Joumal of Statistical Planning and
Inference 112 {2003) 241 -258

Approximations and consistency of Bayes factors
as model dimension grows

James O. Berger®, Jayanta K. Ghosh"¢, Nitai Mukhopadhyay**

ke University, USA
Dindian Statistical Institute, India
“Purdue University, £ Litly and Co. LOC, Indianapolis, IN 46285, US4

Abstract

Stone (J. Roy. Statist. Soc. Ser. B 41 (1979) 276) showed that BIC can fail to be asymp-
totically consistent. Note, however, that BIC was developed as an asymptotic approximation to
Bayes factors between models, and that the approximation is valid only under certain conditions.
The counterexample of Stone arises in situations in which BIC is not an adequate approxima-
tion. We develop some new approximations to Baves factors, that are valid for the situation
considered in Stone {1979 ) and discuss related issues of consistency.

Kevwards: Model seection; Bayes factor; BIC, Asymptotic consistency

1. Introduection

Stone (1979) had observed that BIC can be mnconsistent when the dimension of the
parameter goes to mfinity. Our first objective here is to address Stone’s counterexample,
showing that Bayes factors under reasonable priors are consistent; the problem lies in
the mappropriateness of BIC as an approximation to Bayes factors in this situation.
A new approximation to Bayes factors, for the situation considered by Stone, is then
itroduced and its accuracy and consistency are considered.

The study is performed with respect o two particular priors that have been proposed
for model comparison in normal lincar models. The first is the multivanate Cauchy
prior, used in Zellner and Siow (1980), and the second is the Smooth Cauchy prior,
introduced in Berger and Pericchi (1997). When the parameter is high dimensional, it
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15 shown that the choke of prior can make a substantial difference, not only n terms
of the answer, but also in terms of consistency in model choice.

Assume a simple ANOVA model where M and Ma are two nested lmear models
for n independent normal mandom variables with known variance . Under M, all
n random variables have the same mean, while, under M, each block of » mndom
variables has a different mean. Formally, the independent observations y; are assumed
to arse from the linear model:

¥i= G- fi R By N(0, "IE L

i=lip. j=Lo. b n=pr

The two models being compared are M, : p; = 0 for all { agamst M : p e[R”.
The BIC crterion (see Schware, 1978) selects My (M2) as ABIC is negative (posi-
tive), where

ABIC = BIC, — BIC,

= A Maximized log likelihood — {p; 2 logn
o -

=#Z{f;—_ﬂ-’— “32  iagi (1)
i=]

Cleardy ABIC < 0 if and only if r 3F (7 — 7)*/[(p — 1)e°] < log n. Stone assumes
that, as # — oo, ( p/)logr — oo and
i

Z{—:;__‘;}}' —7 >0 @)

This condition implies that r 5" (7, — #P/[(p — 1)(e* + r*)] — 1 in probability as
n — oo, So, for large n and if Ms is true, BIC selects M if (6 4+ rr°)/o” < logn,
which happens with probability 1 since r/logn — 0. Thus, under any altemative, BIC
seleets the null model asymptotically, demonstrating its inconsistency.

The first condition of Stone holds, in particular, when » 15 fised and p — oo, and
this will henceforth be assumed throughout the paper. Also, without loss of generality,
we will set the known variance to one, i.e., assume o° = 1. Finally, the intercept term
d does not affect consistency of the Bayes factor or BIC, so we will consider only the
simplified model

i=]

yi=pt+en i=l..,p f=1..,rand g areiid N(0,1). (3)

The two competing models are now M, : p =0 and M, : p eR”.

