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1. Introduction

The study of deformations of algebraic structures was initiated by M. Gerstenhaber
[4—8]. He introduced deformation theory for associative algebras. His theory was
extended to Lie algebras by A. Nijenhuis and R. Richardson [12-14]. The de-
formation theory of bialgebras, which relates to quantum groups, was studied by
M. Gerstenhaber and 5. D. Schack [9].

The aim of this paper is to develop an algebraic deformation theory for a class
of binary quadratic algebras whose structure is determined by two associative
operations intertwined by some relations, called associative dialgebras (or simply
dialgebras in this paper), discovered by J-L. Loday [ 10].

The notion of Leibniz algebras and dialgebras was discovered by Loday while
studying periodicity phenomena in algebraic K -theory [11]. Leibniz algebras are a
non-commutative variation of Lie algebras and dialgebras are a varation of asso-
ciative algebras. Recall that any associative algebra gives rise to a Lie algebra by
[x, v] = xv— vx. The notion of dialgebras was invented in order to build analogue
of the couple

Lie algebras <+ associative algebras,
when Lie algebras are replaced by Leibniz algebras.

In the majority of the available cases of deformation theory, expenence provides
one with a natural candidate for the cohomology controlling the deformations.

*The first author is supported by NBHM research fellowship.
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For example, one knows that Hochschild cohomology captures the deformation
of associative algebras and the Chevalley—Eilenberg cohomology controls the de-
formation of Lie algebras.

A (colhomology theory associated to dialgebras was developed by Loday, called
the dialgebra cohomology, where planar binary trees play a crucial role in the
construction. Dialgebra cohomology with coefficients was studied by A. Frabetti
[2]. In the present paper, we develop a deformation theory following [5] and show
that in this case, the dialgebra cohomology is a natural candidate for the cohomo-
logy controlling the deformation. It may be mentioned that D. Balavoine, in [1],
studied formal deformations of algebras over a quadratic operad in general, and
showed that the cohomology theory which is involved is the one given by the
Koszul dual operad. The triple cohomology and the enriched cohomology can
also be used to develop deformation theory i(see [3]). An interesting feature of
our approach is to show that the cochain modules associated to dialgebra ad-
mit the structure of a pre-Lie system which we use to develop the deformation
theory.

The paper is organized as follows. In Section 2, we summarise the basic facts
about dialgebras and their cohomology. In Section 3, we define formal deforma-
tion of dialgebras, obstruction cochains, prove few basic properties and state one
of the two main theorems about obstruction cochains. In Section 4, we study the
notion of equivalent and trivial deformations in this context and prove that the free
dialgebra Dias(V') is ngid. In Section 5, we introduce the notion of infinitesimal
of an automorphism, define obstruction to integrability of 1-cocycles and state the
other theorem about obstruction cochains. Recall that in the deformation theory
of associative algebras, the existence of o;-products on the Hochschild complex
play a crucial role in proving that obstruction cochains are cocycles. Interestingly
enough, using planar binary trees, we show in Section 6 that, o;-products exist on
the cochain modules CY*(D, D) of a dialgebra D. It tums out that equipped with
these o;-products, CY* (D, D) admits the structure of a pre-Lie system. We then use
op-products to define a pre-Lie product o on CY*( D, 1) which makes CY*(D, D)
a pre-Lie ring. There is also defined an associative product % on CY*(D, D) and
we establish a relation connecting the pre-Lie product o, the associative product #
and the coboundary operators of CY*( D, D). Finally, in Section 7, we interpret the
obstruction cochains in terms of o and % and prove the two main theorems stated
in Sections 3 and 5.

2. Dialgebras and Dialgebra Cohomology

In this section, we recall the definition of dialgebras and dialgebra cohomology
[2.10].

DEFINITION 2.1. Let & be a field. A dialgebra I} over k is a vector space over &
along with two &-linear maps <: D@ D — Dcalled leftand H: D@ D — D
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called right satisfying the following axioms :
xA@HAE @A Az ExAF2),
xFyAz2xF(y2z),

GANFzExFOFD S F Y2, (1)
forall x, v,z € D.

A morphism of dialgebras from D to D' is a k-linear map f: D — D' such
that fix A4 v)=fi{x) - fiviand fix F y)= fix) - fi{y) forallx,y € D.Let
Dias denote the category of dialgebras.

A planar binary tree with n vertices (in short, n-tree) is a planar tree with (n + 1)
leaves, one root and each vertex tnvalent. Let ¥, denote the set of all n-trees. Let
¥y be the singleton set consisting of a root only. Some low-dimensional trees are
given by the following diagrams:

N A R A

For any v € ¥, the {(n 4+ 1) leaves are labelled by {0, 1, ..., n} from left to nght
and the vertices are labelled {1,2,..., n} so that the ith vertex is between the
leaves (i — 1) and i. Recall from [10] that the only element | of ¥ is denoted
by [0]. The only element of ¥, is denoted by [1]. The gratting of a p-tree v,
and a g-tree v2 1s a (p + g + |)-tree denoted by v, % v2 which is obtained by
joining the roots of v, and v, and creating a new root from that vertex. This is
denoted by [vy p + g + 1 v2] with the convention that all zeros are deleted except
for the element in Y,. With this notation, the trees pictured above from lefi to
right are [0], [1], [12], [21], [123], [213], [131], [312], [321]. Throughout this pa-
per we shall use these notations to represent elements of ¥,, 0<n =< 3. For any
i, 0=i =" n, there is a map, called the face map, 4,:Y, — Y,_. v — d;¥
where ;v is obtained from v by deleting the ith leaf. The face maps satisfy all
the classical presimplicial relations did; = d;_1d;. 0= i = j < n.

Let I3 be a dialgebra over a field k. Forany n =0, let k[ ¥, ] denote the k-vector
space spanned by ¥,. The dialgebra cohomology HY"(D, D) is defined by the
cochain complex [CY* (D, D), 8}, where

CY'(D, D) := Homy(k[¥,] ® D=, D)
and 5:CY" (D, D) — CY" YD, D) is defined as the k-linear map § =
Y (=1) 8, with

t'.‘|f.%f{-‘.f:]}’: B3y nnny iy ) ifi =10,

1
_ fldiviar,..., @i digly ey Guil),s
@ NHyiaa ..., Qps1) 1= it 1 <i<n,
"
fldwiyian, ..., y j”;r_|an—:l B

iti=n+1,
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forany y € Y5 @y, ..., d,. € Dand fA[Y,]® D¥ — D Here, for any i,
0<i=<n+ 1, the maps o;: ¥,., —= [, I}, are defined by

v, -1 ity isofthe form | v ¥, for some n-tree v,
o0(y) =0 =1 otherwise,
< if the ith leaf of v is oriented like *\’

[ = f =
= iEheiiica oty isoHesed ke SR RIS

ai(v) =:_if = {
+ _ v ._ | F ifyisoftheform y, v |, for some n-tree v,
Gt} = Oy 1= - otherwise.

The submodule of n-cocycles is denoted by ZY" (D, D).

