− rn

= t(x∗(xn)− rn) + (1− t)(y∗(xn)− rn)

= t inf x∗(Bn) + (1− t) inf y∗(Bn).

Since 0 ∈ B[xn, rn], for any z∗ ∈ S(X∗), inf z∗(Bn) ≤ 0. Thus, tx∗ + (1− t)y∗ ∈ A

implies x∗, y∗ ∈ A.

Further, since the balls are nested, for all x∗ ∈ A, the sequence {x∗(xn)− rn} is
decreasing and bounded below and hence converges. �

As an immediate consequence of the above result, we can prove one direction of
Vlasov’s Theorem [15]. Observe that if X∗ is rotund, then the only convex subsets
of S(X∗) are singletons. So, A is a singleton and therefore, B is an affine half-space.
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In our earlier work [2], we observed that locally Vlasov’s theorem is actually a
consequence of the fact that if X∗ is rotund, then every point of S(X∗) is a rotund
point of B(X∗).

Definition 2.4. [8] Let X be a Banach space. We say that x ∈ S(X) is a rotund
point of B(X) (or, X is rotund at x) if ‖y‖ = ‖(x + y)/2‖ = 1 implies x = y.

In fact, the result of [2] can be reformulated in our notation as : x∗ ∈ S(X∗) is
a rotund point of B(X∗) if and only if for every unbounded nested sequence {Bn}
of balls such that x∗ ∈ A, we have A = {x∗}. Again, one direction of the argument
follows immediately.

Observe that if x ∈ S(X) is a rotund point then the only convex subset of S(X)
that contains x is singleton {x}. Therefore, if A contains a rotund point of S(X∗),
then A is a singleton and B is an affine half-space.

The following result was established in [15] as a part of the study of convexity
of Chebyshev sets. Here we give a much simpler proof using Theorem 2.2.

Proposition 2.5. [15, Proposition 3.4] Let {Bn = B(xn, rn)} be an unbounded
nested sequence of balls. Let B = ∪Bn and M = X \B. Suppose w-lim xn/‖xn‖ =
x0. Then for every x ∈ B,⋃

r≥0

B
(
x + rx0, r + d(x, M)

)
⊆ B

where d(x,M) = inf{‖x−m‖ : m ∈ M} is the distance from x to M .

Proof. By the above observations, we may assume

lim
∥∥∥∥xn

rn

∥∥∥∥ = 1 and ‖x0‖ = 1.

Let A and C be as above. Then A ⊆ D(x0).

Fix x ∈ B. Since the balls are nested,⋃
r≥0

B
(
x + rx0, r + d(x, M)

)
=
⋃
n≥1

B
(
x + nx0, n + d(x,M)

)
.

By the proof of Theorem 2.2,⋃
n≥1

B
(
nx0, n + d(x,M)

)
= −d(x, M)x0 +

⋂
x∗∈D(x0)

{x ∈ X : x∗(x) > 0},

and therefore,⋃
n≥1

B
(
x + nx0, n + d(x, M)

)
= x− d(x, M)x0 +

⋂
x∗∈D(x0)

{x ∈ X : x∗(x) > 0}

⊆ x− d(x, M)x0 + C.
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Clearly,

x− d(x,M)x0 ∈ B =
⋂

x∗∈A

{x ∈ X : x∗(x) ≥ inf x∗(B)}.

And therefore,

x− d(x,M)x0 + C ⊆
⋂

x∗∈A

{x ∈ X : x∗(x) ≥ inf x∗(B)}+ C

=
⋂

x∗∈A

{x ∈ X : x∗(x) > inf x∗(B)} = B.

�

The rest of this section is devoted to study whether or not B is a cone, and
whether or not C is nonempty.

We start by proving that in finite dimensional spaces, B is always a cone. We
need the following lemma, which we will use again in Section 3.

Lemma 2.6. If for x∗1, x
∗
2, . . . , x

∗
n ∈ A and λ1, λ2, . . . , λn ∈ R, y∗ =

n∑
i=1

λix
∗
i ∈ A,

then
n∑

i=1

λi = 1 and inf y∗(B) =
n∑

i=1

λi inf x∗i (B).

Proof. As y∗ ∈ A ⊆ S(X∗), we have

inf y∗(Bm) = y∗(xm)− rm =
n∑

i=1

λix
∗
i (xm)− rm

=
n∑

i=1

λi(x∗i (xm)− rm) + (
n∑

i=1

λi − 1)rm

=
n∑

i=1

λi inf x∗i (Bm) + (
n∑

i=1

λi − 1)rm.

