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1. INTRODUCTION

For a fixed #, an irrational number in [0, 1], consider the C*-algebra Ay generated
by a pair of unitary symbols subject to the relation:

(1.1) UV = exp(2mi@)VU = AV

For details of the properties of such a C*-algebra, the reader & referred to (2] and
[17]. The algebra has many interesting representations:

(i) H = L3TY), T is the circle, and for f € H, (m(U))(z) = f(A2),
(m(V)f)z) = zf(z), z € TV
(ii) In the same H, with the roles of [/ and V' reversed: for f € H,
(m2(V)f)(z) = fF(Az), (ma(U)f)(2) = 2f(z), z€ T".
(i) In H = L*(R), (ms(U) f)(z) = f(z + 1), (ma(V)f)(z) = X* f(=).
While the first two were inequivalent irreducible representations, the ultra-weak
closure of the third one is a factor of type I0;.
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There is a natural action of the abelian compact group T2 (2-torus) on 4y

given by,
=) 2] (Z . o e V") = Z GmnZy 220 VT

where the sum iz over finitely many terms and |21 = [|22]| = 1. o extends as a
s=atomorphism on Ay and has two commuting penerators d; and ds which are
skew-k-derivations obtained by extending linearly the rule:

(1.2) di(LN =0, d(V)=0, do(l" =0, daof V=W
Both d; and ds are clearly well defined on A3 = {a € 4y : z — a.(a) is OF} =

{ 3 amall™MVT sup [m*nlam,] < ¢ for all k1 € N}. Since the action is
e, e Z e e

norm contimious AZS & a dense #-subalgebra of 4s. A theorem of Bratteli, Elliot
and Jorgensen ([1]) describes all the derivaions of A; which maps A7 to itself:
for almost all # (Lebesgue), a derivation § : A7 — AF & of the form § =
cydy +cada + [r, -], with 7 € AF, 1, c2 € C. Another important fact about Ay is
the existence of a unigue faithful trace T on A, defined as follows:

(1.3) (D emaU™V™) = age.

Then one can consider the Hilbert space H = L?( Ay, 7) (see [13] for an account
on noncommutative LF spaces) and study the derivations there. It is easy to see
that the family {U"™V"},, ,cz constitute a complete orthonormal basis in H. The
next simple theorem is stated without proof.

Tueorem L1, The canonical devivations dy ds are self adjoint on their nat-
wral domains: Dom(d,) = { ¥ ™V (1 4+ D) |amal? < :::u}_. Dom(da) =

{Zﬂ"mU"‘V" 31 +n)amnf < ::c} Furthermore if we denote by d, = [r, -]
withr € Adg C L™ Ap, 7) acting as left multiplication in H, then df = d.. € B{'H).

2. DIFFUSION ON Az AND A NONCOMMUTATIVE LAPLACIAN

There is a canonical construction of a quantum stochastic fow or diffusion on a
von Neumann ([8]) or a C*-algebra A ([7]) associated with a completely positive
semigroup on A, The question about which of these semigroups hawe “local”
generators £ remains open, though Sauvageot studied these in [19]. Following
these studies, we know that £ is characterized by:

(1) DC Dom{L) C ACB(H), dense in 4 such that T itself is a +-alpehra;

(i1) a #-representation 7 in some Hilbert space K and an associated 7 deriva-
tion 4 such that 4(z) € B{H, K) and 8 zy) = 8 z)y + 7{z)8(y);

(i) a second order cocycle relation: C{z*y) — C{x)*y — 2* Lly) = S{=)1* 81,
for .y € T In analopy with the heat semigroup in the case of classical diffusion,
we shall call £ the noncommutative Laplacian or Lindbladian.
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Hudson and Robinson ([10]) studied the above question for .4s in the case
where the representation 7 is the identity representation in M itself and concluded

that while there exist classical stochastic dilations for the Lindbladians £{z) =
—%rﬁ{m] or —%d%{;z::l, there does not exist any £ corresponding to § = dy + ids
so0 that there is no quantum stochastic dilation corresponding to this case. We
claim that if wechoose n(z) =z @ Tm K =HaT* 2 H &N, and & =d; & ds,
then £y = —§(df +d3), D = A satisfies all the properties (i)-(iii) and one can
construct a quantum stochastic ow driven by (7, 8y, £y). In analogy, one can have

the perturbed triple (7.4, £) where § = §;, @ 4d: with §; = dy +d,., and ds = da +d,,
and £ = —%{4’5? +8), D= AF.

Thus we have two triples (7, 8y, £o) and (7.4, L) both satisfying (i)-(iii).
Hence they should give rise to two quantum stochastic processes and that they
indeed do =0 is the content of Theorem 2.1, Therefore from the quantum stochastic
point of view also, the two “Laplacians” £ and £ are equally pood candidates
for driving the processes. Then the question arises: can we sssociate the smme
geometric features with these two Laplacians or are there geometrically discernible
changes as we go from the Laplacian £y to the perturbed one £7 This will be

addressed in the following section.

