ESTIMATION OF DIMENSION FUNCTIONS OF
BAND-LIMITED WAVELETS
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ApsTrAcT. The dimension function D, of a band-limited wavelet
b & p 3ok = n4l2 n42
1 is bounded by n if ¥ is supported in [—ET:T, 2—171'| For each
n € M and for each €, 0 < € < § = d{n), we construct a wavelet
2r|+'2 .2u+2

1, =5—m + ¢ such that Dy > nona

o : gut?  gmd2

set of positive measure, which proves that [—2—m 7] & the
largest symmetric interval for estimating the dimension function
by n. This construction also provides a family of (uncountably

many] wavelet sets each consisting of infinite tnmber of intervals.

¥ with supp ¥ C -

LR |

1. INTRODUCTION

A wavelet is a function ¢ € L*(R) such that the system {¢/;; =
21124)(27 . —k) : j, k € Z} forms an orthonormal basis for L(R). Given
a wavelet ¢ of L*(R), there is an associated function D, called the
dimension function of ¢, defined by

(1) Dy(€) =D 1$(27( + 2km)) .

izl kcE

A simple periodization argument shows that fw D, (&)d¢ = 2z
if ¢ € L*R). So the function D, is well defined and is finite a.c.
Observe that Dy, is 27-periodic. P. G. Lemarié [6,.7] used this function
to show that certain wavelets are associated with a multiresolution
analysis (MRA) of L?(R). P. Auscher [1] proved that if ¢ is a wavelet,
then the function D, is the dimension of certain closed subspaces of
the sequence space [*(Z) (hence the name dimension function, a term
coined by Guido Weiss). This result in particular proves that D, is
integer valued a.e. G. Gripenberg [4] and X. Wang [8]. independently,
characterized all wavelets of L*(R) associated with an MRA. This well
known characterization states that a wavelet ¢ of L*(R) is associated
with an MRA if and only if D, = 1 ae. The article [2] contains a
characterization of all dimension functions.
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A funetion is said to be band-limited if its Fourier transform is com-
pactly supported. It is easy to see that the dimension function of a
band-limited wavelet is bounded.

Proposition 1. Let n € N. If ¢ is a wavelet such that supp ¢ C
[—2nm, 2nw), then Dy < n a.e

The above proposition is not optimal. For example, Dy is still
bounded by 1 for wavelets ¢ such that supp t:' = [—%w._ %T{] which
is proved in [ (see section 3.4). The authors Gf [l constructed an
example of a wavelet ¢ with supp :,.J C [-3 = '.r' +€,0 < €< %'JT._
such that D, > 2 a.e. on a set of positive 1111.’*:1*-,111'0 which shows that
[ 3w, §m] is thc- largest symmetric interval for estimating the dimension
fun{‘tmn by 1. A natural question to ask is whether there are optimal
symunetric intervals to estimate the dimension function by n, n > 2.
The following theorem sheds light to the above question.

Theorem 1. Let n € N. If1) is a wavelet such that ¢ is supported in
[—""”r wa.] then Dy, <n ae.

This result was also proved by Z. Rzeszotnik and D. Speegle in an
unpublished article. They also proved that for every positive integer
n and every €, 0 < ¢ < d(n), there exists an MSF wavelet ¢ such
that supp ¢ C [—‘HI} szn + ¢ and ||Dy||» > n. This shows that
[— ’";}r wa.] is the 0}}1.-1111:].1 symunetric interval for estimating the
dimension fun{tlﬁn by n. We thank Professor Guido Weiss for kindly
providing the above information to us. The purpose of this article is
to construct such a wavelet explicitly. We shall prove the following
theorem in a constructive manner.

Theorem 2. For eachn € N and 0 < ¢ < § = d(n), there exisls a
gntl an+2

wavelet ¢ such that supp ) C [—=—m, =7+ ¢| and ||Dy|| > n.

A wavelet ¢ of L*(R) is said to be a *.rn:.é*.rr.c'mrﬂfj:; supported frequency
(MSF) wavelet if [¢/] is the characteristic function of some measurable
subset K of B. The associated set K is called a wavelet sel. A simple
characterization of such sets is the following (see [ for a proof):

A set K C R is a wavelet set if and only if both the collections
{K+2kn:keZ} and {2K : j € Z} are partitions of R.

It is not always easy to construct wavelet sets satisfving desired prop-
ertics. The concepts of translation and dilation equivalence of subsets
of B are useful for this purpose. A set A C R issaid to be 2x-translation
equivalent to a set B C R if there exists a partition {A, :n € Z} of A
such that {B, = A, + 2nw : n € Z} is a partition of B. Similarly, A
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is said to be 2-dilation equivalent to B if there exists another partition
{A! :n e Z} of Asuchthat {B) =2"A! :n € Z} is a partition of B.

In view of the characterization of wavelet sets stated above, it is
now clear that a subset K of B is a wavelet set if and only if K is
2r-translation equivalent to some interval of length 27, K N (0, 00) is
2-dilation equivalent to [a,2a] for some a > 0, and K N (—o0,0) is
2-dilation equivalent to [—2b, —b| for some b > 0.