3. Deformations of Dialgebras
We begin this section with the definition of formal deformations of dialgebras.

DEFINITION 3.1. Let I? be a dialgebra over a field & with left product - and rght
product . Let V be the underlying vector space of D), k[[7]] denote the power
series ring in one variable and K = k({r)) denote the quotient power series field.
Let Vi denote the K-vector space V' @ k((r)). Note that any k-bilinear map V x
V — V extends to a K -bilinear map Vg = Vg — Vi in a natural way and any
K -bilinear map Vg x Vg — Vi which is such an extension will be called *defined
over k*. Suppose there be given two bilinear maps f*, f': Vi x Vy — V., which
are expressible in the form

fia,b) = Fi(a, b) + Fl(a,b)t + Fi(a,b)t" +---, (2)
fia.b) = Fya,b) + F{(a.b)t + Fy{a, b)i* +---, (3)

for all a, b = Vi, where ﬂ"' and F; are bilinear maps Vg x Vg — Vy defined
over k., and ﬂf and Fy are induced by - and |-, respectively. Moreover, assume that
Vi equipped with the products f and f;" is a dialgebra which we denote by D,.
Then Dy is called a one-parameter family of formal deformations of D.

Note that there is a canonical inclusion V — Vg, a — a @ 1. Thus in order
to check that the identities (2) and (3) hold for all a, b & Vi, it is enough to check
that they hold for all @, & £ V, as all the maps involved are defined over £.

DEFINITION 3.2. The ‘infinitesimal’ or ‘differential’ of this family of formal
deformations is the function Fy:k[¥:] ® D®* — D defined by

Flla;, az), if y=[21],

R(nanay) = { Fi(a, @), ify=/[12],

where F'f and FI" are considered as k-bilinear functions from V = V to V. More
generally, if F‘.f‘- =0 = ﬁ.“, | ==i=n— 1, with either Fj or F; nonzero, then the
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function F,: k[Y¥2] @ D® — D defined by F! and F as above is called the
n-infinitesimal of this family of deformations.

Thus infinitesimal of a family is simply |-infinitesimal.
MNote that I3 is a dialgebra if and only ifff and f," satisfy the dialgebra axioms
(1), that is,

f}"'{:‘.‘, ff{b, o)) = f,”{_ﬁ"-{m b, c),
fi(fHa, b), e) = fla, fIib, ),
fifi (@, b), ) = fl(a, fib, ), (4)
fifia, b), c) = fl(a, f (b o),
fita, flb.e)) = f(f'(a,b),c),

hold for all a, b, c € V. Now expanding both sides of each of the equations in
{4) and collecting coefficients of 1" we see that (4) is equivalent to the system of
equations

Y Fl(Fia.b),c)— Fi(a, Fi(b,c)) =0, (5,)
k=0

Y F(Fi(a.b), o) - Fl(@, F,(b,c)) =0, (6,)
=0

Y Fi(F.a.b),c)— F(a, Fi(b,e)) =0, (7,)
KiZ0

Y F(Fia.b),c) - F(a, F,(b,¢e) =0, (8,)
Ki30

Y F(Fia.b).c)— F/(a, F(b,c)) =0, (9,)
rp30

for all a, b, c € V and for v = 0, 1, 2.. .. The above equations reduce to axioms
(1) of the dialgebras for v = (). The following lemma relates deformations of a
dialgebra D to the dialgebra cohomology HY*(D, D).

LEMMA 3.3, The infinitesimal F| of a formal deformation D, of a dialgebra D is
a 2-cocvele.
Proof. First note that the equations (3,,) to (9,), for v = | are, respectively,

Fl(a-b,c)— Fl(a,b-c)+ Fl(a,b) Hc —a- Fl(b,c) =0,

Fliadb,c)—Fl{a,btFe)+ Flla,bydec—a- F(b,c) =0,
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Fi(atb,c)— Flta,b-e)+ F(a,b)dc—at Fib,c) =0,
Fi(a-b,c)— Fl(a,bFc)+ Fla,b)Fc—al F{(b,c) =0,
Fllakb,c)—FllabFc)+ Fa.b)Fc—abt F{(b,c) =0.

Now in order to prove that 8/, = (), by definition we have to show that
BF Wv;a, b, ey = 0 for all a,b,c € D and for v = [123], [213], [131],
[312],[321]. Let us prove it for v = [321]. By the definition of the coboundary
map we have,
BAN[321)a, b, c)
=a- (21 b, c)— F([21;a A b, c)+ Fi{[21];a, b ) —
—Fi(21];a.b) ¢

=a- Fl(b,e)— Flla-4b,c)+ Flia,b+4¢)— Flla,b) ¢

=1
(by (5,1 for all a,b,c & D. The other cases follow similarly by using
Equations (6} to (% ). Thus F is a 2-cocycle. O

Similarly, one can prove in general, that the n-infinitesimal is a cocycle.

DEFINITION 3.4. Any 2-cocycle F need not be the infinitesimal of a deformation.
If it be s0, then we call F integrable.

Theretore, F is integrable it F = F} can be extended to a sequence Fa, F1, ...,
F,, ..., where F,:k[¥2] @ D% — D is defined by

Fi(a,b), ify=1[21],
Fu(y:a,b) ={ ;
: F'ia,b), ify=[12],
for some [, along with f,ﬁ and f;", denoting a one parameter family of deforma-
tions of D, as defined in Equations {2) and (3) and satisfying

)" Fl(Fi(a.b),c) — Ff(a, Fi(b, ¢)) = 3F,([321];a, b, ), (11,)
A.I;i::]
)" Fi(Fia.b).c) — Fi(a, Fi(b, ¢)) = 8F,([312]:a, b, ¢), (12,)
i
)" Fl(F.(a.b),c) — F(a, Fi(b, ¢) = 3F,([131];a, b, c), {13,)

ER AT
ENTES
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Y Fl(Fi(a.b).c) — F](a. F,(b, ¢)) = 8F,(1213):a, b, ), (14,)
J;.,rj:::::]
Y Fl(Fi(a,b),¢) — F(a, F (b, ¢)) = 3F,([123];a, b, ¢), (15,)
byt

for all a, b, ¢ = D). This is because by the definition of coboundary we have

BF v a, b, o)

= aoy F,(doy; b, ¢) — F(diy; ao\b,c) + F,(d2y; a, bosc) —
— Fudyy;a, b)n:::.‘.

for all v € V3 and a, b, c € D. Note that in particular, for v = [321], the above
equation yields

BF)(yv;a,b,¢) = a- Fi(b,c)— Fia- b,c) + Fl(a,b - ¢) -

—Flia, by ¢
= — Y FA(Fi(a.,b),c) - Fl(a, F.(b, c).