In Scction 2, we discuss the wvsual Laplace approximation o Bayes factors and
its relationship to BIC. In Section 3, we study the consistency of the Bayes factors
developed under the multivarate Cauchy and Smooth Cauchy priors. Section 4 develops
improved approximations to Bayes factors for this situation of mereasing dimension,
including one, called generalized Bayes mformation criterion (GBIC), that does not
depend on the prior. Numencal studies of the quality of the vanous approximations
are carried out i Section 5 and conclusions given o Section 6.
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2. The Laplace approximation and BIC

In this section, we consider the full Laplace approximation to Bayes factors as a
possible mprovement over BIC. For the situation in (3), it cleady suffices to consider
only the sufficient statistic ¥ = (7 1..... ¥ o) ~Ny( g.(1/r)). Then, the likelihoods
under My and M, are, respectively,

ph 2
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If the prior = g ) is specified for p under My, then the Bayes factor of M to M, is
given by
:Hg{f]l l|r am( i }IdE
BF: = 7, = 7 i

The Laplace approximation to the Bayes factor, for fixed p and large », can be ob-
tained from Pauler (1998) and Kass and Wasserman (1995). The penalty term in BIC,
namely { p/2 )log n, arises from the Laplace approximation to the marginal likelihood
when the log determinant of the sample information matnx s O(n). However, the sam-
ple mformmation matrix in ow context 1s 7, so the corresponding Laplace approximation
to the log of the Bayes factor of Model 2 to Model 1 leads to

log BFy, = log #a( i) — log % — g logr + g log(2n) + log =( ji ) ()
=ﬁ Erf _ glngr+§h}g{2n}+ log=( ). i5)

where m( i ) is the prior density evaluated at the mle of g . Approximation (5) suggests
that logs may be a better penalty than logn when p — oo, Indeed, the approximation
based on the first two terms in (3) can casily be shown to be consistent, as r — oo,
for any ©° = (.

The necessity of properly definmg the sample sze appeanng m BIC was also dis-
cussed in Kass and Wasserman (1995), In the context of mixed models, a new version
of sample swe 15 suggested m Pauler (1998, and leads to » when applied to the above
example. We will refer to (3) as the KWP approximation.

The motivation for the Laplace approximaton is based on considering fixed p while
¥ — oo, When pocan also go to oo, the Laplace approximation need no longer be
valid. (A “valid® Laplace approximation here 1s one for which the error poes to zero as
r — oc.) For mstance, if one chooses a multivanate normal prior for g, a straightfor-
ward computation shows that the difference between the Bayes factor and the Laplace
approximation is O p/r), which actually goes to oo if p grows faster than # (which is
the case considered in this paper). It would certamly be of interest to study, i general,
when the Laplace approximation s valid, but such a study is beyond the scope of this
paper. {Some related results, for the case when p grows much more slowly than r, are
available from Ghosal, 1999 ) We do, however, develop a better approximation to the
considered Bayes factors, for mcreasmg p, in Section 4.
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3. Comsistency and inconsistency of the Bayes factors

For the Stone example, we consider two specific pnors that have been sugpested
in the hterature, the multivariate Cauchy prior, recommended by Zellner and Siow
{1980, and the Smooth Cauchy prior mtroduced n Berger and Periechi (1997, It was
suggested m the latter paper that Cauchy tails are appropriate for a default prior when
selecting from among hnear models (see also Jeffreys, 1961, but that the multivariate
Cauchy prior has too sharp a spike at zero; hence, the Smooth Cauchy prior may be
more reasonable. The results below show that this 1s not so when p — 0o; the likely
explanation for the phenomenon 15 discussed in Section 6.

Multivariate Cauchy prior:

I 1)/2 ! —{
m.{£:}={‘{ni+”_.i}{1+ o) Lpblrz

s i et 1 1212 g )
= A {2?{}1’3‘_ _E_I{L ) 1. {

To define the Smooth Cauchy prior, let M{p,g.4) denote the hypergeometric 1F1
function (Abramowitz and Stegun, 1970)
I'tq) i Ip+j) ¥

(p) & T+ Jt

Mip.g,i)=

Then the Smooth Cauchy prior is
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Egs. (6) and (8) express the prior density as a scale mixture of normals, which
will be key in derving the new approximations to the Bayes factor. In the followmng,
denote the {iamma{_%, _%} density by g{f,:'?, _l,}. Then, the marginal densities under M,
with the above pnors are as follows:

S s [ ¢ (_E: 0. (1 + 1) f,,) g(t,1/2,1/2)ds
L2 Jo L (I r I

= [ L3009t 1/2.1/2)de, (10)
Jib
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my( y }=f (,b(f: {_],(l S 1):,1) Fia(u)du
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where Fy(w) 15 the F density with (1, 1) degrees of freedom and
; ” 1 1
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The marginal density under M is
il i F 5
£ oy T M N
Zi(y) {EIE}FEL ;

Mo surprises conceming consistency are encountered for the Cauchy prior. Indeed,
the following general theorem, whose proof is given in Section 7.2, covers this case.