Tueoresm 2.1, (i) The guantum stochastic differential equation (q.s.d.e)
([14]) for z € AF"

(2.1) djf(x) = J0 (idy(2))dwn (£) + 9 (ida(a) )dwa(£) + 30 Lalz))dt,  jQ(x) =201

has unigue solution 7 which is a +-homomorphism from Ag to Ae@ BT LA (B ®
C2). In fact §¥(z) = e Toria, (1), exp 2riwa ) (2], where (wy, wa )(F) is the standand
two dimensional Brownian motion. Also Ej¥(z) = e'%0(2), where E is the vacuum
ezpectation in the Fock space T{L2(By) ® C).

(i) The gs.deinHz:
(2.9) dif, = Z Uf{l_j! (re)d Al + i9(rt)d A — -J, {r;‘r;jdf.}, =1

has a unique unitary solution ([3]). Setting ji(x) = Uy (x)U7, one has the g.s.d.e:

2
(2.3) djlz) =Y _{ie(ide(2))dA] + o (18] (2))d A} + Gl £(=))dt,

=1

and Ej(z) = e'%(z).

We do not give the proof here since most of it is awailable in the references
cited above.
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3. WEYL ASYMPTOTICS FOR. Ag

For classical compact Riemaomian manifold (M. g) of dimension d with metric
g, one has the natural heat semigroup 77 as the expectation semigroup of the
Brownian motion on the manifold ([18]) so that the Laplace-Beltrami operator
A is the penerator of 7. It & known ([18]) that 7; is an integral operator on
L3(M,dvol) with a smooth integral kernel T7{z, i), which admits an asymptotic
expansion as + — (4

(3.1) To(zy) =3 Tz, y)t 174,
3=l

and that

vol(M) = f’l"“{:r:,;r:]ldv{ﬂ{zj = lim f‘mf']",{;mzjdv{:-l{:r:j = Jim 42 Te T;),
it

it

where we have taken the trace in L?{ M, dwol). Similarly the scalar curvature s at
x € M is given as s(x) = é’]"m{m,z]. This gives the integrated scalar curvature

s=f.s={;r::|dv{:-l{;r::| =éf’1"“]{3:,.-r:jdvul{mj

Kty by
= {l !""f_'_fdm_t f[ﬁ{ﬂ",;r:l —E_JﬂTﬂ{;f:._;r:]]{h'{:-]{;r:]
L

1 . i =
-z !ﬂ.al+f*’ff T T; — 792 vol{ M))].
For the noncommut ative d-torus (with d even) one possibility is to define its volume
V' and inteprated scalar curvature s by anslopy from their classical counterparts
s

(3.2) V(4s) =V = lim T |
" o 1. dj2—1 _ q—df2ayr
(3.3) s(Ag) = s = 2 lim ¢57 Ir Ty — 797V,

where the heat semigroup T; in the classical case is replaced by the expectation
semigroups of the last section: T" = e'%9 and the perturbed one T; = o' re-
spectvely acting on L2{A4g, 7). Before we can compute these mumbers, we need to
study the operators £y and £ in L?{7) more carefully. The next theorem summa-
rizes their properties for d = 2 and we have denoted by B, the Schatten ideals in
B(H) with the respective norms.

TurEoOREM 3.1. (i) Lo is a negative selfadjoint operator in L2(7) with com-
pact resolvent. In fact, Cp(L/™V") = —%{mﬁ + ™V mon € Z, so that
(Lo —2)7" € B,(L*(7)) for p> 1 and z € p(Ly).

(i) If ri,72 € AF and are selfadjoint, then £ = Ly 4+ B+ A, where B =
—%{(ﬁj +d?'& + dy vy + dagiea)) and A = —d, dy — di,da, so that A is compact

relative to Ly and £ is selfadjoint on D{Ly) with compact resolvent.
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Ifri,m2 € Ag, then —£ = —Ly— B — A as quadratic form on D{{—Lg)Y?)

v
(3.4) (L +n3)7 = (—Lo+n®) V2T + 2,) N(—Lo +n?) V2,

where Z, = (—Lg +n?) V3B 4+ A)(—Lp +n2)~ Y2, is compact for exch n with
B = —§(d +d2), A = §(didy, + dy,dy + dady, + dydz). This defines £ as a
selfadjoint operator in L2 (1) with compact resolvent. Furthermore, in both cases
of (i), the difference of resolvents (£ —z)7 Y — (Lo — 2)71 @5 trace class for z €
pLL) M plLy).

Proof. The proof of (i) is obvious and hence & omitted.
(ii) It is easy to verify that £ = Lo+ B+ A on A3 and that A{—Ly+n?)7!
is compact for every n = 1,2, ... Therefore

(L= Lo)(—Lo+n?) 7' = (L~ Lo)(—Lo+ 1) HLo+ 1)(~Lo+n%) 7" =0

in operator norm as n — co. By the Kato-Rellich Theorem ([15]), £ is selfadjoint
and since (—L£4n)7! = (—Lo+n?) "Y1+ ( Lo — L) (— Lo +n?) 7! for sufficiently
large n, one also concludes that £ has compact resolvent. Furthermore for =z £

L) N p(Ly),
(L—z) ' —(Lo—z)"" = (Lo—z2) " 1+ (L —Lo)(Lo—2) "] (Lo— L) Lo—2)"".