ERTEy

A=l pe=A)

Similarly for the other trees.
Now suppose we are given 2-cochains F, 1<v<n — 1. Define Flf, Fi:
D®? — Dhy

Fi(a,b) = F.([21];a,b) and F!(a,b) = F.([12]; a,b),

for all @, b e D. Moreover suppose that FP, F, and F, satisfy Equations (11,)—
(15,), 1= v=n — |, then define a 3-cochain (r: k[Yz] @ D% & D as follows:

G(321;a,b,c) = ) Fi(Fia,b),¢) - Fi(a, Fi(b,0)),

pENTET ]

A, g0l

G([312];a.b,c) = Z F{(Fi(a.b),c) — Fl(a, F,(b,c)),

s
G(131];a,b,¢) = ) F(F,(a,b), c) = F(a, Ffb,c)),
A0

G(213%ia,b,c) = Y F(Fia,b),¢) - F(a, Flb,0)),

A =0
G(123L:a.b.c) = Y F(F,a.b).c)— F(a.F,b,c)).
K=

foralla, b, c e D.
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By introducing a pre-Lie product o on C¥*( D, D) in Section 6, we shall show in
Section 7, that the above data is equivalent to giving 2-cochains F,, I <v=n — |,

satisfying 8F, = ¥ 4w Fi 0 Fu, forall 1 < v<n — L. It turns out that the 3-
A gl

cochain G as defined above can be expressed as G = } ... Fy o F,. Moreover,
A =i
we shall prove the following theorem:

THEOREM 3.5. Let D be adialgebra and Fy, I, ..., Fy be E!'E.-nem.wfﬂ'k’lfﬂ, m
with F| a 2-cocyele, such that

Y FioF, =3F, (16)

A=y

ETE ]

forallv =1,2,..., n—1.IfG e CY}(D, D) is given by

G= 3 FioF,,

]

A=)

then 8G = 0, thar is, G is a 3-cocvele. The cohomology class of G must van-
ish in order to extend the given sequence to a sequence Iy, Fa, ..., F, satisfving
Eqguation (16) forallv=1,2,..., n.

DEFINITION 3.6. The cohomology class of & is called the (n — 1)th obstmc-
tion to extend the sequence Fy, Fa, ..., F,— satisfying equations (11,) to (13,),
l=v=En—1toasequence Fi, Fa, ..., F, satisfying Equations (11,) to {15,),
1 < v= n, with ﬁ-”‘s and F;'s obtained from F; as described above.

COROLLARY 3.7. If HY*(D, D) = 0 for a dialgebra D, then all the obstructions
vasnish and hence any 2-cocvle is infegrable.

EXAMPLE3.8. Let k[x, v, x~!, v~!] denote the vector space of all Laurent poly-
nomials in two variables x and v over a field & with basis x” v with p, g € Z.
Define two operations - and F on the basis elements by

M rs

xm}ln "l x.l‘ }I.\' = x }r ﬂnd IJH }I.li‘

T .U.\' :

I_ xl‘}r.\' =

Extending these two operations on k[x, y, x~', y~!] by bilinearity, we get linear

maps

A ke, v, x 7Ly @ Ak, v 27t v — kx v 27Ny
It is straightforward to verify that [x, v, x~', v~!] equipped with the operations -
and F is a dialgebra.

Define linear maps

FO Rk, vy sy M@k yox Ly T — kv 71
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by

F: {-xm vioxt \""-?] = MV o VS

m., e =2y
= X ¥ -

F:ll' {-xm}:n‘ x.l' }:.\'J == JH}:}I‘—U '_ x.l‘—l'}l.\

mn+r =28
— M.

Then one checks that the linear maps Flf. F! satisfy Equations (5,) to (9,). For this
it is enough to verify that for ¢ = x™y", b = x"y' and ¢ = x"v" each term of
the lefi-hand side of Equations (5,) to (9,) except (7, ) is zero. For (7,), the term
corresponding to (A, p), A + 1t = v, & # u cancels with the term corresponding
o, A), A+ =1, A pand any term with A = g is again zero. Hence

D, =k[x,y,x', y "1 @ k()

with f,* and f/ is a deformation of the dialgebra D = k[x, v, x~', v~ '], where

=3 F" md fi=) Fr,

=T =T

4. Equivalent and Trivial Deformations

In this section we study the isomorphisms between deformations of a dialgebra [
which keeps D) fixed, define trivial deformations, rigidity and prove that the free
dialgebra Dias(V') is rigid.

DEFINITION 4.1. Let D,(f) and D,{g) be two deformations of a dialgebra [}
aiven by

fi= Z oy = Z F'e' and gf = Z G't', g = Z Tk

pE0 =T pz0 vE0

respectively. By a formal isomorphism D4 (f) — Diig) we mean a K-linear
automorphism W,: Vi — V. of the form W, (a) = a + ¥ (a)r + yala)® +-- -,
where each yr;: Vi, — V. is alinear map ‘defined over &” such that

fia, b) = W7 (gf (W (a), ¥ (b)) (17)

forall a. b £ Vi (or equivalently for all a, b £ V, since all the maps involved are
defined over k) and % = £, r. If such a W, exists, then the deformations [} { ) and
Dy g) are said to be equivalent. A formal automorphism of a deformation D, () is
simply a formal isomorphism Dy ( ) — Dy f).

DEFINITION 4.2, A deformation D{ f) is said to be trivial if it is equivalent to
the identity deformation, where the identity deformation is the dialgebra Dy
D @, K with the underlying vector space Vy and with multiplications gf{a,b]
a-lband g/(a, b)) =at bforalla, b e Vg, induced by the products of D.
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With the above notations we have the following proposition:

PROPOSITION 4.3, If D f)and Dy g) are equivalent deformations of D given
by the isomorphism W DO ) — Dyig), then the infinitesimals of D f) and
Dy g) defermine the same cohomology class.

Proof. From (17), we have

W fla, b)) = gh(v,(a), ¥, (b)), (18)
W (f (a, b)) = gy (Wila), ¥(b)), (19)

for all a, b = V. Expanding both sides of Equations (18) and {19} and collecting
the coefficients of ", we get

3 Gly@. ) = Y di(Ff(a b)),

i+ j+k=n i+j=n
where # = £, r. Takingn = 1, we get

Fl(a,b) = Gi(a,b) +a -y (b) + vy (a) 4 b— ¥ (a-b),
Fl(a,b)y = Gila,b) +alb (b)) +y(a) - b— 1 (al b),

for all a, b € V. Now since Homg{&[¥,] &, D, D) = Homg{D, D), v, can be
identified with a unique l-cochain again denoted by vr; where o ([1]; a) = r{a)
tor all @ € D. Observe that

Syn([21];a,b) = a =y (b) — Yla = b) + i(a) < b
= Fi(a,b) — Gi(a,b),

Sy ([12];a,b) = ab Y (b) — Ynla b b) + Yri(a) F b
= F{(a,b)— G(a,b).

Hence, 8y = F| — (7. This completes the proof. O

Remark 4.4. Tt follows that the integrability of an element of Z¥*(D, D) de-
pends only on its cohomology class. For it D), is a deformation given by ff and
S with infinitesimal F, and if & = F} 4+ 8¢, then | is the infinitesimal of the
deformation D) given by g! and g/ where

gia, by = w7 fH (W (a), Wo(b)) and g (a, b) = W' I (W (a), W,(b)),

where W,: ' — [, is the isomorphism given by W, (a) = a + vr{a)1.

I

THEOREM 4.5. A nontrivial deformarion of a dialgebra is equivalent o a de-
Jormation whaose infinitesimal is not a coboundary.