Theorem 3.1. For any prior of the form

o
ngfi=£ {ZE},,_EU“E’“.WM! (14)

with gi(i) having support equal o (0, 00), the Baves foctor is consistent under M.
Consistency under My holds if

I
= liminf — "y} > 0.

P pe I
i=

The condition under A can be relaxed o the situation in which the gy are exchange-
able. The Bayes factor is then consistent provided E(p3]4..) has no mass at 0, where
A 15 the symmetric o field for which the ;s are conditionally 1id.

The situation for the Smooth Cauchy prior turns out to be quite surpnsing. Indeed,
consistency depends on the value of o =lim, 3 i/ p (assuming the limit exists). For
simplicity, we state results for » = 1. The corresponding Bayes Factor, BFS, can be
shown to be consistent if ©* = 2log2 — 1, but for smaller o the following surprising
result holds.

Theorem 3.2. When r=1, the Bayes Factor BFS, is inconsistent under My for 0 < ©° <
2log2 — 1. Indeed, for any prior of form (14), with g(t) being supported on a finite
interval [0,T] (note that the Smooth Cauchy prior has T = 1), there will be such an
inconsistency region.
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Proof. Using Eq. (8) to compute the marginal m¥. we have

|
BFE"; =/ 1_:”’-’”".—.'1""“"“5“"‘”3{{;_11}
1=l

I
=[ u“’-’«’""”rz{dr},
e

where # s the Beta(4. 1) density. Note that #'(r) = (1 —t{c, — 1))~ '(1 + 1y 2 Thus
Aty =0forr < 1,-'{::_}, — 1) and cp > 1. If ¢, <2 then h{r) is strictly increasing on
(0.1). Thus f(1)=c,/2 — log 2 implies that A1) <0 on (0L 1) if 1 =< ¢, < 2log2, ie
BF™ < 1. By the SLLN, 0 < <2bg2—1 = | < ¢, < 2log2 for large p.

To prove the result for priors of fonm (14), note that the function A(f) is increasing
on [0.(c,—1)7"]. Thus, for small values of ¢,. A1) increases on [0, 7] to the maximum
value HT)=cT + 1) —log(l + I/T)=c(T+ 1) " +log(1 — 1/(1 +T)). This is
less than zero for values of ¢, sufficiently close to 1, ie. for sufficiently small values
of © close to 0. [

The above theorem provides a strong reason for preferring a gi ) that has full support
and, i particular, for prefernng the Cauchy prior to the Smooth Cauchy as a default
prior.

4. Approximations to Bayes factors as p — oo

The new approximation to the Bayes factor is caleulated using the Laplace approx-
mmation to the one-dimensional mtegrals i (10) or (11). As the approximanon is
deemed to be useful for high-dimensional problems, and is different from the Laplace
approximation discussed carlier, we denote the approximation by the suffix HD. For
this Laplace approximation, define

iy = argmax 5000000,
[
by = argmax 5 F) g (u).
The desired Laplace approximation to the log Bawes factor under the multivariate
Cauchy prior, denoted log BFS,, is then given by
log BFY™

= log mg“l' —log ¥ y)

: 1 d? log( ¥
= log( #5(te)glte)) + 5 (I{}g{zrz} - |{}g(___ {}5{}'&' zﬂ}l{f“}))

—log ¥, (15)
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Similarly, log BF3| is approximated by
log B>

—|{]1'-:_J'Htj”l“ —log #y(y)

. 1 d? log( &5 F
= log{ #5 (o )11 (ue)) + 3 (Ing{h} = Iug(— ﬂf{mi“ﬂ))