Since (£ — Lo)(—Lo +72)7 Y2 is bounded, (—Lo + 7)™ € By(L%(7)) and since
(—Lo+ 2)7t € By ol L2{1)), it follows that (£ —n?)~! — (L5 —n?)~! is trace class
for n = 1,2,... by the Hélder inequality.

When ri,r2 € Ap, we cannot write the expression for £ as abowe on A,
since v, 7s may not be in the domain of the deriwations d;, da. For this reason,
we need to define —£ as the sum of quadratic forms and standard results as in
[15] can be applied here. From the structure of B and A it is clear that Z,, is

compact for each n and hence an identical reasoning as above would yield that
| 2] — 0 as n — oo and therefore (I + Z,)7! € B for sufficiently large n and

the right hand side of (3.4) defines the operator — £ associated with the quadratic
form with D({—£)Y?) = D{{—Lg)*?). Clearly
(—L +n) 7 = (Lo+ 1) = —(=Lo+n") VAT + Za) T Zu(— Lo +n?)7H
= —(—Lo+n2) V(I + Z,) Y (—Lo +n2)" V3B + A)(—Lo + n2) 1

for sufficiently large n and since (—LCp +72) Y2 € By, (—Lo+ 7)Y A(—Lo +
n2)~ Y2 € By, it is clear that (£ —n?)~! — (£ — n?) ! is trace class. §

The next theorem studies the effect of the perturbation from £y to £ on the
volume and the integrated sectional curvature for dg.

TueoreMm 3.2, (i) The volume Vof Ag (d = 2) as defined in (3.2) is invari-
ant under the perturbation from Ly to £,

(i) The integrated scalor curvature for v € AF, in general is not invariant
under the above perturbation.
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Proof. We need to compute Tr (e!S — e!“0). Note that if i, r2 € AF, then

t
eff — ptlo = — 5 elt==15(f — £)e""s ds which on two iterations yields:
i

¢

elf _ptho — —ff:“_"‘]‘:"{ﬁ — Ly)e*Fo ds

il
t ty
-+ f {1|‘.1e“_“]£“{£ - f.:ﬂ:lf {1E2{ﬁ“'_h]£"{£ - ﬂﬂji:h&'
(3.5)
] ]
! ty (5]
—fdf.te':!_!‘]'E{1':—f{]]fdf.ge“’_!*]E"'{1':—ﬂn]fdf:gf:“ﬂ_!-"]E"{E—ﬂn:lf:!-"“:"'
] i ]

= Li(t) + Ia(t) + Ia(t).

For estimating the trace norms of these terms, we note that the B,-norm of (£ —
Lole*to is estimated as

w00 w00 w00 w00 w4
L — Lo)e™ lp = I(B + A)e™|p < | B]| €™ ]lp + ca(lldre™ [|p + [ d2e™ )
< (fle Sl + lldze*||,)
= ,:f{s—}r_' + s e I e '—I.-"{

for constants ¢, o, ¢, ¢ sinee we are interested only for the region 0 < 5 £ < 1
Using Hilder inequality for Schatten norms and the fact that

€ = n2) 1 < (o = 7)™ L+ (£~ £o)(Lo —n?) Y7 < 5
for sufficiently large n. We get for the third term in (3.5)
¢ £
Ha(t)] = Ef dt, f dta||(L£ — Lo)elr™2 50,
i i
ta
x [ (2~ Lol )20l I(£~ LojerEel,
[l

t
—1/2
< c(p1.p2.pa) ff.l ap -0,
[
as + — 0, where p' +p;" +p; ' = 1. A very similar estimate shows that

t
M) < f dsllel* =%, (L — Lo)e |, S ct72
i
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(withpz =2, pi" +p;" = 1) and
t ty
1201 < [ duel=,, [ atal(€— Lo tI5ol, |(£ - La)e'sEol,, <,
] [
with p7 ' + pa ' + pa ! = 1; in particular, the choice p; = pa = py = 3 will do) a
M Pa Ps I I I I
constant independent of . From this it follows that Iir‘n Tr (et —etf) =0 and
t—i+

thus the invariance of volume under perturbation.
In the case when ry,72 € A only, then £ — £y = B+di By +daBa + Bydy +
Bjds, where B, By, B}, B2, B} are bounded. Therefore the term like

13|:!—rr].l‘:-:|'|.i_[ B_les-l':u — [E.ﬂ‘:n B{cdlel:!—s] &,Jx

admits similar estimates as above and the same result follows.
(i) From the expression (3.3) for the integrated scalar curvature s, we see
that for d = 2