Proof. Let D, be a deformation of D with multiplications ff = 3 >0 Ffr"
and f = 3, ., F\1". Let F, (the unique 2-cochain defined by F! and F! as in
( 107) be the n-infinitesimal of the deformation, torn = 1. Then asinthe case ofn =
I, Equations (3, to (9, ) imply that § F,, = (0. Now suppose that F, is a coboundary,
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say F, = —&1, for some v, € CY'(D, D) (whichis isomorphic to Hom, (D, D).
Let ¥, be the formal automorphism of Vi defined by W (a) = a + b, (a)t”. Then
setting

gia, b) = U7 £ (W (@), U(b) = D Gifa, b)r,
vz

g (a,b) =W /(W (a), W,(b)) = ) G)la, b,
=3

we get a deformation D; isomorphic to D,. Explicitly, g/ and g/ are given by

gla,b) = a-b—{(Yula +b) —yul(a) b —a- yu(b) — F(a.b)}i" +
+ Bl

gila,b) = abb—{latb)—yula) - b—alt gu(b) — F(a,b)li" +
+Fr-|f"_l+"'

-

Suppose ﬁf # (. Then as F, = —3y,, we see that

Fi(a,b) = F,([21]; a,b) = —84,(21]; a, b)
—{a A ¥, ([1]: b) — ¥, ([1]: @ A B) + ¢, ([1]; ) - b}

= —{a - Y, (b) — i (a-b)+ ¥, la) b}
Thus the coefficient of 1" in gf{.ﬂ', B is zero. In case F'Jf = (), then Sy, ([21]; @, b) =
0 and hence coefficient of 1" is again zero. By a similar areument the coefficient of
" in the expression of g is also zero. Thus G = 0 for 1 <i < n wheres = £, r.

Hence, we can repeat our argument to kill off an infinitesimal that is a coboundary
and the process must stop if the deformation I, is nontrivial. ]

DEFINITION 4.6. A dialgebra D is said to be rigid if every deformation is
equivalent to the trivial deformation.

COROLLARY 4.7. IfHYX D, D) =0, then D is rigid. |

It is well known that the tensor algebra T( V') which is the free object in the
category of associative algebras is rigid in the sense of deformation theory of
associative algebras. Here we show that the free object in the category Dias, that
is, the free dialgebra Dias(V) over a vector space V' [10], is rigid in the sense of
deformation theory of dialgebras.

PROPOSITION 4.8. The free dialgebra Dias(V), over the vector space V., is
rigid.

Proafl Let us denote Dias(V) by [, By Corollary 4.7, it is enough to show that
HYX(D, D) = 0. Let f € ZY*(D, D). Let D denote the underlying vector space
of 1. Consider the short exact sequence of dialgebras

ﬂ—}ﬂ—‘} ﬁ@ﬁ—T:- D—0,
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where D on the left is considered as a dialgebra with Abelian products, that is,
a-b=abtb=0foralab e D,and the dialgebra structure on D & D is
defined by

{ﬂ‘|.h|_:| =| {ﬂ'l, bl] = {ﬂl -|.bz+h| -|||!'|'1— f{[ﬁl] h|,b1], h| ‘|b3]1
{ﬂ'|,b|__:| = {ﬂl, .bvl:] —} {ﬂ‘| l"hz+.b| l"ﬂ'z— f{[l?.]: .b|1.b1], .b| l-bfz:]..

i being the inclusion into the first factor and 7 the projection onto the second factor.
This sequence splits as a sequence of vector spaces. So there exists a k-linear map
o: D —s D @ D such that w o & = idp. Hence, & must be of the form (g, id),
where g: D —s Dis k-linear. Let o’ = o/V:V — D & D. Universal property
of D = Dias(V) gives a dialgebra map&: D — D@ D with& o j = o', j being
the inclusion V = D. Since 7 is a dialgebra map we have m o 6 = id. Hence &
is of the form (g, id) for some k-linear map ¢: D — D. Now as & is a dialgebra
map, we deduce that f(v; a, b} = dp(y:a, b) for v = [21],[12] and where ¢ has
been interpreted as a I-cochain. Thus f = d¢. This completes the proof. O

3. Automorphisms of the Dialgebra Dg

Let Dy = D@y K, K = k(1)) be the dialgebra denoting the identity deformation
as introduced in Definition 4.2. In this section we study the automorphisms of
Dy and define the obstructions to integrability of derivations of D). According to
Definition 4_1, a formal automorphism of the identity deformation Dy is given by
a k-linear map W;: Dy — Dy of the form

W (a) = Yrgla) + ¥y (adt + Pala)> + -, (20)

tor all 2 € D, where each ;1 Dy — Dy is a linear map defined over & and
is the identity map. Moreover the following hold

Wila A b)) = W da) AW (b, Yia kb =¥ (a) - Wik
torall a, b & 0.

DEFINITION 5.1. The first nonzero coefficient v, in (20} is called the infinite-
simal of W,

LEMMA 5.2, The infinitesimal of an automorphism of Dy is a cocycle.
Progf. Substituting W, as is given in Equation {20) and equating coefficients of
r" we get

Y @ Y@ = yula Hb), (21v)
e
Y i@ @) = Yyla kb, (221)

A=y

ALp=0
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tor all @b € D, and for all v = 0, 1,2, .... Equations (21,) and {22,) can be
rewritten as

3 ila) A9ub) = —u(@ A b+ Yala-b) —a b,  (2v)

ER AT

e

Z Wila) F (b)) = —dn(@) b+ d(abb) —ab i (b), (24v)

ER AL

hop=0

forall a, b & D, and for all v =0, 1,2, _... We identify the linear map ; with
the corresponding |-cochain as mentioned in Section 4. Then Equations (23,) and
(24 ) reduce to

Y Uk a) A1 b) = —8¢,(21]; a,b), (25v)
Aeso
3 @) (11 b) = —8v ([12]: a, b), (26v)
v

for all @, b € [ and for all v = 0, 1, .. .. Thus Equations (25,) and (26,) give a
necessary and sufficient condition for a linear automorphism ¥, as in (20) to be
a dialgebra automorphism of Dg. It follows from (25,) and (26, ) that ¢, = (.
Hence, the infinitesimal of an automorphism is a derivation of 0. O

We may ask when a derivation of ) may be extended to an automorphism of
Dy, Suppcs;e that a derivation | has been extended to a tuncated automorphism
M=

W=, yir' so that vr's satisfy (25,) and (26,) forall v = 0O, 1,. .., n—1
Define a 2-cochain F by

2 swume W ([1]: @) A 4, ([1); &), if y = [21],
Fivia,b) = A, p>0

Z}. L= Tgl-l'r.'.{“] fl':] = 1‘:tl-l'r,r.l!{[l]: bl if ¥= []2]1
d g0l

for all a, b £ D. We shall show in Section7 that given a truncated automorp-
hism ¥ = ;;'l Writ' with 1-cochains v satisfying (25,) and (26,) for all v =
1 Ky P n — | and extending the derivation . is equivalent to giving 1-cochains

Su=— ) Wik,

A=y

Ap=0



46 ANITA MAJUMDAR AND GOUTAM MUKHERIEE

forallv =10, ..., n — 1, where % is the graded associative product on CY*(D, D))
induced by the pre-Lie system as described in Section 6. It turns out that the 2-
cochain F as defined above can be expressed as

F= Y sy

PR ]
A, peel)

Moreover, we shall prove the following theorem in Section 7.

THEOREM 5.3, Ler D be a dialgebra and v, ., ..., .y be l-cochains, with
vy a l-cocyele, such that

=3 Y=y, =3y,

Ay

A, el

forallv =0,1,..., n—1.If F e CY*(D, D) be given by

F= )"ty

ERPTET ]

X pesl)

then 8F =10, or F is a 2-cocvele. The cohomology class of F must vanish if the
fruncared automorphism is to be extended.

DEFINITION 5.4. The cohomology class of F is called the (n — 1)th obstruction
to extend the sequence v, Yra, ..., ¥y satisfying (253, ) and (26,), | Sv=n-—1,
to a sequence Yy, ra, ..., i, satisfying (25,) and (26, ) for | < v < n.

