A GAUSSIAN CORRELATION INEQUALITY
['OR SYMMETRIC CONVEX SETS!
By Lorew D. IMiTT
University of Virginia

Tf nix) is the standard normal density on R*and il 4 — —4 and B =
— B are convex subsetls of % Lhen

§ans NG = (§, 0 d)(§ 5 nix) d2) -

L. Summary and introduction. A function A(x) defined for x & R* iz called
quaai-concave if for any x, xef and Q<2< 0, Bie +(1 — ) =
min {A(x;}, A(x)). Our main result is

TreoreM L. et fix) and g(x) be even smooth yuasi-concave functions of x ¢ £,
Suppose also that the gradients Vf(x) and Vi(x) never vanish for x = 0. Then for
any nonnegative o{x) = @{|x|) that is a decreasing function of |x|,

(1.1 Vo Vf(x) - Wola)b(x) x = 0,
provided only that the integral comverges. Here Vf(x) - Vg(x) denotes the scalar
product Eff%{x}gai{x}.

From Theorem | we deduce

THEOREM 2. Lef nix) = (2r)~" exp{—|x|¥2), x.c Rt denote the standard normal

probability density on R, If A and B are balanced (ie., A: — A and B = —B)
convex subsels of R* then
(1.2) § v M) 45 2 (5.0 DGR 5 n(3) %)

Theorem 2 and the more detailed Theorem 3 represent improvements of the
earlier results of Khatri [5], Sidak |10, 11} and others. See especially [4],
Section 3, and the references given there.

Our proof of Theorem 1 does not seem to peneralize to R* with n > 2.
However, il (1.1} is true in R® then the deduction of Theorem 2 is also valid in
R* with n > 2.

I wish to thank Professor M. Perlman of the University of Chicago for refer-
ences on logarithmically concave functions.

2. Proof of Theorem 1. Because fix) is even and guasi-concave, the set
Fil) = {x: f{x) = 3} is for sach i a closed convex balanced subsel of 8. More-
over from the assumption that Vf{x) % 0 for x s 0 it follows whenever {0} = F(4)
that the boundary F'(2} of F(4) is either empty or F({) = {x: f{x) = 1} is a
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smoath balanced convex curve in R Similar comments hold for the sets
G(a) = {x: g(x) = 9 and G'(p) = {x: 6(x) = p)-

For each x 2= Owe denote by #(x), 0 = #(x) < =, the angle between the vectors
Vix) and ¥g(x). Thous cos dx) = p(x) - nix) where n{x) = —Vfix)||VA=)|| is
the outward pointing normal to F'{f{x)) at x and n(x) = —Vg(x)||« Fg(x)||~" is
the normal to G'{g{x)) at x. Set 4 = {xs R §x < fx} < =] and for xc 4
define y = a{x) to be the first point of &'(g(x)) which can be reached from x by
traversing the curve #7( f{x)) in the counterclockwise direction (see Figure 1}.

@ (g ixd)

PELE))

Fis. 1.

Flementary geometric considerations now show for each x e A that:
(2.1) |7 = 1%l  and hence gi(x} = (¥}
(2.2} The angle &y} isacute with cotfi{y) = —cotfx) > 0.

Define 4, = {xc 4: #{x(x)) = 0} and consider the map @: R* - R* with
Oix) = (f(x), g{x)). The Jacobi determinant of O is

(2.3) Mala}] = |fo(x00e,(x) — £, (8, (2)]
= [Vf{x}|[Va(x)| sin (#(x)) .

For x e A, ®{a(x)) = D(x) and thus W4 — A)) = Plal(A — A))) contains only
critical values of the function @. By the theorem of Sard and Brown {(e.p., [&]L
P{A . 4,) has zero Lebespue measure. But (2.3) shows |[J(x}| =0 for xe o
and hence 4 — A, bas zero Lebesgue measure.

When restricted to 4, the function a(x) is easily seen to be continuous.
Applying the chain rule to the identity ®(a(x)) = D(x) we find a(x) is differ-
entiable on A, and its Jacobi determinate |J_{x}| satisfies

(2.4) Halx)| = Walx}| Mofa(x))| ™ .
We can now prove the inequality (1.1). The sets A, and a(A4,) are disjoint.

Because Vf{x) - Vg(x) = 0 unless x ¢ A, and because A — A4, has measure zero,
(1.1} will follow if we show

(2.3) Vap VA) - Volajd(x) d% + $.0, Vfx) - Volx)p(x) fx 2 0.
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Using in order (2.4), (2.3), (2.2) and (2.1} we have

Vavay Vf1X) - Vo(xd(x) d'x = §, Vfla(x)) - Va(alx))ga{x)| (x|
= {4, Wfia(x)) - Volalx))d(a(x)a(x)| Mala(x))| ™ d'x
V., cOb (B{a(x))b(ex(x]) ol x)| x
— §., cot (B2 (x)| ol )| dFx
= — Y4 VfiX) - Vo(x)pix) dix,

1%

thus prnving Theorem 1.