—log &#y. (16)

While & and wy do not have a convenient closed form, they can be easily computed

numercally. To obtain insight into the behavior of (15) and (16), however, it is useful

to find approximations for &y and w4, by maximizing 5 and 9%, respectively. The
result for fy s simplest. Indeed, under the assumption that

1 1
DMLY
s

for some & > 0, as p — oq, it is easy to see that %5 is maximized at 1, = (c, — 1/r)~".
Also, t1=f+O{1/ p). Henee, if one performs the Laplace approximation about ¢ instead
of i, the additional error of approximation s of1). After some algebraic simplification,
this altemative approximation reduces to
r log
log BFS™ = 2 ;——lug{nﬂ}———ﬁ+c +o(l), (17)

where C = (—fy + |Ug{2(ﬂ “}}l 2
The analogous approximation for the Smooth Cauchy Bayes factor 1s slightly more

complicated. Indeed, defining
b X 1. AN 1. .1
= 'c'ﬂ_;_l and [t"l"[f}=f}; ;+? +log ’—+; .

it can be shown that

log BFL
P F—Llog(re,) — £ — L+ C+ofl) ifg>1+1L,
575 — §log(r) — §u(1) + o(1) if g, =1+1,
B V7 — §log(r)— $i(1) if;'_::c},{1+}7

L =35 log(—§m'(1)) +o(1)

(18)
where € = log(v2/ya(1 +w)) + 1 |UE{2("I!!|}I. The proof of the above 15 given in
Section 7.3. That the approximation to the Bayes factor in (15) is accurate follows
from the followmng theorem, whose proof is delayed until Section 7.1.

Theorem 4.1. Under Ma and with the multivariate Cauchy prior, the relative error in
approximating BFS, by BFI;,DC goes to 0, e,

log BF;, — log BFY™ = o(1). (19)
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Under My and with the multivariate Cauchy prior, the relative ervor in approximaiing
log(BF5, ) by k]g{BFE‘P’} goes to 0, e,

log BFS, — log BEY™ = log BFY™0o(1). (20)

The convergence in (19) of the alternative Laplace approximation under Ms can be
shown to hold for any prior of the form ( 14), for which the second stage density, gir ),
is continuous and has (0,00) as its support. Note, from the representation in (8), that
the Smooth Cauchy prior s not of this form; the support of its g(¢) 1s only (0, 1). Ths
makes it difficult to obtain an analogue of Theorem 4.1 for the Smooth Cawchy prior.

It is interesting to note that, for larger ¢,, (17) and (18) are equal, up to a constant.
It s thus tempting to use this common dominant term to develop a generalization of
BIC. Indeed, with a slight adjustment for smaller ¢,, we will consider, as the difference
between the generalized BIC for the comparison of Ms and My,

.ﬂiiBI{_‘:(rfrf,_ ¥ logp
3¥¥—35 %

+

logire, ) — 'ﬁ) P {21)

2

where *+° refers to the positive part. It can, indeed, be shown that, as p — ~c and
when ¢, = € + 1/r, this approximation to the log Bayes factor holds for any prior of
the form (14) with g(¢) having support equal o (0,00

A final observation of interest 1s that AGBIC provides a wvalid approximation to
logBF,,, up to O(1), for the case of fixed p as well as when p — oo (when ¢, = €+
1/#). The performance of AGBIC s studied numerically m Section 5. Also, it is
interesting to observe that AGBIC is a consistent model selection erterion. Consistency
under M5 follows from the consistency of the Bayes factor (Theorem 3.1) and the error
convergence theorem (Theorem 4.1). To prove consistency under M), note that

= = + 1
AGBIC = £ (rﬂ — log(rc,) — ]) — —logp
2 P 2
log
= P(rg, — 1) — log(1 + (re, — D))" — —=F
2 2
— —oa,

since log(1+(re,— 1))=(re,— 1) —3(re,— 1P +o,((re,—1)%) and re, —1=0,(1//7).