Corollary 5.5 follows, from the above theorem.

COROLLARY 5.5. IfHY*(D, D) = 0, then every derivation of D may be exten-
ded 1o an awtomorphism of Dy

We end this section with the following theorem.

THEOREM 5.6. Ifevery derivation of D extends o an automorphism of Dy, then
every frivial deformation of D has a trivial infinitesimal.
Proof. Suppose that

fita,b) = a-b+ Fia, bt + Fa, by’ + -- -,
fi(a,b) = atb+ Fl(a, byt + Fs(a,b)y* + -,

define a trivial deformation of a dialgebra D). Let F, defined by
F.([21]; a,b) = Fl(a,b), F,([12];a,b) = F}(a,b),

be the n-infinitesimal of this deformation. We have seen in the proof of
Theorem 4.5 that F), is a cocycle. Suppose that F; is not a coboundary. Let

W, (a) = a + Y (a)f + yafa)t® +---



DEFORMATION THEORY OF DIALGEBR AS 47

be the isomorphism from D, to Dy, where D denotes the deformation defined by
fF and f’. Thus, we have

IL'I{j‘}ﬁ{a, by) = W (a) 4 W(b) and W f (a, b)) = ¥ (a)F ¥ (b),

for all a, b £ D). Substituting the expression for W, and equating the coefficients of
", we get

S (121]; @, b) — Fil(a. by = — Y w([1]:@) = ¥;([1]; b).

I+ f=r

i j#n

51‘:‘-"‘"{[2”: a, b)) — F;Jr{t'.‘ b= — Z 1‘:'-"’{[”4 a) - 7:':’_,1'{[”: b).

I+ f=r
ij##n

Now if we define a 2-cochain F by

=X W1k @) A Yy([1 0), if y =211,

Fiyia,b) =4 ZJ: Y11 a) & (1] B), if ¥y =[12],
i, j#m

then F defines the obstruction to extending 3, ', i < n as an automorphism of
Dy and, since £, is not a coboundary, this obstruction fails to vanish. O

6. Structure of a Pre-Lie System on CY*(D, D)

In this section, we show that the cochain modules CY*(D, D) of a dialeebra D
admit a structure of a pre-Lie system by introducing certain operations on the set
of planar binary trees. As a consequence, there is a ‘pre-Lie product’ defined on
CY*(D, D) making it a pre-Lie ring. It follows that there exists an associative
product = on CY*( D, D) induced by the pre-Lie system. Finally we establish an
important relationship connecting the associative product, the pre-Lie product and
the coboundary maps.

DEFINITION 6.1. Given a pair of integers, p,g =1 with p+g =n + 1, we
define two maps R|(n: p,q): ¥, — Y, and R}(n; p.q): ¥, — ¥, for each i,
0<i= p— 1 astollows. For y € ¥,

dipidiza - digg1(y), ifpgz22and0gigp-1,
¥, itp=ng=1

and 0 =i < p— 1,
didy - -d,_(v), itp=1l,g=nandi =0

Ri(n:p,q)(y) =
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and

[ dody - - di1disgir - dprg1 (),
iftpgz2and0=<i < p—1,

Ifq-‘] "'dﬂ.l.ql-]{_vj.

_ it p,g =2and i =10,

Ry(n; p, )(¥) = § dod) -~ - dp_a(y),
ftpgz=landi=p—1,

dody << di g disa - dy(y),
fp=ng=1land0=i<p—1,

v, ifp=1l.g=nandi =0

To simplify notation, we shall denote the maps R{{m: ¥, 5) and Ri_;{m:r. 5},
0=i=r— |, corresponding to any triple of integers m, r and s withm + 1 = r+4 s,
as defined above, simply by R and R;.

Recall from [4] that

DEFINITION 6.2. A right pre-Lie system {V,, o;} is a sequence ..., V_;, W,
Vi, ... of k-modules, equipped with a linear mapo; = o;(m, n): V,,@V, — V-,
tor every triple of integers m, n, { =0 with { < m satisfying the following properties

(fM"ojhf)on,g" fOLj<i-1
{f-m o g”j Dj_hr-' —_ fm o {f,“” 054 hﬂj if i = } =n+ |’ i ?r_. ]
and 0= je=n41,ifi =0

where [ € V,, is written as ™ to indicate its degree and f o g = o; ([ @ g).
Let [ be a dialgebra over a field k.
DEFINITION 6.3. Foralli,0= i< p — | the maps

o;: CYP(D, D) x CY4(D, D) —s CY**~Y(D, D)
are defined in the following way. Given f = CY"(D, Dyand g € CY(D, D),

(f ei g)yian,.... dp Apsty oo o lpag-1)
= LR Biecnn a;, gIR (Y)Y @411 -+ ea LTI L N P S

where vy € Y .. |, R{: Yopg—1 — Y, and Rg : ¥y, — Y, are maps as in
6.1,

PROPOSITION 6.4. The maps
oi: CYP(D, D) x CY¥(D, D) — CY*M Y (D, D), 0<i<p-—1,

as defined above form a pre-Lie system on CY*(D, D).
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To prove this proposition we need the following lemmas the proofs of which

involve the simplicial identity did; = d;_d;, i = j.
LEMMAGS. Letn+2=p+g+r.Forl<js<p+g-20i<p—land
J=i—1,the following maps:

Rl=Rlgup+g—1,r) Y, — Yoy,

R=Rimp+g—-1,r):Y, — ¥,

Ri=Ri(p+q-1;p.q) Yoy — ¥y,

R=Ryp+q—-lip gy ¥, —Y,

le-.-r_l = R‘|_r_|{”: p+r— 1, q]: Yp — Y,r:—.r—h

RO =R nsp+r—1,qn¥,— ¥,

Rf. = R‘l'.{p +r—=LpryYo, 1 —Y,

Ri' = Ré{p-}—r —Lpr) Y — Y
safisfv

() R = RIRY', (i) RIR = REP', (i) R = RIRTH,
where the rerms on the either side of _Ihej equalities (1), (1) and (111) are suitable
composition of maps, for example, R, Rf af the left-hand side of the equality (1)
denotes the composition of the maps R{ m:p+gqg—1,r)and R{ ip+qg—1;p q).

Proof. We prove the lemma for the case p.g.r 22,0 = j <« p+ g — 2,
O0=<i<p—1land j<i — |. The proofs for the other cases are similar. We have

R‘l R{ = d:'—.l"'-"ﬂ'—'l s 'diaj—ld_,l'—:ld +2 7" d_,l'—'.l'—l 1 (27)
R-['l R‘i_r_l = _,l'—ld_,l'—'z dh d_,l'—'r—lfﬂ'-i-rfﬂ'—'r-e-l ek ﬂﬂ'*a-a;—z- (28)

Since j=i—1, j4+r—1 = i+r. Hence, the simplicial identities imply that the ad-
jacent terms d ;. d; ., inthe right-hand side of Equation (28) can be replaced by
disp1djp—1. We apply this argument again to the term o j, 1 diz 1. Continuing
the process, (28) reduces to

R{R‘i_.r_l = _,l'—'lIlgr +2 """ d_,l'—:.l'—ldi—.l'—ldi—r Wi d:'—'.l'—':f—."rd_,l'—:r— 1-

Next, we repeat the argument starting with ;. _2d;., 1. Proceeding this way the
string ¢ .y - -- djap—1 In (28) can be pushed off to the right to get (27). This proves
(i).