Observe that inf z∗(Bm) ≤ 0 for every z∗ ∈ S(X∗), and since y∗ ∈ A,
infm inf y∗(Bm) > −∞. So we get

∑n
i=1 λi = 1. �

Proposition 2.7. Let {Bn = B(xn, rn)} be an unbounded nested sequence of balls
in a finite dimensional space X. Then B = ∪Bn is a cone.

Proof. Let us first note that B is a cone if and only if there is a v ∈ X such that
for all x∗ ∈ A, x∗(v) = inf x∗(B).

Let {x∗1, x∗2, . . . , x∗m} be a maximal linearly independent subset of A. By inde-
pendence, there is a v ∈ X such that x∗i (v) = inf x∗i (B) for all i = 1, 2, . . . ,m. It
now suffices to note that this v works for all x∗ ∈ A.
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Indeed, let x∗ ∈ A. By maximality, there is λ1, λ2, . . . , λm ∈ R such that

x∗ =
∑m

i=1 λix
∗
i . By Lemma 2.6, it follows that inf x∗(B) =

m∑
i=1

λi inf x∗i (B) =

n∑
i=1

λix
∗
i (v) = x∗(v). �

Coming to infinite dimensions, we quickly note an easy necessary condition for
B to be a cone.

Lemma 2.8. If B is a cone, then there exists c ∈ R such that for every x∗ ∈ A

and n ≥ 1,

x∗(xn)− rn ≥ c.

And in this case, A is w*-closed.

Proof. Observe that if B is a cone with vertex v, then for all x∗ ∈ A,

inf
n

[x∗(xn)− rn] = inf x∗(B) = x∗(v) ≥ −‖v‖ = c (say).

Moreover, if B is a cone with vertex v, then B − v is a cone with vertex 0 and
x∗ ∈ A if and only if x∗ is non-negative on B − v. It follows that the set A has to
be w*-closed. �

Question 2.9. We do not know whether the above condition is also sufficient for
B to be a cone.

Now we are in a position to extend Theorem 2.2 to prove that if the centers of
the balls belong to a finite dimensional subspace, then B is a cone. For this, we
need a tool to extend the phenomena under study from a subspace Y to the whole
space X. We observe :

Lemma 2.10. Let {Bn} be an unbounded nested sequence of balls in X with centers
in a subspace Y such that 0 ∈ B1. Then {Bn∩Y } is an unbounded nested sequence
of balls in Y . Let B = ∪Bn and let

AX = {x∗ ∈ S(X∗) : x∗ is bounded below on B} and

AY = {y∗ ∈ S(Y ∗) : y∗ is bounded below on B ∩ Y }

Then for any y∗ ∈ AY , every norm preserving extension of y∗ is in AX and for
any x∗ ∈ AX , x∗|Y ∈ AY . Moreover, inf x∗(B) = inf x∗|Y (B ∩ Y ).

Proof. It suffices to show that if x∗ ∈ AX , then ‖x∗|Y ‖ = 1. Let {Bn = B(yn, rn)}.
Put zn = yn/rn. It follows that ‖zn‖ ≤ 1. By (2) and the fact that rn −→ ∞, we
conclude limn x∗(zn) = 1. And hence, ‖x∗|Y ‖ = 1. The rest is clear. �
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Proposition 2.11. Let {Bn} be an unbounded nested sequence of balls in X with
centers in a subspace Y and B = ∪Bn. If B ∩ Y is a cone in Y , then B is a cone.

Proof. As noted before B is a cone if and only if there is a v ∈ X such that for all
x∗ ∈ A, x∗(v) = inf x∗(B).

Since B ∩ Y is a cone in Y , there is a u ∈ Y such that for all y∗ ∈ AY ,
y∗(u) = inf y∗(B ∩ Y ). It suffices to note that this u also works in X.

Indeed, let x∗ ∈ AX . Then x∗|Y ∈ AY and therefore, x∗(u) = x∗|Y (u) =
inf x∗|Y (B ∩ Y ) = inf x∗(B). �

Question 2.12. It is an open question whether the converse is true.

Remark 2.13. Observe that if the answer to Question 2.9 is yes, then so is the
answer to this one. This is clear as if the bound on B ∩ Y is not uniform over AY ,
the bound on B cannot be uniform over AX .

Corollary 2.14. Let {Bn} be an unbounded nested sequence of balls in a Banach
space X with centers in a finite dimensional subspace. Then B = ∪Bn is a cone.

We now show that for every infinite dimensional Banach space, there are an
equivalent norm and an unbounded nested sequence of balls (in the new norm)
such that the union is not a cone. For this, we need the following lemma.