2. PROOFS OF THE THEOREMS

Proof of Proposition[. Let F(§) = 3" .., [th(27€)|2. The condition on
the support of ¢ implies that supp F C [—nm, nw]. Since the equality,

Z [(27€)2 =1 for ae. £ € R,

JEZ
is satisfied by every wavelet ¢, we have F' < 1. Therefore, we get
F < o T This implies that

Dy(€) = F(6+2k7) £ " X(cnmam (€ +2k7) =n,

kcE ked
which proves the proposition. ]

Proof of Theorem [l Since the function Dy is 27-periodic, it is enough
to prove that if ¢ satisfies the hypothesis, then Dy (§) < n for § €
[-m, 7). For £ € [—m, 7], we have (2k — )7 < & + 2kw < (2k + D)7 for
all k € Z.

(i) j=n. If k> 2, then 2(£ + 2kw) > 27(2k — )7 = 2*(2k — 1) >
3-2"w > !Tzﬁ'. Similarly, if £ < —2, then 2"(§ + 2knw) < —%
Hence, for j = n, the only non-zero terms contributing to D, are for
k=-1,0.1.

(ii)j=n +1 Ii‘A > 1, then 27(£ + 2kn) > 22(2k— 1)z > 2‘”“{2& -
)r > 2°Hg > 225 Similarly, if & < —1, then 27 (£+2kn) < - £
Hence, for j = n + 1 ﬁnh fbcmtrlhutmp, kto Dy is k=0,

T hu:-,._ we have

.

.

n—1

Dy(§) = Y D | (2(&+2kn))

i=1 kcE

@) + 3 B+ 2P+ D (e
T iz2n+4l

n—1

= Y+ k)P

i=1 keE



4 BISWARANJAN BEHERA

(3) +{16 @€ —2m) P +1d (6 +2m) P} + D 1@

izmn
If £ € [—gr ET;] then 2°(§ + 27) > 2™ . i = er::?'.rr. Similarly,
2"E — 2 the terms 111&1{1(* the curly bracket in ([)
Are zero, r].I].(i wi g(t D <n—1)+1=n Now,if£ e ["JT 7], then

3 _zrl.l-}

for all j > n+ 1, we have 27¢ > 2"*'. 27 = Z—x. So the last sum in
@) is zero and again D, < n. In a similar manner, it can be shown

that Dy < n if £ € [—m, ——n] This finishes the proof. O

Proof of Theorem [} The wavelets we construct to prove Theorem [Jare
MSF wavelets so that it suffices to construct the associated wavelet sets.
In addition to proving the theorem, this construction also provides an
example of a family of wavelet sets which are union of infinite number
of intervals. We will treat the even and odd cases separately.

Case L n is even

“ nt+2
For a real mumber ¢ such that ) < ¢ <= d = %r let S;, 1<
a2 + e

i < 6 be the following sets.

5 = [ -trned,

e = [_%T;—an—iﬂ_%ﬁ]f

Sy = [Jj—r::—zﬁ+r—2?r._?:+}w—iw+?_ﬂﬁﬁ]1

S = [B2w-mEn -]

Se = [T};'z:rr—‘—r—i-r qlr—l-r.].
Define the sets X, Y, and 2, as

Xo = [§7+ 505 37— mn® + 501

Yy = ;HITE(SE+2~LWQEW]1

Zy = [37— 5™ 3T — ser T+ 5]

The parameter ¢ is chosen in a suitable manner to make the above sets
non-empty. For j = 1, let the sets X, Y}, Z; be defined recursively as
follows:
Pj'—T-rf(Pj—l'i'E ‘!“*1‘3 ]1 f?..]- PE{XYZ}
By a routine calculation, we can f:e'ji-;il}-’ verify the following facts:
(i) P C [i7+ 555,37, 4 = 0, Pe{X.Y.Z}.
(ii) 2%+2p; [’"“’ Tt pi, taon—n) forj > 1, Pe{X,Y,Z)}.

Rl Tl
(iii) {X;. Y .Z; :j = 0} is a disjoint collection.
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(iv) X lies to the left of Y}, and Y; lies to the left of Z; for j = 0.

(v) X;+1-. 41y 41 lie be tween Y- and Z;, 7 = 0.
Let
K= J& Y= 8= )8
a=0 i=0 j=0
and

V= [Br - brt g 22m - a\ {206 UY,02)),
izl
Now define
6
(4) w=(Us)uxuyuzuv.
i=1
Claim. W is a wavelet set.
Translation fﬂmwﬂimﬂf’ We will show that W is translation equiv-

alent to the interval [T;’ 7+ e —2m, 5 2“ + ¢| of length 27. Note
that

-l _ 9 J_;|H+2 J_;rl.i—i -

= ‘)US":[,H ™+ € — 2, a T‘F_ET‘F—F?"FH]
5111(1

r|.+2 42 a4+
SsU(S1+2-2"7)USs = [Erm—m -7 +el.