To prove (ii), note that

RV =dody - disradisrig - dprgir and  j4r —1<i+r—2,

as j=i—LIf j+r—1 =i+r—2, then in the above expression Gf'Rg""' we can

replaced ., d;,, byd;,, ,d;.,_, and thenreplaced;, d;,, . byd;, d;., _,.
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Repeating this process, we can make ;. ,_, and d;,, ., adjacent and, hence, can
replace d_,l'—r— IdJ'-Lr—:q by di-:-r—:q—ld_,l'—:r—l- Then starting with d_,l'-e-.l‘—|dll'—:r—¢_f—:|. and
successively applying the simplicial identities we get

R&'-.—r—l = II'-‘l;:]"'-‘rl s d_,l'--r—ld_,l'--r—ld_,l'--r S "'-ﬂ'--r—.'{"'-ﬂ'—:r-rq—l s dp—:f—.r—.'{d_,l'—.r—l-
Next, we apply the above argument again starting with the terms d;,,_.d;.,_| to
et

R&'-.—r—l = d:].ﬂr| A d_,l'-:-.l'—.'!-d_,l'-:-r—‘l A f-ﬂ'-—r—-tdhr-i-q—‘l i dp-e—q-i-r—-td_,l'—:r— Id_,l'-:-.l'—l -
We repeat the process (r — 1) times to obtain

Ry =dydy -+ d_ydigir - dpey idyadyan o dpe, ) = RAR].

To prove (i) we note that

Ri.: = dypd) - - 'd_,l'—ld_,l'—'r+l g "dp—'q--i-r—z
and

“i.':.r_ll R‘i_.r_l = dur.ﬁ S "d_,l'— I.d_,l'—.r—l P d,r:-n-r— ldi—'rdi-e-r—l T 'di-a-r-é-:f—l'
As p =i, d,., d;;, can be replaced by d;,,d,. . Next we consider d,,,,d; ., .,
and replace it by di+,+1dp.,+1. Repeating this (g — 1) times we get

Ré.R‘rr_l =dyd, - - 'dj— I.d_,l'—:r—'l ki dp-:-r—zdi—rdi-rr—'l =t 'di-e-.l'—':j—ldp—::j-i-r—z-
Next, apply the above argument to the adjacent terms dp, .. _2d; ., to get

Ri'l.R‘i_.r_l = dpd) - - dj_|d_||'_,.;-__| .- 'dp_-r__'l_. b4

.t d:'—'rdi—:r—l i 'd:'—r—j:j—ldp—:q—'.l'—."rdp—:q-t-r—‘la

Continuing this process (p — i — 1) times we obtain

R;.':R‘r'r_l = dod) - -dj1djrr - digr i digr -

LA d:'--.l'-i-q—l i+r4g—1 """ d,n—:;-—r—.'!-dp—.q--r—z
. Ré.

This completes the proot of the lemma. O
LEMMAGG. Letn+2=pt+g+r.for0sj<spt+g-20=i<p—1and
i< jsgifi =0and 0= j < g ifi =0 the maps

Rl=Ri(mip+gq-1,r)Y, — Y, .,

R=Rimp+g—1,r)Y, — VT,

R1 = R‘!(H: p.g+r—- 1): ¥y — F.HH

Ry=Rym;p.g+r—-12:Y,— Yu,,

Ri=Rip+gq—-1Lip.gr¥,,, ,—Y,

Ro=Rp+g—-Lip gy ¥, —Y,

R =RT(g+r—=1;g.7) Ypiuur — ¥,

R,_{"" = R:'_,'“'{q +r—lig.r:Y,, , —Y,
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satisfy
() RIRI =R, ()RR =R/TR,, (i) R{ = R]'RL.

The proot of this lemma involves ideas similar to the proof of the previous
lemma, and hence is omitted. O

Proof of Proposition 6.4. Let
feCYD, D), gceCY (D D) and heCY'(D, D)

and assume that0< j<i — |. Then,forve ¥ . ., .

(fo;gojh(yiay,..., Wsippiozin)
= (f s 2RI @1, v @ RERIOYY Gig1, oo v Qe ) @jargts oo
iea ﬂ'p—q—:r—z]
= f(RIRI (Y a1, ....a;, R(RIOY) @js1, oo o1 Bjas)s Biarsns .. o,
el E R R B dprag s sgu v Bpgar22)
On the other hand,
(fojh)oigglyian,..., Qpyotr—2)
= (fo; MR ¥ha,..., @isr_1, GRS Gisrr s @iyrig—1)h
Bigrpassonn Qpygir—2)
= f(RIR+-1(y):a,,..., a;, R(RIRF (v} aj,, . . -, T o R

i+r—1
v lizr—1, 8(R, () Qigrs e n Qigrig—1)s Qigrigs - - 1 Apsgir-2).

It now follows from Lemma 6.5 that (f o; g) o; t = (f o; i) iy g for
0= j=i—1.
Suppose now thati < j<gifi{i = 0and0<= j = g it i =0.Then
(fo;g)ojh(yiay,..., Bprair z)
= (foi gNRI (M@, ....,a;, h(RI(Y) @js1, ... ajsr),
Qitrdlaesny ﬂp-ﬂ-q-:—r—?]

= f{R{R{(_v]: P R ai, g{Rﬂ_}R{{}']: L P ,ad.-,h{RE"{}r]; Qjy1,

ies ﬂ'_,l'—.J']~ Qjgps]--qsgapsi—| |5 Oigpgg -y fl',r:—:q-:-r—?j-

(On the other hand,

foil(geojih)lyviar,..., dppapr_2)
= f(R|(¥);ai,..., ai, (g oj_i MRV Gis1, ...\ Ggersio1),
Ggirtis.oes Qpygir—2)
= f(RI(Y):iay,...,a., g(RITRAUY a4, . ..o @) R(RITTRL(Y): a4,

(R ﬂ'_',-_.,.], ﬂj—:r—: Fownny ﬂq+r—'1’—l]~ It-"¢.|l+.:‘+1' Ty ap+q—'r—‘lj-
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Lemma 6.6 now implies that (f o; g)o; = fo;(go;_Mfori< jsgiti =0
and 0= j = g if i = (. Thus considering elements of CY"(D, D) to be of degree
{p — 1) we see that the maps

o;: CYP(D, D) x CYY(D, D)} — CYPH~Y{D, D)

for i < p — 1 as defined above make CY*( D, D) into a pre-Lie system. O
DEFINITION 6.7. The ‘pre-Lie product’

e:CY(D, D) = CY(D, D) — CY'”_:‘"_l(D, m
on CY*(D, D) is defined by

p—1

fog=) (=¥ Vfog

1=l
for f € CY?(D, D)and g € CY!(D, D).

Then CY¥*(D, D) equipped with the pre-Lie product becomes a pre-Lie ring
(ct. [4]).
Next we define a product % on the graded modules CY*( D, D) as follows.

DEFINITION 6.8. For f € CY?(D, Dyand g € CY9(D, D),
%: CY?(D, D) x CYY(D, D) — CY"™(D, D)

isgiven by f#g =(Tog flop,g, wherem € CY*( D, D) is the 2-cochain defined
by

m([21]);a, b)) =a - b, m([2;a,. b)=alk b

torall a, b & 0.