Lemma 2.15. (a) Let X be an infinite dimensional Banach space. Then
for any ε > 0, there are an ε-equivalent norm ||| · ||| on X and sequences
{zi} ⊆ X and {z∗i } ⊆ X∗ such that |||zi||| = |||z∗i ||| = 1 and

z∗k(zn)

{
= 1 if 1 ≤ k ≤ n,

< 1 if k > n.

(b) Let X be separable and non-reflexive. Then there are an equivalent norm
||| · ||| on X and sequences {zi} ⊆ X and {z∗i } ⊆ X∗ satisfying the above

properties and with the additional property that {z∗i }
w∗

contains some ball
centered at the origin.

Proof. (a). Let x0 ∈ S(X) and x∗0 ∈ S(X∗) with x∗0(x0) = 1. Let r > 0, r1 > 0.
Define

G = [(1 + r)x∗0 + ker(x0)] ∩B((1 + r)x∗0, r1) and

V = co{±(1 + r)x∗0, B(X∗)}.

Clearly, V ∩ G = {(1 + r)x∗0}. Choose z∗1 ∈ G \ {(1 + r)x∗0} and (by the Hahn-
Banach separation theorem) find a z1 ∈ X with z∗1(z1) = 1 > sup z1(V ). Next find
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z∗2 ∈ [G \ {(1 + r)x∗0}] ∩ {x∗ ∈ X∗ : x∗(z1) < 1} such that for

L2 =

{
2∑

i=1

αiz
∗
i :

2∑
i=1

αi = 1

}
,

L2 ∩ V = ∅, i.e., (1 + r)x∗0 /∈ L2.

Why does such an z∗2 exist? Let us do the following: first take z∗2 ∈ G ∩ {x∗ ∈
X∗ : x∗(z1) = 1}. Clearly, (1+r)x∗0 /∈ L2. Hence the distance between (1+r)x∗0 and
L2 is positive. Next move z∗2 a little in G into the half-space {x∗ ∈ X∗ : x∗(z1) < 1}
in such a way that the line L2 in the new position still does not contain (1 + r)x∗0.
This is exactly what we need.

Observe that a functional separating L2 from V must be constant on L2. Thus,
there exists a z2 ∈ X with z2(L2) = 1 > sup z2(V ). Notice that [G \ {(1 + r)x∗0}] ∩⋂2

i=1{x∗ ∈ X∗ : x∗(zi) < 1} is a nonempty open set, since G ∩
⋂2

i=1{x∗ ∈ X∗ :
x∗(zi) < 1} is a nonempty [it contains (1 + r)x∗0] open set. As before, we can find
z∗3 ∈ [G \ {(1 + r)x∗0}] ∩

⋂2
i=1{x∗ ∈ X∗ : x∗(zi) < 1} such that for

L3 =

{
3∑

i=1

αiz
∗
i :

3∑
i=1

αi = 1

}
,

L3 ∩ V = ∅, i.e., (1 + r)x∗0 /∈ L3. The rest of the inductive construction is clear.

Put U = cow∗
[{±z∗i } ∪B(X∗)] and

|||x||| = sup{x∗(x) : x∗ ∈ U}, x ∈ X.

For r > 0 and r1 > 0 small enough, the new norm ||| · ||| is ε-isomorphic to the
original one. All the properties of the sequences {zi} and {z∗i } are clear from the
construction.

(b). We use the same idea of construction as above, but with some changes.
First of all, we take V = B(X∗) and instead of x0, we take x∗∗0 ∈ X∗∗ \ X. By
Bishop-Phelps Theorem, we can choose such an x∗∗0 to be norm attaining. Let
x∗0 ∈ S(X∗) such that x∗∗0 (x∗0) = 1. Let r > 0.

Since x∗∗0 ∈ X∗∗ \ X, the subspace ker(x∗∗0 ) is norming, that is, B(ker(x∗∗0 ))
w∗

contains some ball (say, bB(X∗)) centered at the origin. Fix δ > 0 and let

G = (1 + r)x∗0 + r1B(ker(x∗∗0 )), where r1 = (1 + r + δ)/b.

It follows that G
w∗

⊇ δB(X∗).