5. A numerical comparison of the different approximations to the Bayes factor

We present a small numerical comparison of the performance of the different ap-
proximations to the Bayes factors for the Cauchy and Smooth Cauchy priors. The
approximations considered are that based on ordinary BIC, as was used by Stone, the
ordinary Laplace approximation, as described m Pauler (1998 ) and denoted by Lapyyp,
GBIC described in Section 4, and the mixture Laplace approximation log BF'", The
actual Bayes factors are computed using one-dimensional numerical integration m (10)

and (11).
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Table 1
Log { Bayes factor) and its approximations under the Cawschy prior
op log BE® BIC GBIC Lap o p log BENDE
0.1 —B.5348 —110.129 — 1956 15,1269 —E5776
0.5 —3.8251 —90.129 — 195 —2.2647 —39083
1.0 60388 —65.129 5715 5.555 59236
1.5 20,8203 —41.12 57 L3831 0.7 504
20 4814 —15.129 3E387 381312 354408
X1 42,135 —l0.12 42,167 41,8991 421971
10.0 397 309 IR ETL 398151 397293 397.369
Tahle 2
Log { Bayes factor) and its approximations under the Smooth Canchy prior
o log BF< BIC GBIC LapEup log BFHD=
0.1 —26.003 — 10129 —1 956 — 169651 —27.2466
0.5 — 126056 —90.129 =195 —hA9E1L —13.7322
1.0 43422 —h5.129 3715 HARY] 32007
1.3 21.5136 —40.12% 20579 21.1541 204048
20 392827 —15129 3B387 385356 356141
A | 429055 —10.13 42167 422631 423613
10.0 397.255 384871 398151 397072 307134

The previous discussions suggested that Lapg e will be considerably more accurate
than BIC, which ignores the order of the information matrix, whereas BF'Y attempts
to improve upon Lapygp by captuning the additional correction needed when p grows
with 7. The main goal of the numerical study is to indicate whether these suggestions
are reflected in practice. Theory has less to say conceming the accuracy of the com-
paratively adhoc GBIC, so the numerical evidence will be especially important o its
validation.

The Bayes factors depend on the data only through the statistic 7' 7 = pe,. so results
are given only for various values of ¢,. We have taken p =50 and # = 100, so there
are only » =2 replicates in each group. The different values of ¢, are taken to be 0.1,
0.5 1, 1.5, 2, 2.1, 10, Note that ¢, = © + 1/r, where ©° ={1_.-"p}Z_uf, so that values
near 0.5 are expected under Ay, with larger values under Ma.

Tables 1 and 2 support the suggestions from theory. The temible performance of
BIC, through 1ts ignoring the correct order of the mformation matrix, 15 stunning, The
excellent performance of the new Laplace approximation, log BF'Y, is gratifying. The
standard Laplace approximation scems fine for the larger values of ¢, (i.c., when M
is true), but does not do well for smaller ¢, (i.e, when M is true). GBIC is similar,
in domg well for larger ¢, but not for smaller ¢,; interestingly the performance of
the simple GBIC is comparable to that of the much more complicated Lapy e (which
requires knowledge of the prior).
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Fig. 1. Performance of differemt approximations to the Bayes factor under a Caschy prior as p — oo, when
cp= 08 and r =2,

In Fig. 1, the performance of various approximations to the Bayves factor are studied
as p — oo For the figure, we used » =2, ¢, = 0.8 and the Cauchy prior. Both ppHDe
and GBIC perform well for mereasing p. The Laplace approximation 1s also reasonably
good but its emor does seem to significantly increase with p. Since 1t also requires
specification of the pnor, it would seem that GBIC 15 cleady preferable for the siation
considered in this paper. BIC, in the form used i Stone’s paper, is inconsistent and
so cannot be graphed with the others,

This 15, of course, only a limited numercal study, but #t confinms the two main
messages of the paper, that (as noted in Kass and Wasserman, 1995; Pauler, 1998)
appropriate definition of sample size is needed in definmg approximations to Bayes
factors, and that it can be mmportant to comect the effects of ncreasing dimension
when that oceurs as the sample size increase.