(3.6) (L) — s(Lg) = % Jim T (¢1€ — et50)

if it exists, and conclude that the contribution to (3.6) from the term I3(#) vanishes
as we have seen in (i). We claim that though || f2(t)|, £ constant, Tr a(f) — 0 as
t — (H. In fact since the ntegrals in Ts(t) converges in trace norm

t ty

Tr Lz (t) = f d#y f dtsTr ((£ — ijﬁfh—fﬂ]fﬂ{g i E‘J:IE“—!]"'!?]-EH:I

L] L

t
and by a change of variable we have that |[TrIo(#)| < ¢ [|(L£ — Lole*te (L —
i

Lolelt—=1a| ds. For r € A, the perturbation (£ — £y) is of the form by +
bydy +bads with b; € B{H) fori =0, 1,2 and the Hilbert-Schmidt norm estimates

are as follows:

L —Lade™ |2 < lboll e llatv2( b [ HIb2 ) [ (—La) ' Ze™0 |2 € e(s™ 24s—%1).
Therefore

|ﬂhhﬂanfm*ﬂ+rwmﬁ—ﬂ*”+ﬁ—ﬂ4w
i

and this clearly converges to zero as £ — (0+. This leaves only 1) (#) contribution
s0 that

6(s(L) — s(La)) = —!]_j;la];'-m{{ﬁ — L£g)etCey,

As before we note that (£ — Ly) contains two kinds of terms: B = —L(d2 +d2),

A = —3(dydy + dydy, +dyydz + dad,,). We show that the term Tr(Aetfo) = 0
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for all £ = 0. It suffices to show that Tr (d,.d;e') = 0 for r € AF and for this we
note that

Tr (dydret™) = 3 (U™ V", d diet=(U™V")

e

_ z o X} s e ]T{ g L-r— mdr-{ [y :|:|

e

Zﬂ_w—!fﬂ e +r:2]T{ |l L™ L PO T':| =0,

e

identically. This leaves only the contribution due to B. Thus
(3.7 s(L) —s(Lp) = — ||m fTr{{rF +d2 Jetlay,

if it exists. However since {#Tr {{d?l + (ﬁﬂjtr“:":l} is bounded as # — 0+, we can
and will interpret the above limit as a special kind of Banach limit as in Connes

([2], p. 563)

(38) (L) — (L) = 75 Lim #Te((d?, +d2,)e')
(3.9) = ﬁTrw{{df-. +dL, )Lt

The notation £y will be explained in the next section. In the follbowing we show
that in general the right hand side of (3.8) is strictly positive.
For example set vy = (I + U~1) and 75 = 0, then 7,72 € AZ", and

ﬁ{ﬁ{ﬁj = S{ E{]jj = % !;.r_.ji.l_l:.l.‘:hI t Z E_!.l'lﬁl:'l'u'2+'f|1]{'!r)ﬂrl 1,-”'1 {ﬂl {L"" 'irl_nljl}

e

=91 Llim f Z{f_!"fg':”'ﬂ'“'ﬂ]ﬂ'{{l - Jk_":lzlg"U“"
= —

ek

i {l o Arljﬂ}l—ﬂu'ﬁr—ﬂ e {E I }l—u:l:l
=271 !I_'Iif.lwf (E mzﬂ Pl L 1) (3"; Hiug{ﬂﬂn]{:_"ﬂ'”).
Next note that for 0 < < 2

veg
\f'FZ‘iln (mhn)e=" 12 = Wi Z sin?(mfn)e " /2

[var]
;e_liv“(i’;—\,-"?:] Z [m sin? w{nf — [nf])

=1

_I{\,-"{_ 1.,-"{_:] (sin® 7 X;),
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where for each 0 < # £ 2, X, is a [0, 1]-valued random variable with probability

(X = ko—[k]) = [ 2/t ]_1 fork=12,..., [\/ﬂ and E is the associated expec-

tation. Since § is irrational, it is known ([9]) that as ¢ — (4, the random variable
X converges weakly to one with uniform distribution on [0, 1] and therefore

. [V
]iTﬂitiﬁzsillz{ﬂﬂ'ﬂ:lﬁ_"ﬂuz > lim vt Z :iirfz{:'rﬂnjle_"ﬂ!m

t—l+ oot t—il+ Ly
1
= 21 f:sin"" wrdr = {ﬁe:]_I.
i

We also have by Connes (p. 563 of [2]), :]iriljl+ Vi Z a2 _ %;_’ Now, by the
- 1

general properties of the limiting procedure as expounded in [2]

27
(L) —s(Lo) =2 —

ReEmark 3.3, From the expression for s{ £y, we see that for d = 2, 5(Cp) =
!]irdl_'_{']} etfo_ PT J. Since the expression for Tre'and the volume V are exactly the
same as in the case of classical two-torus with its heat semigroup, the integrated
scalar curvature for £y is the same as in the classical case, which & clearly zero.

Therefore s L) is strictly positive for the case considered here.