Let R > 0 be so large that RB(X∗) ⊇ G. Since X is separable, the w*-topology
is metrizable on any bounded subset. Let d(x∗, y∗) be a metric on RB(X∗) which
gives the w*-topology on RB(X∗). Let {u∗i } be w*-dense in δB(X∗).
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Coming to the inductive construction, take z∗1 ∈ G\{(1+ r)x∗0} and find z1 ∈ X

with z∗1(z1) = 1 > sup z1(B(X∗)). Since the w*-open half-space {x∗ ∈ X∗ :
x∗(z1) < 1} contains δB(X∗) (in fact, B(X∗)) and since G

w∗

⊇ δB(X∗), it follows

that (G ∩ {x∗ ∈ X∗ : x∗(z1) < 1})
w∗

⊇ δB(X∗). Hence there is an z∗2 ∈ (G∩{x∗ ∈
X∗ : x∗(z1) < 1}) with d(u∗2, z

∗
2) < 1/2. Put

L2 = {
2∑

i=1

αiz
∗
i :

2∑
i=1

αi = 1}.

It is clear that L2 ∩ B(X∗) = ∅ and hence, there is a z2 ∈ X with z2(L2) = 1 >

sup z2(B(X∗)). As before, the w*-closure of G ∩ {x∗ ∈ X∗ : x∗(z1) < 1} ∩ {x∗ ∈
X∗ : x∗(z2) < 1} ⊇ δB(X∗). Hence there is an z∗3 ∈ (G ∩ {x∗ ∈ X∗ : x∗(z1) <

1} ∩ {x∗ ∈ X∗ : x∗(z2) < 1}) with d(u∗3, z
∗
3) < 1/3.

Notice that from the construction of {zi} it follows that for each n,
⋂n

i=1{x∗ ∈
X∗ : x∗(zi) < 1} ⊇ B(X∗) ⊇ δB(X∗). This allows us to choose z∗i ∈ G∩

⋂i−1
k=1{x∗ ∈

X∗ : x∗(zk) < 1} with d(z∗i , u∗i ) < 1/i, i ≥ 1. The further construction is clear.

The rest of the proof runs along the lines of the proof of (a). �

Theorem 2.16. Let X be an infinite dimensional Banach space. Then, for every
ε > 0, there is an ε-equivalent norm and an unbounded nested sequence of balls
{Bn = B(xn, rn)} (in this norm) such that B = ∪Bn is not a cone.

Proof. Let {zi}, {z∗i } and ||| · ||| be as given by Lemma 2.15 (a). Let r0 = 1, r1 = 2
and z0 = 0. If {r1, r2, . . . , rn} have been already constructed, put

(3) rn+1 = max

rn + 1,

n∑
k=1

(rk − rk−1)z∗n+1(zk−1)− rnz∗n+1(zn) + n + 1

1− z∗n+1(zn)

 .

Put

xn =
n∑

k=1

(rk − rk−1)zk−1

for every n ≥ 1. Since |||xn+1 − xn||| = rn+1 − rn, it is clear that the sequence of
balls {Bn = B(xn, rn)} is nested. It is also clear from the definition of rn that the
sequence is unbounded.
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Let us estimate inf z∗m(B) for m ≥ 1.

inf z∗m(B) = inf
n≥1

inf z∗m(Bn) = inf
n≥m+1

(z∗m(xn)− rn)

= inf
n≥m+1

(
n∑

k=1

(rk − rk−1)z∗m(zk−1)− rn

)

= inf
n≥m+1

(
m∑

k=1

(rk − rk−1)z∗m(zk−1) +
n∑

k=m+1

(rk − rk−1)− rn

)

= inf
n≥m+1

(
m∑

k=1

(rk − rk−1)z∗m(zk−1)− rm

)

=
m−1∑
k=1

(rk − rk−1)z∗m(zk−1)− rm−1z
∗
m(zm−1)− (1− z∗m(zm−1))rm.

By (3), we get

inf z∗m(B) ≤ −m, m ≥ 1,

which, by Lemma 2.8, proves that B is not a cone. �

Combining the above result with Proposition 2.7, we obtain

Corollary 2.17. A Banach space X is finite dimensional if and only if for every
equivalent norm, the union of each unbounded nested sequence of balls is a cone.

Coming to the isometric question, recall that for k ≥ 1, a Banach space X

with dim(X) ≥ k + 1 is k-rotund if given (k + 1) linearly independent points
x1, x2, . . . , xk+1 ∈ S(X), ‖x1+x2+ · · ·+xk+1‖ < k+1. This notion was introduced
in [11] generalizing the notion of k-UR Banach spaces introduced by Sullivan in [14].

Corollary 2.18. If X∗ is k-rotund, then the union of any unbounded nested se-
quence of balls is a cone.

Proof. Observe that X∗ is k-rotund if and only if every face of S(X∗) is the linear
combination of at most k linearly independent points in S(X∗).