Now,

-jrl.r;’

'JT

(XUuYUZ)+2.
= U{{xﬁz 22 U(Y+2 T 2m) U (2 + 20 2 ‘!T.-}}

iz0
= J2"( XU YnU Z0) = [ J2"H(X; 0 YU Z)).
iz0 izl

Therefore, by the definition of V'
vu{(Xuvyuz)+2. 2= '.'r} (227 — In 4 5ig, Eim — ).

antl__g

Observe that 7 and Z2=17 are inte wers, since n is even. We
have proved that dppmprmto t-I‘:lIL‘-:l:ltlﬂI]b of the partition of W in (f)
form a partition of the interval [—'.r' + € — 2m, MI'.r' +e¢|. So W is
translation equivalent to this interv dl

Dilation equivalence: It is enough to show that Wn(—oo,0) and WN
{{} DG} :lrc- respectively dilation equivalent to the intervals [—25 iy 25 ‘"t:i 7]

€ an+2

'T T3y T I!']
5r] L-I {2ﬂ+?5r2} e [_-_;nl+2ﬂ_1 _?n+1 7;]1

3 3
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(2" X)) USsU 2™ Y)U S = [Bn+ 58 7 — In+ 58],
S U {E'”"'?Zu} I Sg = [Ti:}w -7 ?M?w | r].

{2 (Jxsuviuz))uv = (Bl Int 5o 50c —al.

1=z
Hence, W is a wavelet set.
Case II. n is odd

This ecase is dealt in a "-}inﬁlcll' manner, but we have to start with
different sets. For ) < ¢ < Wr let the sets 57, S5 be as above.
Define

S = [Bnre-om Bt 4]
Sy = [%’ﬁ'—iﬁ-i- éni—”'.rr '.rr+?ﬂ—‘r5]
S = [En— e Bt g
G = [Eon=in Tl
Let
Xo = [i7+ 557,37 — T+ 7).
Yo = [}]T_#Tﬂ%ﬂ'—ﬁﬁﬂ—#],l

Zy = ?Tlﬁ(Sz + 2 - TL'::_I :rr].

In this case also, the choice of ¢ ensures that the above sets are non-
empty. Define the sets X, Y and Z as in Case 1. Let

V= (Bt i~ 3 Be - i A U2 (00 Z) |,
izl

and let W be defined by {E}
As in the case when n is even. to show that W is a wavelet set,

we show the translation equivalence of W with the interval [&:zw -+

— 2, TI“'.IT + ¢|; and the dilation equivalence of H’ ﬂ{ oo, }) and
H’r"l{{'} DG} with the intervals [— M?r —J‘Hji 7| and [ '.r'—l-'; wnr+r]
respectively.

To see the translation equivalence, observe that

' n42 n+l_
S3U(S1+2- =) uSiu (S +2- 220 USs =
[q"”r—i- e — 27, J”H'.r'—i- r]
a4 a2

Se = |57 — im, E-m + ¢,
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It can be shown, in a manner similar to Case 1, that

VU{(XUY UZ) 42 2550} = [Bn — e b i, Zim - b

3 3

For dilation equivalence, we observe

c;l U {2ﬂ+?c’1j} i [ f:lrl+2ﬂ_‘_a_;n+LTr]1

k] ' E:]

{E”HXH} U S, U {2n+2yﬂ} US;u {2n+?Zﬂ} U85 =

gt s 2 1
[ ‘+f ‘_§W+J_:|H.F+:I-:|‘.

-EH. 2

42
S = [J—:rr— L

3 r—i—r]

{2(Ueu%u2)) }uV = [B2e ~ brt s, Bt = b,
izl

Henee. in this case also we have proved that W is a wavelet set.
By definining ¢ = yw, we get a wavelet ¢ such that ¢ is supported

in 2_’,'%"??1 ﬂ:—ir + €|, since W is a subset of this interval.
Finally, to v;b(‘}Illplf-tL the proof of Theorem [, we have to show that

||D ||x, > n, where ¢t = xw. We prove Dy(§) 2 n +1 for ae £ €
[ m, T’+ .:,,Tr]

Far 1<j<n41let k=201 apd | = - 2204 Ohgerve
that k; is an integer ifn — 7 is odd, and [, is an integer when n — j is
evell.

Let £ € [gr 37: + zor)- I n is even, then for § =1,3,....0n+1, we
have 27(& + 2k; w} =2(¢—z7)+ EHH [zmr}'.rr.. Z ::z'r +¢€] C Sg. Also,
for  =2,4,6,...n, 2({4+2ln) [ ?M} ?"Tlr-i-r] = 5. Similarly,
if n is odd, thtn 21E+ 2km) € [ﬁ"H qmzr—i—r] ifj=24.6,...n+1,
and 2/(¢ +2l;7) € [— qu —ﬁn +e if j=1,3,5,...,n.

In each case, there ;m:- n+1 {hfff-rc nt pairs of (j, k), with 7 = 1 and
k € Z, such that 27(£ + 2kr) is contained in W which is the support of

i. Each such pair will contribute 1 to the sum Dy (€) defined in (-
Therefore, |Dy|| = n+1. O
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