6. Discussion

BIC is often equated with “the Bayesian answer” m model selection, and counterex-
amples to BIC, such as that of Stone (1979), are sometimes misinterpreted as being
counterexamples to Bayesian model selection. We demonstrated that suitable Bayes
factors will be consistent, that suitable approximations to them will also be consistent,
but that BIC can be a ternble approximation tw Bayes factors,

A further aspeet of Stone (1979) was the demonstration that AIC is consistent for
the situaton considered in this paper. Companson of Bayes factors and AIC 1s a
very complex undertaking, a beginning towards which was made in Mukhopadhyay
{20007y, AIC is pnmanly designed to minmmize prediction error and 1s well known to
be potentially inconsistent for model selection in even simple problems (such as the
normal linear model with fixed parameter dimension, sample size going to infinity, and
the less complex model being true). The consistency of AIC here, when the parameter
dimension grows to mfinity, s thus somewhat unusual,
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That the Smooth Cauchy prior results in an meonsistent Bayes factor s surprising
in two respects. First, it 1s rare that actual proper Bayes factors fail to be consistent
in model selection and so 1t 15 mmportant to understand how this can happen. Second,
the Smooth Cauchy prior was derived as the intrinsic prior for default model selection
in Berger and Periechi (1997), and launded therein for its desirable properties. It s
important to note, however, that the dervation in that paper was based on fixed p
with # — oo, and that the intnnsic prior for the scenano of fixed » and p — 20 could
be very different.

Finally, a beginning has been made m defining a generalization of BIC that does
not depend on the prior distribution and that is effective as the model dimension grows
with the sample size. Whether GBIC can atself be generalzed to include situations
in which p and # both grow is a question of great importance and very substantial
difficulty.

7. Proofs
S Error convergence

We will use the following notations:

d' log| &% d' log
—UE{‘. 2) and Dy loggit) = o)

I —] -
(¢) dr dr

Proof of Theorem 4.1. Case 11 M» is true. In this case, as p — oo, using the assump-
tion ¢, = 1/r + &, for some &> 0, £ is almost surely bounded away from zero and
infinity. Using notations from Section 4,

,.Q""'_;={2I{}_F‘ZL‘_“J"M” and  m5( _1_,~}=[ Hglryde
Jd iy

Denote logm!i™*( y) = log #5g(t)) — _.!,—I{}g{—D_:{f, 1+ %Iug{zrz}. It follows from conti-

nuity of {f) and the fact that [ty — 6| =0O(1/p) and Dairy)=Du06 01 +o{1))=0( p)
that

llog my™( ) — log my™* ()|
=[log #Sg(te) — log #5g(t1 ) — 3log(—Da(te)
—D logg(te) )+ 3log(—Da())|
=|log #5g(ty) — log #5g(t;) — Jlog(—Da(te)/p
—Ds logg(ty)/p)+ log(—Da(t)/p)| = o(1).

We will show that [mS(y) — miP=(p)] = mi!%*(y)o(1). As [logmi™*(y) —
logmi™(y)| = 0(1), the result follows. For a constant b = 0, denote A = {f: |t — 1|
< hlogp/ Dyt )b, The argument ¢ in Da(ny) s dropped in further calealations for
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notational simplicity:

L 3 | 3
i G i B
I3 (¥) —m?mx{y}l = ‘/’c'“b‘yl-““”df— [c'@”l‘m“ H3D=0) gy

= ‘f{nﬂr.{r} — )y de

=j:|¢.,—¢3|d:+£rlqin — | dt

sﬁ@—hm+ijm+ijm
A AC AC

=h+h+1

Fart 1: Denote B, (1) =Dy boggln i —6) 4+ Ds loggin (e — 1 I + Da(f ) — & }3]‘
Then computations show that Dy logg(n ) = O 1), Dalogg(t )=0(1) Dui )= O p)
and D46 )= O p). Therefore,

3 2
sup|R,(0)] = (""””) O(p) + (""””) o)+ e Pq
A

Wi a0k v
('UHP}J)

=0 —— | (1 1))
( 77 (I +o(l))