Now, since for any unbounded nested sequence {Bn} of balls in X, the set A is
a face of S(X∗), any maximal linearly independent subset of A contains at most k

points. It then follows from the proof of Proposition 2.7 that B is a cone. �

And here is an example of an unbounded nested sequence of balls in c0 (with its
usual norm) whose union is not a cone.

Example 2.19. Let X = c0. Let {en} be the standard unit vector basis of c0 and
{e∗n} be the standard unit vector basis of `1.



STRUCTURE OF NESTED SEQUENCES OF BALLS 13

Let un =
n∑

k=1

ek and xn =
n∑

k=1

uk. Then {un} ⊆ S(X) and therefore the sequence

{Bn = B(xn, n)} is nested. Let B = ∪Bn. Observe that every e∗n is bounded below
on B. Indeed,

inf e∗i (Bn) = e∗i (xn)− n =
n∑

k=1

e∗i (uk)− n =
n∑

k=1

k∑
j=1

e∗i (ej)− n

=


n∑

k=i

1− n if n ≥ i

−n if n < i

=

{
−i + 1 if n ≥ i

−n if n < i.

It follows that

inf e∗i (B) = inf
n

inf e∗i (Bn) = −i + 1,

and thus by Lemma 2.8, B is not a cone.

Similarly, B∗∗ = ∪B∗∗(xn, n) ⊆ `∞ also is not a cone.

Observe that un
w∗

−→ 1 = (1, 1, . . . , 1, . . .) ∈ `∞, and therefore, xn/n
w∗

−→ 1. It
follows that {e∗n} ⊆ A ⊆ {(an) ∈ S(`1) :

∑∞
n=1 an = 1} = {(an) ∈ S(`1) : an ≥ 0}.

Therefore, C = {(αn) ∈ c0 : αn > 0} 6= ∅. �

Observe that if B is a cone, then C 6= ∅. On the other hand, in the above
example, even though B is not a cone, C 6= ∅.

Indeed, for X = c0 with its usual norm, given any x∗∗0 ∈ S(`∞) restricting it to
its first n coordinates, it is always possible to get a sequence {yn} ⊆ c0 such that
‖yn − x∗∗0 ‖ ≤ 1 for all n ≥ 1 and w*-lim yn = x∗∗0 . This implies that C 6= ∅, as we
can see from the following lemma.

Lemma 2.20. Let {Bn = B(xn, rn)} be an unbounded nested sequence of balls in
X. Let B, A and C be as before. Let x∗∗0 ∈ B(X∗∗) is a w*-cluster point of the
sequence {xn/rn} ⊆ B(X). Then each of the following conditions is sufficient for
C to be nonempty :

(a) 0 /∈ A
w∗

. In particular, if A is w*-closed, then C 6= ∅.
(b) d(x∗∗0 , X) < 1. In particular, if X is reflexive, then C 6= ∅.
(c) ‖xn/rn − x∗∗0 ‖ ≤ 1 for all sufficiently large n.
(d) there exists a sequence {yn} ⊆ X such that ‖yn − x∗∗0 ‖ ≤ 1 for all
sufficiently large n ≥ 1 and x∗∗0 is a w*-cluster point of {yn}. In particular,
if X is an M -ideal in X∗∗, or more generally, if the canonical projection
P from X∗∗∗ to X∗ satisfies ‖I − P‖ ≤ 1, then C 6= ∅.

Proof. Observe that z ∈ C if and only if A ⊆ {x∗ ∈ X∗ : x∗(z) > 0}. So, if
0 /∈ A

w∗

, then C 6= ∅.
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If x∗∗0 ∈ B(X∗∗) is a w*-cluster point of {xn/rn}, then A ⊆ D(x∗∗0 ) ∩ X∗. It
follows that B∗∗(x∗∗0 , 1) ∩X ⊆ C.

Therefore, if d(x∗∗0 , X) < 1, then C 6= ∅. In particular, if x∗∗0 ∈ X, that is, if
the sequence {xn/rn} ⊆ B(X) has a weak cluster point x∗∗0 ∈ B(X), then C 6= ∅.
Observe that this happens if X is reflexive.

If ‖xn/rn − x∗∗0 ‖ ≤ 1 for sufficiently large n, we may assume it happens for all
n ≥ 1. Then for all x∗ ∈ A,

x∗
(

xn

rn

)
≥ x∗(x∗∗0 )−

∥∥∥∥xn

rn
− x∗∗0

∥∥∥∥ ≥ 0.

Moreover, by (2), for all x∗ ∈ A,

x∗
(

xn

rn

)
≥ 1 +

c

rn
>

1
2

for sufficiently large n (of course, n depends on x∗). Define

x0 =
∞∑

n=1

1
2n

xn

rn
.