4. SPECTRAL TRIFLE ON AE‘: ITS PERTURBATION AND COHOMOLOGY

Following Connes ([2]) we consider the even spectral triple (4 = A, H = L* (1)@
0 dy +ids
(d1 —idy 0 )
= imdi{a) + tyada{a) in H. Here ~y,70 are the 2 x 2 Clifford matrices. The
I 0
0 I
I'*=T=T"'TD; = —DyI'. Note also Dy has compact resolvent since D =

-2 ({:“ 0 ) and ker Dy = ker £ ® 2 is two dimensional. The perturbed

0 Ly
spectral triple is taken to be (A, H, D. 1), where D = D+ (d{r} d{;' for somer €

A It is not difficult to see that Dy and D are both essentially selfadjoint on A ©
L?{7) and that the perturbed triple is also an even one. Here, as in Connes ([2]), by

L2(1), Dy, T) where Dy, the unperturbed Dirac operator =

grading operator is given by ' = ) One essily verifies that al’ = Ta,

the volume form v{a) on 4 we mean the linear functional v(a) = %T}ur{ﬂlﬁl_ﬁpj
where Tr,, is the Dixmier trace ([2]), and we have used the notation that for a
selfadjoint operator T with compact resolvent T' = T| N{T:IJ' = TP, where P is

the projection on N{T:IJ'. Next we prove that the volime form is invariant under
the above perturbation. For this we need a lemma.
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_ Lemma 4.1, Let T be a selfadjoint operator with compact resolvent such that
T is Dizmier trace-able. Then for a € A and every z € p(T), TroplaT1P) =
Trp(alT — z)71).

Proof. Note that (T —z)"! = (T—2z)"'P® —z"'P+ and P! is finite dimen-
sional. Therefore Tr,.(a {T —2)Y = Tr,(PaP(T — z)"'P). On the other hand
Tr,,(PaPT~'P—PaP(T—z)"'P) = —2Tr,(PaPT (T —2)~' P) = 0, since T~

i# Dixmier trace-able and (T'— z) 7! is compact ([2]). #
THEOREM 4.2. If we set vg(a) = LTr,(a|Dy|~2) and v(a) = LTr,(a|D|~3)
forae A, then vgla) = via).

Proof. Note that D? = —2 f}l gﬂ), where £, = £ + d,d.. + (dyd,- +

dedy ) + idad,. —doda) and Lo = Ly + deod, + (dyd. + de-dy) + i{dad,. — doda),
and that by Theorem 3.1 of Section 3, both £; and £s have compact resolvents
with P, B projections on N (£;)" and N(£2)" respectively. Therefore, by the

previous lemma for Tmz # 0

v(a) = Tr,(a(—L;) 7' B) + Try(a(—£2) 7' Py)
= Tryfa{—L1 —2) " +a(—L2 —2)™Y)
= Trula(—Lo—2)7" +a(—Lo — 2)7") + Trufa(=L1 — 2)7"
—a(—Ly —2z)7" )+ Tr(a(—Ly — 2)7" —a(—Ly — 2)7") = wgla)

sinee (—L£; — z)7 — (=L — 2) 7! is trace cluss for i = 1,2, 11

We say that two spectral triples (4, H1, D) and (A4s, Ha, Ds) are unitarily
equivalent if there is a unitary operator [7 : ' H; — Ha such that Ds = UDU*
and wa( -) = Umy( - )07, where m;, j = 1,2 are the representation of 4; in H;
respectively. Now, we want to prove that in general the perturbed spectral triple

is not unitarily equivalent to the unperturbed one. Let ©'(AZ) be the universal
space of 1-forms ([2]) and 7 be the representation of ' = Q'(43°) in H given by

mla) =a, w(d{a))=[D,a|,

where § 15 the universal derivation.

Noate that [D,a] = i[#i(a)y1 + d2(a)ve|, where ry = Rer, 72 = Imr, 8§, =
dy +dpy, o =da+diy.

THEOREM 4.3. (i) Let r = U™, then QL{AF) == w(Q') = AF & A,

(i) Q3(AF) =0 for r = U™

FProof. (i) Clearly m(Q') C AZ"v1 +.45%72. The other inclusion follows from

the facts that #2(17%) = 0, §;(I'*) is mvertible, and that (V") & invertible for
sufficiently large [.
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(i) Let J; = Kerw|Q', Jo = Kerw|02. Then Js + 4J; is an ideal, implying
that w(8.J1) = w(J2 + 8.J1) is a nonzero submodule of 7(0Q%) C A & AF. Since
Ag® is simple there are two possibilities, namely either w(d.J,) =2 AF, or n(dJ;) =
Ag® @ AFE. To rule out the first possibility we take a closer look at J; and 7(d.J).