Thus

n=/m—Mm
A

= F5(H };,r{n}lfc*"'z’r‘w'"f RS 1|ds [+ is between ¢ and 1]
A

< 5(1)g(t) L el/2U=A T R ()| dt
= ES{N i) 5'-‘P|Rn{f}|cm’ml [C_1 20040 =1 ¥ di
A

3
< myPr0 ( (0B PY" ) cotton 7/
VP

Hkex
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Part 1I: Define f{x)= (1) —1. Then, f(1)= f(1)=0and f"(1)=1 imply
Flx)=(x —1)*/2 + o{(x — 1)*). Defining s = 1/r + (t, +(blog p)/vD)~!,

#5(n + (blog p)/vD1) 3 (icﬁ_’m_l )—::.-'2
'E{II} Cp

Also

cp o rhb logp ( log p)

1=
5 tir+1) vDs Dy

Similarly, denoting g = 1/r + (fy — (blog p)/vD2)~', we have

— i
#5(n — (blog p)/vD1) 53 1+l (‘i B 1)2 i (‘i 3 )2 %
#5(n) 2\gq gq ’

o rh log p ( log p)
q Cnlr+n0) D, VP
Therefore,

b =/ 5y de
A&

u~ﬁUHWPE;'}Af

. 1 b (log py (log p)*\\*
<10 (14 oy o +o( 1)
= ¥ }'U‘[c_{'-"4l1’\f’3-"‘|l{ﬂ'+f|leﬂg r’f}

= miiDe* B0 pmHF g phit Py [ag Dy = O p))
=-mareta(l):

Fare 111:

[ ldi= #5@un) [ 2000
o A Ae

= m?m* / e U2R 4y
|ar| = lowz o
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=mi>*0 (ﬁc-ﬂ-’ 2)log ﬂ)
= miP* o 1).
Taking all three parts together,
[mE(y) = myP ()] = myP (1),
which direetly yields
|BF5, — BF31™ = BF3{™o(1),
Case 11: My ds true. Note that & = argmax 25 glr) 1s the solution of

dloggir) 4 dlog %
di dt

P 1+1‘3 L 1 N "
22 \r g Rl TE Ty
2
il L i
g, )= T e
=>-p(r+f -:",) F{r+}(r+f)

» _ 1y B
=hie +L}{ﬁ}—r{r+1}(r+f)

= Iy = (}{p""‘} — D0,

Thus Da(ty) = O(1). Choose 7= 1y such that fy = o(7) and (d/dt)[log( #5g)] = (p/2t%)
(Yr+ 1/ (1r+1/t—e,)— 1/2¢—1/2 < —1/4 for ¢ > £. So, under M),

log BF;, — log BFY™

=]
< Iﬂg { f CI“E" _‘t";;{lj\_aﬁ]}— log _‘f"E{Ju [ df}
]

i A
log dr+[ uxp{f EIug E’jgdr} di
(1] "y ;odr
< |ug{r‘ + [ ci‘-"'-'*‘df}
JF

—oflog BFLI®),

const,

—+ const.

o

+ const.

completing the proof. [
7.2, Consistency theorem

Lemma 7.1. liminf re, =1+ 17°.
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Proof. Clear ¥; = + (1//F)Z for iid standard normal 2. Therefore,

” )
r i = zj I zj.—
_z {_ﬁ__ﬁf}=2,jrz_f+z__
P& P P

By SLLN, Zpr — 1 as. Also, X, =% Zijw ~ N0, pr ). So, using the inequality
P{lZ] = a) = (2ja)dia), it follows that

142 2 .
P (Ir’le >a(log pY " 1) ) S — S

=
ﬂ\,-“rEer{}gp

The sum of the RHS over p is finite if @ > 2 and, hence, by the Borel-Cantelli
lemma, P(LY,| = ay/log p3 p; i.0) = 0. This implies that
1