Now it is clear that x∗(x0) > 0 for all x∗ ∈ A. That is, x0 ∈ C.

Observe that for the above argument to work, all we need is a sequence {yn} ⊆ X

such that ‖yn−x∗∗0 ‖ ≤ 1 for all n ≥ 1 and x∗∗0 is an w*-cluster point of {yn}. Then,

y0 =
∞∑

n=1

1
2n

yn ∈ C.

Observe that if X is an M -ideal in its bidual, then by [10, Proposition III.1.9],
the above condition is satisfied. And if the canonical projection P from X∗∗∗ to
X∗ is such that ‖I −P‖ ≤ 1, then also by [9, Proposition 2.3], the above condition
is satisfied. �

Thus, for every unbounded nested sequence of balls in a reflexive space, C is non-
empty. How about non-reflexive spaces? By arguments similar to Proposition 2.11,
it follows that if the centers of the nested sequence of balls lie in a reflexive subspace,
then also C is nonempty. However, this need not be generally the case. Indeed, we
have

Theorem 2.21. In every non-reflexive Banach space, there is an equivalent norm
and an unbounded nested sequence of balls {Bn} (in this norm) such that C = ∅.

Proof. If X is separable, we use the construction of Theorem 2.16 with Lemma 2.15
(b), to obtain A

w∗

⊇ δB(X∗) for some δ > 0. Then it is not difficult to see that
C = ∅.
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If X is not separable, let Y ⊆ X be a separable non-reflexive subspace. As
above, there is an equivalent norm on Y and an unbounded nested sequence {Bn =
B(yn, rn)} of balls in Y (in this norm) such that AY

w∗

⊇ δB(Y ∗) for some δ > 0.
Get an equivalent norm on X that extends the new norm on Y . Consider the
unbounded nested sequence {B(yn, rn)} of balls in X.

Let D ⊆ S(X∗) consist of a norm preserving extension of each y∗ ∈ AY . Then
by Lemma 2.10, AX = (D + Y ⊥) ∩ B(X∗). Observe that, in fact, AX = (D +
2B(Y ⊥)) ∩ B(X∗) [if x∗ ∈ AX , x∗ = x∗1 + x∗2, x∗1 ∈ D, x∗2 ∈ Y ⊥, then ‖x∗2‖ =
‖x∗ − x∗1‖ ≤ ‖x∗‖+ ‖x∗1‖ ≤ 2].

Let i : Y → X be the natural embedding, then i∗(D) = AY and hence, i∗(D
w∗

) ⊇
AY

w∗

⊇ δB(Y ∗). Thus for some η ∈ (0, 1), ηB(X∗) ⊆ i∗−1(δB(Y ∗)) ⊆ D
w∗

+ Y ⊥.
As before, ηB(X∗) ⊆ D

w∗

+ 2B(Y ⊥). It follows that AX
w∗

= [D
w∗

+ 2B(Y ⊥)] ∩
B(X∗) ⊇ ηB(X∗). As before, C = ∅. �

By combining this theorem and Lemma 2.20, we have

Corollary 2.22. A Banach space is reflexive if and only if for every equivalent
norm and for each unbounded nested sequence of balls, C 6= ∅.

If an equivalent norm appears a bit artificial in the above result, here is an
unbounded nested sequence of balls in `1 (with its usual norm) such that C = ∅.

Example 2.23. Let X = `1, and {un} be the standard unit vector basis of `1.

Let xn =
n∑

k=1

uk. Since {un} ⊆ S(X), the sequence {Bn = B(xn, n)} is nested.

Let B = ∪Bn, and a∗ = (an) ∈ S(`∞).

inf a∗(Bn) = a∗(xn)− n =
n∑

k=1

a∗(uk)− n = −
n∑

k=1

(1− ak).

It follows that

A = {(an) ∈ S(`∞) :
∞∑

n=1

(1− an) < ∞}.

Claim : C = ∅.

Let x = (αn) ∈ S(`1). Choose N ≥ 1 such that
∑∞

n=N+1 |αn| < 1/3. Take

a∗ = (−sgn(α1),−sgn(α2), . . . ,−sgn(αN ), 1, . . . .1, . . .) ∈ A,

and observe that

a∗(x) =
∞∑

n=1

anαn = −
N∑

n=1

|αn|+
∞∑

n=N+1

αn = −1 +
∞∑

n=N+1

(|αn|+ αn) < −1
3
.