Jy = { Zaﬁ{hij : Zaiﬁl{bij = U,Zﬂ;i‘;g{bgj = {}}. Using the fact that ;. d2 are

derivations we pet

(4.1) Zﬁ:{aa&z{m = —Zaeﬁl{az{bm,
(4.2) Zag.:a,-ml{b,-j = —Zaiﬁg{ﬁt{b;]];

for 3 a;dib) e Jy

ﬂ( 5 @)6()) = 3 (61 (a0 + Sa(a) ) BB + Bafbi o)

= Z{ﬁ;{a;]&l{b;j +d2(a;)da(b;)) +z{51{ﬂe:“52“?e:| —da(a;)di (b)) e,

where s = e = —jen. Taking z = U7L8UN + USUY) € QF it is easy to
verify that = € J; and w(dz) = —2. This proves AF" &0 C a{dJ,). We show that
the inchsion is proper by showing the nontriviality of coefficient of ~ 2. Using
{4.1) and (4.2) we get coefficient of 12 to be 3} ayd, &|(b) = ¥ —imafr, by
As before we can find ng such that for [ = ng, &2(V') is mvertible. If we now
choose a; = I, by = V™, gy = —d&(V*)a:(VI~L be = VI, ag = (—aydi(by) —
azda(ba) )0, by = [, then the vanishing of the coefficient of o will imply that
[r1, V] = da( V™o 1 (V1)1 [ry, ‘;”] for all [ = ng and we note that while the left
hand side is nonzero and independent of [ the right hand side converges to () as
I — oo leading to a contradiction. Therefore A3 @ AX = w(dJ;) C =(0?) C

o o ] Aoy (0% _
AF @ AF. Hence Q3(AF) = 7577 =0. 8
Thus we have the following:

TheorEM 4.4, The spectral triples (AFS,H, Do) and (A7, H, D) are not

Tire
A a

unitarily equivalent for r =1
The proof is clear since 03, (A3%) = AF # 0 = 03,(AF).

Classically there is a correspondence between connection form and covariant
differentiation. This correspondence comes from the duality between the module
of derivations and the module of sections in the cotanpgent bundle. Unfortunately
there is no such doality in the noncommutative context. Here for defining the
connection form we visualize it more as the connection form arking from covariant
differentiation. We need to do so because if we take the existing definition [5] then
the curvature form becomes trivial.
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Let X be the vector space of all derivations d : AFY — AF®. This space
is same as {cydy +coda + [r, -] 1 7 € A5} for almost all @ (Lebesgue) ([1]) for
the rest of this section we will be using those #'s only. Let 4, be the element
of K given by d,fa) = [V, a]. We turn K into an inner product space by
requiring that {d;,ds, 8, } to be orthonormal, for example as in [11]. Let £ be
any normed AZ-module. For & € K, let o5 : £ ® K — £, be the contraction with
respect to 8. Topologize £ @ K with the weak topology imherited from 5.6 € K.
Then a connection & a complex-linear map ¥V : £ — £ ® K such that o5V (£a) =
eV Ela + £8(a), for all § € K.

TueoreMm 4.5, Suppose that Vi Vo are maps from £ to £ satisfying
Vilfa) = Vilf)a + &di(a), i=1,2.
Then the map ¥V given by
V&) =Vi®di+V2@da— 3 _EU™V" @ bun
is well-defined and is a connection.

Proof. Let & € K, such that § = e1dy + cods + 3 endinn, where {r.',,,,,} =
S(Z%) € #1(Z?). Therefore the sum in the right hand side of the definition of ¥

comverges in the topology referred above. The rest is straightforward. 8

It is clear from the definition of ¥ in the above theorem that ¥ = ¢4, ¥ for
i=1,2. We alsoset ¥V, =y ¥V for r € AF.

DeFiviTioN 4.6. Let B : K@ K — L£L(€) be the map given by R{d;,d2) =
a1 ) Y — [cs, V.05, V). We call B the curvature 2-form associated with the con-
nection V.

Tueorem 4.7. We have
R{dl 'ud?:l — R{dl o d'f'j 'ud? + dr'g:lt

FProof. [dy +d,,,ds +d.,] = [di(r2), -] = [da(r1), -]+ [[r1,72], -]. S0 we have
Ri{dy +d,,,ds +d,,)(£)
= —&difra)+&da(r1) —£[r1, m2]— (V1 + Vo J(Vaf —E€r2) +H(Va + V0, ) (V1 —Em)
= _[vh v'zl‘f + Vil€ra) + (Va€)ry — Eramy — Valgry)
— (Vaé)rz + Erira — Edy(ra) + Eda(ry) — E[r1, 72
= —[V1, V2§ = R(dy,d2)(§),
gince [dy,da] =0. 1
ReEmark 4.8, In Section 3, we have seen that the integrated scalar curvature

under the perturbed Lindbladian is different from zero, whereas in Section 4, the
curvature 2-form has been shown to be invariant under the same perturbation.
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A NONCOMMUTATIVE 2d-DIMENSIONAL SPACE

In this section we shall discuss the geometry of the simplest kind of noncompact
manifolds, namely the Euclidean 2d-dimensional space and its noncommutative
counterpart. Let d = 1 be an integer and let A, = Cy(R*), the (nonunital) C*-

algebra of all complex-valued continuous functions on B?! which vanish at infinity.
Then 8;, j = 1,2,...,2d, the partial derivative in the j-th direction, can be viewed
as a densely defined derivation on 4., with the domain 4> = C>(RE?Y), the set

of smooth complex valued functions on B2? having compact support. We consider
the Hilbert space L*(B*) and naturally imbed AX in it as a dense subspace.