= [nF
Im—X, =0 — ;rf a.5.
5o 3]
ryo oos
= Py — t—l=o0 —Zp; as.
P

)
r
= liminfre, =1+ lim infr Y £
p
=1+r,
completing the proof. O
Proof of Theorem 3.1. Case 1: Consistency under M.
Using notations from Section 4, the Bayes factor is
BF; =f. e 2 11y~ h-logﬂﬂ'-"'_llrxif}dr.
=i
Denote x =1 —(1 +#/1)™" and f(x)=rc.x + log(l —x). Then

1
BF;, =f P 5 1y, (22)
x=l}

where 7#(dx ) is the measure induced by the change of variables. Now lim inf re,= 147"
and 7% = 0 imply almost surely that ro, > 1+ for some § > 0, for large p. Thus we
can choose an interval (@ b)) such that on (a.b), fix) = (1 +dx+ log(l —x) = & for
some & == (). That yields (almost surely)

B
BES, = f ¥ R (dx)
— 20,

completing the proof. [

Case II: Consistency wnder My, Under My, we have e, = 1 + Ou(1//p). Denote
v, ={x fix) = — e} From the concavity of fi{x), 5 s an mterval of the form [0,x].
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A simple limit arpument shows that xy | 0 as re, | 10 Also e =040 1/ p). Therefore,
from Eg. (22)

Xi} I
BF§| < [ L:‘ PN e ﬁ{dt} + [ Lt‘ 2 kﬁ{:dt}
Jo s

= Ki(0xy)+ e ™ zﬁ{.m, 1)

Lo

]

completmg the proof. [

7.3 Laplace approximation to the Bayves factor with Smooth Cauchy prior

Proof of Eq. (18). For the case ¢, =1 4+ 1/n #5(r) has a peak in (0.1), and the
Laplace approximation to my( y ) is done by Taylor approximation around that peak.
When 1/r < ¢, = 14 1/r, conventional Laplace approximation is impossible to imple-
ment as the peak occurs at the boundary of the support of the mixing distnbution.
Define (1) =cp(1/r + 1/t)~" +log(1/r + 1/1). Then

1
my{ v =/ e~ {P2WA) dr
= ()

m i1 — 1)

So keeping the first term in the Taylor expansion after (1),

I ; i di
my( y )= [ elpPHdOIHG—Iwap___ &
o /i1 = 1)

1 ) ! . di
= _u—wzuwuf o290
n ] ey,

=AM GE (1) = 0.

If '(1)# 0, then the above mtegral can be exactly evaluated as

1 . I P dr F v
___c—:pzmlrf e Iw2_ iz Jp.zm,'rtlr.-z—wHBﬁsc”U_L 2y ily
i 0 Wil — 1) E

But we will further approximate it as follows. Suppose (1) = —a for some z = 0.

Then, for some 6 = p~" where 0 <5 < 1, we have

: 1 ? b g—pu2 gy
m;{ ¥ )= ;C_{FEM”/ —
L}

& — parfa i 3
~Levmmo! [forid o]
" Jo \fff{tl_f} J1 \I,-"'l.f{l——f}
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Clearly,

: c_f”‘"zdf e
For the other part, note that

1 e df e f”’zdf 4 g—rul2 g

V134 Jo f”nil——r Jo Wt

Since § goes w zero as p — oo, the middle mtegral above can be approximated
by ff;ic_f”‘-'zf_' 2d¢. This can be further approximated by ff:i e~ P21 d¢ since the
error erm is given by

/'x e P2 4y /'3' e ds
§ vt —pabn VS

& — S8 . —§
s _r_l:‘i-'j e ] d.\' s I_u‘i_z /'1‘- ¢ ¥ dﬁ'
— S _
RV + sz 0 \,-"(i_'

0 e )

The above caleulation justifies the approximation

1 ; : . df
L v = 2 1) L2
m ¥ s s I +o(l
2{ N } n \l:: \f"ll}{ }}

—pad2

o Lty 1)
n V=Pl (1)/2
u—ﬂp_-lh'ﬂl 1)

————,
v —pri(1)/2

which gives

log BFS| = logm¥( y ) —log #( y )

— £log(r) — S4(1) — Jlog(—Smp'(1)) if Y'(1) #0,
77— Lloglr) — 2y(1) if W'(1) =0,

b b
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