Therefore, x /∈ C. �
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Definition 2.24. Let us say that a Banach space X has Property C1 (resp. C2) if
for every unbounded nested sequence {Bn} of balls in X, B = ∪Bn is a cone (resp.
C 6= ∅).

Then the main observations of this section can be summarized as :

Proposition 2.25. (a) Finite dimensional Banach spaces and Banach
spaces whose duals are k-rotund for some k, have Property C1.

(b) Banach spaces with Property C1, reflexive Banach spaces and Banach
spaces that are M -ideal in their bidual have Property C2.

(c) `1 with its usual norm fails Property C2.
(d) Any infinite dimensional Banach space can be equivalently renormed to
fail Property C1.

(e) Any non-reflexive Banach space can be equivalently renormed to fail
Property C2.

(f) If every separable subspace of a Banach space X has Property C1 (resp.
C2), then X has Property C1 (resp. C2).

Remark 2.26. By the argument of Corollary 2.18, the condition “every face of
S(X∗) is the linear combination of finitely many linearly independent points in
S(X∗)” is sufficient for X to have Property C1. Is this also necessary? Is there a
characterization of this property similar to k-rotundity? Observe that in the case
of a straight nested sequence of balls in the direction of x0, the union is a cone, but
A = D(x0) may have infinitely many linearly independent elements. For example,
take x0 = 1 ∈ `∞. Then D(1) contains all en ∈ `1. So for a given nested sequence
of balls, this condition is not necessary for the union to be a cone.

3. A variant of k-rotundity

As we mentioned in the introduction, Vlasov [15] characterized the strict con-
vexity of the dual of a Banach space in terms of the union of unbounded nested
sequence of balls. Beauzamy and Maurey [6] obtained similar characterization of
smoothness in terms of the union of straight unbounded nested sequence of balls.

Our aim in this section is to generalize these results. Concretely, we relate the
fact that the union of every (resp. every straight) unbounded nested sequence of
balls is the intersection of at most k half-spaces with the fact that every face (resp.
certain faces) of the dual ball is the convex hull of at most k extreme points.

First we need some lemmas whose give us more information about the set A of
functionals that are bounded below on the union. Let us fix a Banach space X, an
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unbounded nested sequence of balls Bn = B(zn, rn), and let B = ∪Bn, and A be
as above.

Lemma 3.1. Let A′ ⊆ A be such that

B =
⋂

x∗∈A′

{x ∈ X : x∗(x) > inf x∗(B)}.

Then⋂
x∗∈A′

ker x∗ = {y ∈ X : x + λy ∈ B, for all λ ∈ R, for all x ∈ B}

= {y ∈ X : x0 + λy ∈ B, for all λ ∈ R, for some x0 ∈ B}.

In particular, ⋂
x∗∈A

ker x∗ =
⋂

x∗∈A′

ker x∗.

The proof is straightforward.

Lemma 3.2. Let A′ ⊆ A be a finite set such that

B =
⋂

x∗∈A′

{x ∈ X : x∗(x) > inf x∗(B)}.

Then A = co(A′).

Proof. Let A′ = {x∗1, . . . , x∗n}. Let x∗ ∈ A. By Lemma 3.1, kerx∗ ⊇
⋂n

i=1 ker x∗i ,
and therefore, there exist λ1, . . . , λn ∈ R such that x∗ =

∑n
i=1 λix

∗
i .

By Lemma 2.6,
∑n

i=1 λi = 1 and inf x∗(B) =
∑n

i=1 λi inf x∗i (B). We will show
that λi ≥ 0 for all i = 1, . . . , n.

Suppose not. For notational simplicity, suppose λn < 0.

If x∗n ∈ span{x∗1, . . . , x∗n−1}, then by Lemma 2.6, it is in the affine hull
of {x∗1, . . . , x∗n−1}, and therefore, so is x∗. So we may assume that x∗n /∈
span{x∗1, . . . , x∗n−1}.

Claim : There exists x0 ∈ X such that x∗i (x0) = inf x∗i (B) for i = 1, . . . , n − 1
and x∗n(x0) > inf x∗n(B).

By Lemma 2.6, the map x∗ → inf x∗(B) restricted to A is linear. Thus, there
exists x1 ∈ X such that x∗i (x1) = inf x∗i (B) for i = 1, . . . , n − 1. Moreover, by the
above assumption, ker x∗n 6=

⋂n−1
i=1 ker x∗i . So there exists x2 ∈

⋂n−1
i=1 ker x∗i such

that x∗n(x2) 6= 0. Then for a suitable λ ∈ R, x0 = x1 + λx2 satisfies the claimed
conditions.
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Since B =
⋂n

i=1{x ∈ X : x∗i (x) ≥ inf x∗(B)}, x0 ∈ B and so, x∗(x0) ≥ inf x∗(B).
But,

x∗(x0) =
n∑

i=1

λix
∗
i (x0) =

n−1∑
i=1

λi inf x∗i (B) + λnx∗n(x0)

<
n−1∑
i=1

λi inf x∗i (B) + λn inf x∗n(B) = inf x∗(B).