Explicitly, for vy € ¥Ypup. a1, a2, ..., pie € D,

(f #2)(v:a1,a2, ..., 0p44)

=(moo flopglyian,a, ..., Apiq)
= n(RIR{(»): f(RER](3)i . ...@p). g(RY (V)i @y o 1))
= f(RIRC (V)i @y, ... @) Dt GURE(Y): @pgrsc s Bpyg)

where o= is either - or - according as R?Rf(}'] is [21] or [12], respectively, and
R}, R; are the maps as defined in 6.1.

It is easy to see that w is a cocycle by the dialgebra axiom. It is infact a
coboundary, m = #¢, where @([l]; a) = a forall a € D.
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LEMMA 6.9. The graded product = on CY*( D, D) is associative.
Proaof. Suppose

fe CY'(D, D), geCY(D, Dy and h e CY'(D,D).
Then, fory e ¥,. ., anday,a,,. .., Apsgy, € D, 111S easy to see that

(f=g)xh(yia, ..., apigsr)
= m(RIR{ ™ (y); m(RYRT RORT T (v);

R ), SRRSOty ).
ACREY O Gt o - Btgis ),
where
R{J_.q: Yﬂ—!j—..l‘ —— Yp.uq_h Rf;_q: Yp+q-r — Yr~
R?: Yorgp —* ¥a, RE_,E: Yorgrr — Yopn
RI: Y., — Y ., BB . — K,
R Yoy RGTopr——s Ty

are the maps involved in the above equation. On the other hand,

felgsh)yian ... apigsr)
= “{R?Rff.\']: ffﬁtzj-‘?r{_\'): R ap),
T(RIRI RI(y); g(RIRTRY(y): sy ... ap.y),
R(RIRE(); Qi ovve Bpgas I

where
R.”= Ypigsr — Ypi1, R’;: Ypigsr — Ygur,
R ¥y = ¥y, R): Yoo = ¥,
R?l: Yq—r — 1)ql—:l~ R:_rr 1‘rql—:r — Y.rn
R:Y,, — Y,  R}:Y,.,, —Y,.

Note that, according to the convention, following Definition 6.1, we are using the
same symbol to denote different maps. For example, in the expression of ( f =g)=h,
RY denotesthemap ¥, ., — Y>aswellasthemap ¥, , — ¥>. Now to prove
that the right-hand sides of equalities given above are the same, we proceed as
follows.

Step (1). First note that the composition RngR‘IJR,p_"T appeanng in the expres-
sionof {f =g}« h is same as Rfjﬁf appearng in that of f = (g = ). For,

RYR{RIRT™ = dpsi(dpsr - dpsy 1)dpsgar(dprgerdprgari)
= {dp—l e d,n—:f—l jdp—'tjdﬂ—::j-i-l. {dﬂ—:q-:-l rae dp—'q'—'.l‘—l )
= dn+ldﬂ+l ’ "dﬂ—'tr—|dﬂ—'q'dﬂ—'=r—| g ”dﬂ—'ﬂr-—l'—l
= RIRF
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(first applying did; = d;_d;,i < j, ¢ — | times starting with the operators
dps1dps at the left, then shifting the (g + 1)"* operator d g+ to the left by using
did; =d;_d;, [ < j,q times).

Step (ii). Next observe that RY RY R appearing in the expression of { f=g)#h
is the same as RQRTR; appearing in that of f = (g = k). This can be seen easily
using a similar idea as in Step (i) above.

Step (iii). Next note that the map R! ™ appearing in the expression of { f#g)h
is the same as R;Rg of f=(g=h) The proof is similar to the previous cases.

Step (iv). Let 5: ¥, ., — ¥; be the operator

By oedasdsyoidiggiad o d

prg+l” pHg+r—le

It is easy to see that the maps RYR{™ and R{R{ RYR{ ™ appearing in the expres-
sionof {f % g) + h can be wntten as 4,5 and 45, respectively. Similarly the maps
RUVR!" and R} R R! appearing in f = (g = h) are, respectively, > and dyS. Since
v & Ypiger, S{¥) € ¥ and there could be five possible cases for S{v). For each
of these five cases the result will follow from the five axioms of dialgebras. We
illustrate the case when S(y) = [131]. In this case,
d 5(v) = [21], d18(v) = [12],
d:S5(v) = [12] and doS5(v) =[21].
Hence by definition of 7, we get
(feg)eh(via,.. .. a¢p4,)
= (f(RIRIRIR™ (y):a1,....ap) I
F g (RERIRIM(Y)i apays - oy tyiy))
AR Gpagsts - - Apigar)),s
and
f * {R *hj{"‘ iy, ... ilﬂ'p—.q-i-rj
= f(RART ()i an,s. .., ap)
- (R(RIRIRL(Y)i @piis o Bpag) =
AR(RIRICY) @agais s i @psgieIh
where v = [131]. It now follows from the dialgebra axiom 3 of (1) and Steps
(i)—(1ii}, that
Fr@EsOnan, ... .apg)=(Frg)eh(yvia,..., dpirgir)s
where v = [131]. This completes the proof of the lemma. O
We shall need the following lemma:

LEMMA 6.10. If f. g € CY'(D, D), then 5(f = g) = 8f g — f #3g.
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Proof. By definition, we have to prove that
@(fxg)—d8fxg+ fxdg)yia, be)=10,

for all v € Y5, a, b, ¢ € D.This identity is equivalent to the dialgebra axioms. [J

Remark 6.11. It may be remarked that the above lemma does not hold for
feCY! (D, D)and g € CY'(D, D) with arbitrary p and g, so that the product #
does not behave like a cup product.

LEMMA 6.12. Forany f € CYP(D, D),
f=—fox+ (=1 'mo f=(-)""Naof— (- fom),

where 7 is the 2-cochain as defined in 6.8,

Proof. Lety €Y, and a),a,,..., a,.y € D. Then
Ef{_\’: @122y any ﬂ',r:—l]
= a10; f(doy; @z, ..., dpy1) +
P
+ ) (=D fiyian ..., a0 @, ... apa) +
i=1
+{_”p_.|f(dp—l}!: dyyea., apj"'};_._lap—:l
and
(—fom+ (=D 'mrofiyian..., dps1)

n—1
== fRI:ar...a, T(RYY); Gis1, aisa),

1=l
ceos@p) + (=DPT(RIO): F(RY: a4, -, ap), aps1) +
+H(=D" TRl f(R (V)i a2, ... ap @ps1))]

P
=) fRTO%a . ..q,m R a;, a00),
i=l
ces@pa) + (DI (RIY): FRY(Vs @, .-, ap), apar) +
+ (=D R ar, F(RIO: aa, ..., ap, aps1))]-

To complete the proot observe the following:
(@) R!™'(y) = d;(»), which follows from the definition of R} ™"
(b) R ™'(y) is the tree [21] or the tree [12] according as oy isork.