Then id; is a densely defined symmetric linear map on L*(B*) with domain A>,
and we denote its self-adjoint extension by the same symbol. Also. let F be the
Fourier transform on L2{R?*!) given hy

k) = (Ff)k) = (27) f"'“f{ 0} dr,

and M, be the operator of Tl'll]]tlpl.l{.-ﬂtl{m by the function . We set i'lf
FIMLF, thus i9; = U ez A= U L2 is the self-adjoint negative operator,
called the 2d-dimensional Laplacian. Clearly, the restriction of A on AX is the

2d

differential operator } 5_? Let h = L*(R?) and U, V5 be two strongly continuous
=1

groups of unitaries in &, given by the following:

(Uaf)E) = F(E+a), (Vo)) = €“7f(8), a,8,t€RY, fe CERY).
Here t - 3 is the usual Euclidean inner product of R, It is clear that
(5.1) UsUw = Ungars VaVar = Varg, UdVg =e*V3U,.
For convenience, we define a unitary operator W, for z = (o, 7) € B2 hy

i‘i-"rl- - I)Tu.l-':qﬁ_l:i"fﬂ"'ﬂ,

so that the Weyl relation (5.1) is now replaced by W, W, = W, e/2PE4] where
ple,y) =21 -y2 — 23 -, for x = (zy,22) and y = (g1, y2). This is exactly the

Segal form of the Weyl relation ([4]). For f such that f € LYE*), we set

Wf) = fﬁmjmdme Blh).

Let A> be the +algebra generated by {b(f) : f € C=(R*)} and let A be the C*-
algebra penerated by A™ with the norm inherited from B(h). It is easy to verify
using the commutation relation (5.1) that b f)b(g) = b(f @ g) and & f)* = & f7),
where

_il"’“_]g f_f z—x') jﬁii.-"ilpiz-wr]dmf‘ fiz) = fl—=z).

We define a linear functional 7 on A™ by 7((b{ f1) = f{{}:l (2m)—d | flz)dz),
and easily verify ([4], p. 36) that it is a well-defined faithful tta.-:x- on A™. It is
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natural to consider H = L?( A, 7) and represent 4 in B(H) by left multiplication.
From the definition of 7, it is clear that the map C>*(B?) 3 f —b(f) € A= CH
extends to a unitary isomorphism from L2{R?*) onto 'H and in the sequel we shall
often identify the two.

There is a canonical 2d-paramater group of automorphism of 4 piven by
walb( ) = b(fa), where fo(z) = e*f(z), f € C=(R*), a € R*. Clearly, for
any fixed B f) € A™, a— @, (b f1) is smooth, and on differentiating this map at
a =0, we g_t*t the canonical derivations &;, 7 =1,2,...,2d as §;(b(f)) = (3 ()
for f € C2(R?). We shall not notationally distinguish between the derivation §;
on A amd its extension to 'H, and continue to denote by id; both the derivation
on #=alpebra 4™ and the associated self-adjoint operator in H.

Let us now go back to the classical case. As a Riemannian manifold, B2
does not posses too many interesting features; it is a Hat manifold and thus there
is no nontrivial curvature form. Instead, we shall be interested in obtaining the
volume form from the operator-theoretic data associated with the 2d-dimensional
Laplacian A. Let T, = elt/2)2 he the contractive C-semigroup generated by A,
called the heat semigroup on B*. Unlike compact manifolds, A has only absolutely
continuous spectrum. But for any f € C*(B*!) and £ > 0, Mp(—A + )7 has
discrete spectrum. Furthermore, we have the following:

THI:.OH.I-_M 5 L. M;T; is trace-class and Tr (M) = ¢~ *Iff Jdz. Thus,
in particular, v(f) = [ f(z)dz = T (M T,).

Proof. We have Tr (M;T) = Tr (}' MyF'M _ . 3 =2 )~ and the integral
operator F My F' M ey with the kernel &, (z, y]l f{ —J:lf-_':'ﬂlzfﬁ?_ It is

contimous in both atg_umerrt:s and [ |ki(z, z)|dz < oo, we obtain by using a result
in (6] (p. 114, Chapter 3), that M;T; is trace class and Tr (M;T;) = [ ky(z,z) dz =
(2m) e fl0) = t~u(f).

As in Section 4, we get an alternative expression for the volume form v in

terms of the Dixmier trace.

THEOREM 5.2, Fore =0, My(—A + =)™ is of Dizmier trace cluss and its
Dizmier trace is equal to wv(f).

For comvenience, we shall give the proof only in the case d = 1. We need
following two kemmas.

Lemma 5.3. If f.g € LF(R?) for some p with 2 < p < oo, then Mj ’Lf 5 @
compact operator in L2{R?).

Proof. It is a consequence of the Holder and Hansdorff-Young inequalities.
We refer the reader to [16], volume III for a proof. &

LEMmA 5.4. Let § be a square in B? and f be a smooth function with
Supp(f) C int{5). Let Ag denote t.i'tF Lap.i.'ar-in,ﬂ on 5 with the periodic bound-
ary condition. Then Tr (Mp(—-Ag 4= = [ flz)dz.