A contradiction ! �

Remark 3.3. Observe that since A′ is finite, A is compact and A′ contains the
extreme points of A. And since A is a face of B(X∗), these points are extreme
points of B(X∗) as well.

Now we can state the main results of this section.

Theorem 3.4. For a Banach space X, and k ≥ 1, the following are equivalent :

(a) For every x∗1, . . . , x
∗
m ∈ S(X∗) with ‖x∗1 + · · · + x∗m‖ = m, there exist

y∗1 , . . . , y∗k ∈ S(X∗) such that x∗1, . . . , x
∗
m ∈ co(y∗1 , . . . , y∗k).

(b) Every face (convex extremal set) F of S(X∗) is the convex hull of at
most k extreme points of B(X∗).

(c) The union of every unbounded nested sequence of balls in X is the in-
tersection of at most k half-spaces.

Proof. (a) ⇒ (b). Let F be a face of S(X∗). By (a), any maximal affine independent
subset of F has at most k points. So F is contained in the affine hull of k points.
Then, by [7, Theorem 2.8], F is closed, in fact, compact and hence, is the closed
convex hull of its extreme points. Now, we use (a) once more to deduce that F has
at most k extreme points. And since F is a face of B(X∗), these points are extreme
points of B(X∗) as well.

(b) ⇒ (c). Consider an unbounded nested sequence of balls {Bn} and define
A as before. If A = ∅, B = X and there is nothing to prove. And if A 6= ∅, by
Lemma 2.3, A is a face of B(X∗) and by (b), A is the convex hull of at most k

extreme points of B(X∗). Since A is a face, these extreme points are actually in A.
If A = co{x∗1, . . . , x∗m} with m ≤ k, then we have clearly

B =
m⋂

i=1

{x ∈ X : x∗i (x) > inf x∗i (B)}.

(c) ⇒ (a). Let x∗1, x
∗
2, . . . , x

∗
m ∈ S(X∗) be such that x∗ = (x∗1+x∗2+· · ·+x∗m)/m ∈

S(X∗).
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Choose a sequence {δn} such that δn > 0 for all n and
∑∞

n=1 δn < ∞. Let
{xn} ⊆ B(X) be such that x∗(xn) > 1− δn.

Let Bn = B

 n∑
j=1

xj , n

. Clearly {Bn} is an unbounded nested sequence of

balls. Define A as before. Observe that for any n ≥ 1,

inf x∗(Bn) = x∗

 n∑
j=1

xj

− n =
n∑

j=1

(x∗(xj)− 1) > −
n∑

j=1

δj ≥ −
∞∑

j=1

δj > −∞.

That is, x∗ ∈ A. Since A is a face, x∗1, x
∗
2, . . . , x

∗
m ∈ A.

Now, by (c), there are y∗1 , . . . , y∗k ∈ A such that

B =
k⋂

i=1

{x ∈ X : y∗i (x) > inf y∗i (B)}.

By Lemma 3.2, A = co(y∗1 , . . . , y∗k). In particular, x∗1, x
∗
2, . . . , x

∗
m ∈ co(y∗1 , . . . , y∗k),

as desired. �

Remark 3.5. Condition (b) above clearly implies X∗ is k-rotund, and therefore,
the union of any unbounded nested sequence of balls is also a cone. It is not difficult
to see that, in general, it is strictly stronger than k-rotundity of X∗.

We conclude this section by extending the result of Beauzamy and Maurey [6]
characterizing smooth spaces in terms of the union of straight unbounded nested
sequence of balls. The proof is almost same as the one above.

Corollary 3.6. For a Banach space X, x0 ∈ S(X) and k ≥ 1, the following are
equivalent :

(a) D(x0) is the convex hull of at most k extreme points of B(X∗).
(b) The union of every straight unbounded nested sequence of balls in the
direction of x0 is the intersection of at most k half-spaces.

Proof. Observe that for every straight unbounded nested sequence of balls in the
direction of x0, the set A is either empty or equals either D(x0) or −D(x0).

For the other direction, observe that in this case, in the proof of (c) ⇒ (a) above,
it is possible to take δn = 0 and xn = x0 for n ≥ 1. �
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