We prove (b) by induction on the degree of y, where degree of yis nif y € ¥,..
Let deg v = 2. Then j can take value | only and R‘_,"l = R%‘ is the identity map.
Moreover, if o] =, then y must be [21] and if o] =F, then y must be [12]. Hence
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(b is true for deg v = 2. Assume that (b) holds for all y with deg v < m and for
all j, 1< j=m— lL.Letdeg y =m + land | < j<m. Letx_x|\-fx:r where
p=degx =m+l,g=degx: =m+land p+g = .Lﬂt:{,_-LTm::
cases arise. The jth leaf of v is either a leaf of x| or a leaf of x». Suppose that
it is a leat of x;. In this case, it must be an interior leaf of x,, that is, not those
numbered 0 and p as | < j and o] = . Note that R"_l: ¥jue1 — Y2 is given by

R" = dod) ---dj_adjya-- dm | and, in the present case, we also have the map
R" ' : ¥, — V2 given by R = dyd, ---dj_2dji2---d, Note that the effect
of applj,rlng the operator d,. - - -dy21 on v is to delete the Ienveﬁ of x> one after

another, the leaves of x| remalning untouched during the process. In other words,
dpsy - - -dpei (¥) = x;. Hence,

RIT\y) = dydy - dj_ydjiae - dyd sy ey (3)
= dody -+ +dj_dj 42 dy(x))
== Ri_I{I[].

Moreover, r;;f = :}jﬁ’ by definition, as j # p. Hence, by induction, the result
follows. Now if the jth leaf is a leaf of x; and an interior one the case is settled
as above. Suppose now that tJ'ieth]'i leaf in the Oth leaf of x;, sothat j = p + 1.
We know that R" ' = dod, - -d;_dji5---d,,. Observe that if we apply the
operator ;.7 - dm [ ony = x| v Xz, It does not alter the leaves of x, and there

are two leaves of x> which survive in the requlting tree and more over these are not
deleted by applying the operator dyd) -- - d;_; on the result. Since j = p 4+ 1, it 15
now clear that R" l{vj must be of the form [0] v [1] = [21]. The case :r = is
similar.

(¢) RY(y) = dps1(y), is immediate from the definition.

(d) RY(¥) is [21] or [12] according to as rj';__l is lor k.

To see (d), let ‘I;;*l =-1. Then yis not of the form v, v [0]. Thus, if v = x; v xa2,
then deg x; = | and the last two leaves of x; cannot be deleted by applying R‘,J —
didy---d,_, ony. It follows that RY must be of the form [0] v [1] as RY(v) € ¥a.
Thus RY(y) = [21]. The case RY(y) = is dealt with similarly.

(e) R:}{yj = dyy, is again immediate from the definition.
(f) R(¥)is[21] or[12] according as o, = - or o, = I-. The proof of this is similar
to that of (d). O

The lemma now follows from the above observations.
We shall use the following result from [4]:

THEOREM 6.13 ([4]). Let { Vi, o;} be a pre-Lie system and ", g" " be ele-
ments of Vie, Vi, Vo respectively. Then
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(D (f™og"oh” — foig"oh?) = Z{—I]‘*"‘:”{f‘" o; g")) o; P, where the
sum extends over those i, jwitheither0= j<i —lorn+i+ 1< j<m+n.

Eii] {fm Dg"] I:‘h'n _ fm o {gl‘i‘ Dh,l:l:] — {_ I]Jrﬂ[{fm oh”] I:‘g” _ fm o {hp I::'g"].
O

THEOREM 6.14. Let D be a dialgebra over a field k. If f € CY' (D, D) and
g CY (D, D), then
fodg—d(fop)+ (=1 "8fog=(=D1PVfsg+ (=D g% f.
Proaf. From Lemma 6.12, we have
fodg—3(fog)+(=1)""5fog
=[(-1)¥"fo(rog)— fo(gom]-
—=1""re{fopl—(fopglom]+
+(=D'=1"" (o flog —(fom ogl.
As (CY"(D, D), o) is a pre-Lie ring, we have
fodg—3(fog)+(-1)"""3fog
=(—1"[(ro flog—mo(fog)
= (=1)PH [Z(_ P=Di+a=Digr o F) o 3]1

where the sum is over those i, j suchthat 0< j<i — | or j = p, corresponding
to i = (. The last equality follows from Theorem 6.13 stated above. Note that the

degrees of m, f, g are respectively 1, p — | and g — 1. Hence
fodg—38(fog)+(—1)y"5fop
= (=P p( oy f)op g +
+ (=D o1 f) oo )]
= (- oo flop g+ (=D (wong) oy f
= (D" P frg+ ()" g = f.
This completes the proot of the theorem. O

7. Obstruction Cocycles

The purpose of this final section is to prove Theorems 3.5 and 5.3 using the results
of Section 6.

Let F; and F,, be any two 2-cochains. First observe that by definition of the
pre-Lie product

F{(Ft(a,b).c) — Fl(a, Fi(b,c)), ify=[321],

F{(Fl(a,b),c) — Fl{a, Fj(b,c)), ify=][312],

(FooF,{yvia,b,c) = Ff{FI‘;{a, by, ey — Fl(a, Fi(b,c)), if y =[131],

F{(Fl(a,b).c) — F[(a, Fj(b,c)), ify=][213],

Fi(Fi(a, b),c) — F{a, Fi(b,c)), ify=[123],
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for all a, b, ¢ € D). Thus equation (11, ) 15,) can be rewritten as

8F,= 3 FoF,
Aol

dpe=l)

and the obstruction cochain G € CY* (D, D) as defined in Section 3 is aiven by

G= Y FioF,.

ER AT ]

EWTER |

Proaof of Theorem 35. By Theorem 6.14,
FheF)=FRoedF,—dF oF,+(mog Fylex Fi— (T op F3) o2 Fl.
Hence,

a0

Z E{FLDF;J

A bl

A, =0

— Z{FLDEF}I—EFJ.DF;:]

T

A=l
= Y [Fuo(FzoR)—(FacFs)oHl

o fii -

b, =il

By Lemma | of [3], we may assume that § # A in the term
Foo(Fgo ) —(Fyo Fg)o Fi.

Now as in Proposition 3 of [5], the above sum can be written as a sum of terms of
the form

[Feo(Fgo Fy + Fro Fg)— ((Feo Fg)o Fy + (Fgo Fy ) o Fg)],

where o + B + A = n, o, B, A = 0 and each of these term vanishes by (ii) of
Theorem 6.13. Hence 8 = (. Note that the cohomology class of (; is zero if and
only if G = §F, for some F, € CY*(D, D). Hence the last statement follows. [

Next, consider the case of a derivation. Recall from Section 5 that i_fa derivation
yry has been extended to a truncated automorphism W, = ::t'] ' of Dy, then
the {n — 1)th obstruction is the 2-cochain £ defined by

Ziu--—u:]{ﬂ,x{“]: a) - t:'-r'rﬂ{[”: h) II-}' — [2”
- . =
Fra.b) = 5 o) F v B ify = [12].

A =0
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Proof of Theorem 5.3. Observe that

(W = )([21]); @, ) (m op Yy o Y ([21): @, B)
T (RYRY211, ya([1); @), Y (1]; @)
= ltJl-r".'l.{“]. .E.I':l = t:'-r"lr:{“]'-hj

where 7 is the 2-cochain as defined in 6.8. Similarly,

(W = Y, WI12)5 @, b) = yad[1); @) = . ([1]; B).
Thus, F = 3 sipen ¥y # r, and Equations (25,) and (26,) of Section 5 can be

A=
written as
s, = — Z Yx,, forv=012...,n-L
)
Hence
8F = ) 84y =)
i
==Y | D vy | v — v | D v
A jie e e B PRyt
A= e, 3 =01 e, 3=
= — O {(Ya* ¥p) * Y — Y = (Y = Yu))
-
=1
as = is associative. The last statement is clear. O
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