FProof. This follows from [12] by |{1ent|f_1.1ng 5 with the two-dimensional torus
in the natural manner. 1



PROBABILITY AND GEQGMETRY ON SOME NONCOMMUTATIVE MANIFOLDS REL]

Proof of Theorem 52. Note that for g € T(A) € L%(B?), we have fg €
DAg) and (AsMy — MiA)(g) = (AMy — M;A)g) = By, where B = —Majy +

2
2i Zl My, iy e @;. From this follows the identity
j=

{5.2) Me(—A+e)™ ' —(—Ag+e) My = (-Ag+ ) 'B(—-A+e) .

Now, from the Lemma 5.3, it follows that B{—A + £)7! is compact, and since
(—Ag+e)71 is of Dixmier trace class (hy the Lemma 5.4), we have that the right
hand side of (5.2) is of Dixmier trace class with the Dixmier trace equal to (. The
theorem follows from the genaral fact that Tr (zy) = Tr . (yx), if y is of Dixmier
trace class and z is bounded (see [2]). 8

Similar computation can be done for the noncommutative case. The Lind-
bladian £y generated by the canonical derivation 4; on A4 is given by

(5.3) Lolalf)) = éﬂ{ﬂflh f € CZ(R*).

Since in L3(R*?), 3A has a natural selfadjoint extension (which we continue to
express by the same symbol), £g also has an extension as a nepative selfadjoint
operator in H = L2(R??), and we define the heat semigroup for this case as
T; = e, By analgy we can define the volume form on 4> by setting v(a{f)) =
!Eﬁ1+ tITr (a{ £17;). Then we have

TueorEM 5.5. v(a(f)) = [ fdz.

Proof. The kernel K, of the integral operator a(f)7; in H is given as K, (z, y)
flz— y:lf.-_"""ﬂmei*“:““”]m. As before we note that K, is contimuous in B¢ and

Kz, z) = Ki(z,z) = _?{{}]e“"“"ﬂﬁ. Using [6] we get the required result. 1

REMARK 5.6. Note that in the Theorem 5.2, Tr (M (—A+2)™%) = 7lo(f)
which & independent of £ > (}. This could also have been arrived at directly as in
Section 4 for the algebra 4y once we hiave observed in the proof of the theorem

that Tr , Mp(A — £) 1 = Tr My (Ag — ).

We want to end this section with a brief discussion on the stochastic dilation
of the heat semigroups on the spaces considered. For the elassical (or commutative)
(*-algebra of Cp(E?!) the stochastic process associated with the heat semigroup is
the well known standard Brownian motion. For the noncommutative C*-algebra
A we first realize it in B(L*(EY)) by the Stonevon Neumann Theorem on the
representation of the Weyl relations ([4])

(5.4) (Uaf)z) = flz+8), (Vaf)lz)=e""flz).

Let q;, 2, 7 = 1,2,....d, be the generators of Vi and U, respectively, in fact they
are the position and momentum operators in the abovwe Schridinger represent ation.
For simplicity of writing we shall restrict ourselves to the case d = 1, and consider

the qs.d.e n L2(R) @ T(L3 B, T2)):
1 1
(5.5) dX, = X, | —ipdun(t) — Epz di — igdun (#) — Eq?‘df} Xo=1,

where 1wy, ws are independent standard Brownian motions as in Section 2. The
following theorem summarizes the results.



200 P.5. Coakpasorty, D, Goswast anp K. B, Sinpa

Tueorem 5.7. (i) The g.s.de (5.5) has a unique wnitary solution.
(i) If we set ji(z) = Xy(z @ 1) X} then j, satisfies the gs.d e

dje(x) = ji(—ilp, z]) dar (t) + Je( =g, 2] ) dawa(t) + jo( L{z)) ot
Jor all £ € A* and Ej,(z) = e'(x) for all z € A.
Proof. Consider the gs.de in T{L%(R,)) for each A € B for almost all wy,

1
AWM = WS + () dusa(8) — SO+ (1) dt), Wi = 1.

t

It is clear from [14] that 'W!M] = exp (— i [ (A {s:l:ldmg{s:l) which & unitary
[

in T{L%(R. ) for fixed A and w;. Next we set W, = JE*d)) ® H",M] which can

B

be easily seen to be unitary in L2(R) @ I'(L*(R,) for fixed wy, where EY & the
spectral measure of the self adjoint operator g in L2(R). Writing X, = We Pt
it is clear that X, is unitary in L?(R)@ T({L?(R,,T?)). A simple calculation using
Ito calenhis shows that X, indeed satisfies equation 5.5.

The part two follows from the observation that for fixed wy and we, X and
b(f) @ Ir with f € C>(R?) maps S(R) @ [(L*(R4,C?)) into itself. It is also easy
to see that

jilz) = Xz X = emivoalllemimmnt)gelmnWelenalt) = g, 1) iy 8
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