CoMuENT. The inequality {1.1) may be extended to a wider class of functions
fix) and gix) than gquasi-concave. Following Sherman [9], we bring in the norm
#l|, = max {||#||,, ||#||.} on bounded integrable functions and the || ||, closed
convex come % generated by the indicator (= characteristic) functions 1 ,{x) of
balanced convex sets 4 — R*. Sherman showed % is closed under convolution.
More recently Davidovic, Karenbljum and Hacet [3], Prékopa [7), [8] and others
have shown that the convolution # + v of two logarithmically concave functions
is also log concave. This shows that indicator functions of balanced convex
sets may be approximated by smooth log concave functions fix) with Vfix) == 0
for x = 0. Since even log concave functions are also quasi-concave we may
state

CororLarY 1. The inequality (1.1) holds for smooth Sherman functions { and g
N

A more detailed exposition of the proof of Theorem | may be found in
Antell [2].

3. Proof of Theorem 2. We begin by stating a more detailed and general
theorem. Let the random vector (X}, --., X, ¥,, - .-, ¥,) be normally distri-
buted with mean zero and covariance matrix X where

E — (211 2'IS)
i Ly
and I, = (EX, X,), B, = (EY,YJand 5, = (EX,Y¥,). Set X = (X, ---, X,) and
¥ = (¥, ---, ¥.) and for balanced convex subsets A and # of R* set
pE) = P[Xe 4, Yc B).

For each 4, 0 = 2 = |, the matrix

E.! — ( z'JL ‘IE']!)
AELR Iy
is also a normal covariance matrix and we may consider the pmbabllny PE)

as afunction of i, 0 = 4 < 1.

TuearesM 3. Under the above conditions, if rank {Luj = 2 then p(X;) is an in-
creasing function of 4,0 = 2 = 1.
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Rromarks. The probabilities P{X'= 4} and P{Y ¢ #) do not depend on 4.
Moreover, lim,_, p(E;) = P{X = A}P[¥ & B}, Thus Theorem 3 implies

(3.1} PiXe A; Ye B = P[Xe A}P[Y e B} .

Ifonetakesn = 2 and E,, = X, = E,; = 7, then {3.1) becomes (1.2) and we see
that Theorem 2 iz a special case of Theorem 3.

The proof of Theorem 3 is conceptually simpler in the special case when
n=2and £, = X, = X, = /. We advise considering only this special case on
the first reading,

Proor. Without loss of generality we may assume rank (X} — rank () =
n. Then by introducing canonical variates (see [1], Chapter 12), we may further
assume that , = I, = 7 and that X, is diagonal with nonnegative entries. Let
Z,=diag{d, .-, i) with 1 = 4, = 4, = --- = 0. Since rank (L} = 2 we
have i, =4, = ... =1, =0.

The functions 1,(x) and 1,{y) are both even and log concave. By the results
of Davidovic et al., we may approximate 1, and 1 by smooth even log concave
functions. Thus it suffices to show for arbitrary smooth even rapidly decreasing
log concave lunctions F{x) and G(y) that the expectation

#{) = FF(X)GE(Y)
corresponding to the covariance matrix I, is an increasing function of &,
0=i=1
when conditioned on X7, X, ¥,, ¥, the variables #{X) and G(Y} are inde-
pendent. Moreover,

E[F(X)| Xy, X, Yo, Y} = E[F(X)}| Xy, Xy}

=ﬁ:X1! Xs} :
where
Flas x) = (2m)~ B8 Flx)expi—4 L5 x7) dxy - - -
and
E[G(Y)| X, X, Y., Y.} = E{G(Y)| ¥,, ¥y}
=g(¥, Y.},
where
B e pop = (2m) 0 Y Gy exp(—4 D5y dya - dy, -
Thus
R = Ef( X, Apm(Yy, T
Now Prékopa [8] has shown that if #(x,, - -, Xe y1, -+ -, pu) Is log concave
then dix, -, &) = § F{x, - X ¥ oo ) dyy - - - dy, 18 log concave. Thus,

both of the above functions f{x,, x,) and oy, y,) are log concave.
The conditional density of (¥, ¥y} given (X, X,} = (%, x5} 1=

. i o e 1 g1 (A — 8
pl 7 %5 30 7 = Tl (1 = (291 onp{ -3 Gl
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Setting n{x,, x;) = (27)7" exp{—(x® + x%)/2} and

gid, X, 5 = § plA, x, 28 v Yo po ) dY, 4,

we find

Let

and

() = § s xhe(d, x,, xnix,, x) dx, dx,
i =e', —oa < { = 0. Then direct computation gives

it
ig{e‘, Xy, Xp) = ( e T ai) gle's xi %)
o Gx]

<

*s

an easily justified integration by parts yields

(3.2} %"g’(f!} = § ¥filxn 5) - Vale's xy, x)hnis, x) dx, dx, .

Since p(; x,, X3 ¥, ¥o) i8 log concave in (x,, x,, 3,. y.) the results of Prékopa show
that gle', x,, x,) is log concave in (x, x;). Since n iz a radially decreasing
function, Corollary 1 of Theorem 1 implies (d/df}z(¢!) = 0 and compietes the
proof of Theorem 3.
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