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A geolagical map is the representation, on a wo-dimensional plane, of the dispasition of three-
dimensional rock bodies expased on the earth s surface The prblem of mapping is essentiallv thart of
dividing an area into “homogensous " swhregions on the basis of the exposed rock Dpes. Antomatic
Bavesian methods of model selection using defanlt Baves factors have been emploved 1o solve the prob-
lem of choosing a sef of bowndaries between “homogeneons"” subregions, asswning no complicarion
excepting low-angle tilting affectad mok bodies. The methad is tested an two data sers. A sampling
scheme for aprinum allocation of observation points is also presented.

KEY WORDS: Bayes factor, Bayesian model select ion, Fractional Bayes factor, intrinsic Bayes factor,
minimal training sample, noninformative prior.

INTRODUCTION

The conventional technique of geological mapping in an area having sedimentary
rock formations involves (a) identificaiton of rock bodies (beds) oulcropping on the
carth’s surface, (b) representation, on a two-dimensional plane, of the locations of
these three-dimensional beds, their melinations (dips) and wends, and (¢) tracing or
interpolating the boundaries between the contrasting rmock types laking into account
their trends (in a simplified case, the strike directions). Location of the boundaries
drawn in the same area by different geologists may, however, vary considerably,
due to personal perceptions of the geologist concerned.

For a statistician the problem concerned is one of defining boundaries be-
tween several “homogeneous” subregions. The present work amms al providing an
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automatic Bayesian solution o the problem with a view to defining the boundaries
as objectively as possible.

The boundaries are drawn between outcrops of rocks that are composed of
mineral grains of varying sizes. Hence, information on mineral proportion, pro-
vided by modal analysis of rock samples (by point counting in thin sections), as
well as that on gram siee, provided by grunulometne analysis, are essential inputs
for our work.

Starting with an area having sedimentary rock formations where the boundary
between two adjacent rock units is planar, and the topography is flat, we develop
our method that 1s general enough to be applicable o any datasetinvolving mineral
composition and mean gram-size. In the simple case that we consider, the rock
bodies are gently tilted, but not deformed. The strike directions running normal 1o
the axisof tlt are wken into consideration.

We apply our technique firstly to an area where all these information are
available, in a limited quantity, from an earlier study (Sengupta, 19707, AL a later
stage a larger and relatively more complicated case involving observed as well as
“senerated” data is considered, the latter being well within the limits of geological
acceptability.

Our methods, being automatic, are easy to implement in a PC and may help
a geologist in fine wning his first impressions gathered from a field wip. We try
to use as much of the geological information as possible. We do not want to re-
place a geologist’s expertize, only process the information he has or at least the
part of it that is easy to quantfy to start with. In an interactive mode, the geolo-
gist can spend tme saved in this way to make further subdivisions based on any
additional knowledge or information beyond the composition of rocks and strike
directions.

The statistical formulation of the problem involving theory as well as moti-
vation is presented in the next two sections. A model is set up for the available
data, given the subregions into which a given set of boundaries partitions the whole
area. Thus the problem of choosing a set of boundaries comresponds to selecting
one of several possible models. Readers interested only in the application of our
method may skip the next two sections and go directly to the section on Numerical
Cakeulanons giving an algonthm as an ad o application.

As briefly discussed in the text, we may also use our formulation o answer
two very imporant questions faced by geologists, namely the oplimum number
of samples to be collected in the field and their locations. We hope to discuss the
sampling problem in detal elsewhere.

STATISTICAL FORMULATION AND MODELLING

Our problem is to identify a set of boundaries (between geological formations)
that partitions the region into a number of subregions that are homogeneous with
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respect to certain characteristics of the rock such as mineral composition, mean
grain-size, ele.

For each possible subregion we postulate a lognommal distribution for the
mean grain-size (Sengupta, Ghosh, and Mazumder, 1991) and a logistic normal
distribution { Aitchison, 1986) for the mineral proportions. A partition then comre-
sponds 1o a model that assumes distributions for different subregions with different
sets of parameters. Thus the problem of choosing a set of boundaries or a partition
corresponds to selecting one of several possible models. Although many differ-
ent models (partitions) are possible theoretically, our technique, discussed in the
following section, allows us to limit the choice of plausible models.

We first consider the case with a single varable. In the specific case that
we consider first, spatial variation of mineral composition of a two phase aggre-
zate (feldspar + quartz or feldspar 4 grain size) is involved. In anearlier study the
feldspar proportion was found 1o have the highest discriminating power among all
the vardables (Ghosh, Saha, and Sengupta, 1981), so we begin with the univariale
data on feldspar. Let X denote the feldspar proportion. As mentioned above, an
appropriate distribution for X would be a logistic normal distrbution that assumes
normality of the transformed vadable logi X /(1 — X)), We cannot exactly assume
this distribution, however, because feldspar proportion may be zero for some of the
rock samples. This technical problem s solved by considering amixre with a dis-
tribution degenerate at zero. Thus the distribution of X is assumed 1o be of the form

Pl a)+ (1 —a)d (1)

where Pl o) is a logistic normal distribution with parameters g oand o, o is the
mixing constant, and 4 15 a degenerate measure putting all 11s mass at zero. This
distribution has a density with respect o a dominating measure, which 1s the sum
of the Lebesgue measure and 4, so we can calculate density and likelihood. The
density 15 given by

1 '
_,f'[.r;a,u,a}l:a—ijr(lug | u,a)+f1—a}ﬁf.r} i2)
x(l —x) 1 :

where ¢(- | o, o) is the density of N, crl}l, a 15 the mixing constant and

1, fx=0

(), otherwise. (3)

&) = I

If we wish 1o use a bivariate distribution, the variables suggested are feldspar
proportion and mean grain-size. Let X = feldspar proportion, and ¥ = log of
MEAn gram-size. Sel

R={x.7):0=x=] —o=<y=<oo}

Q ={ix.v):0=x=1l, —oc=y=oc
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and

={x.y:x=0 —o0 =<y <oc0}
On £, we assume (log(X /(1 — X)), ¥) ~ Nalp, E) where T is positive definite
and on £, we assume ¥ ~ N(£, %), The pair of random variables (X, ¥) is
assumed w have a distribution on £2 that 15 a mixture of the above two distnbutions
on £2) and £, 1f we consider the sum of the Lebesgue measure on B and a one-

dimensional Lebesgue measure on £25 as the dominating measure, the density of
the joint distribution of X and ¥ is given by

Flx.v|lop B A =ag(x, v | . E)+ {1l —ad(x, v | E.4A)., (x.¥y)ef
()

where

X

1
glx, v | . )= ——— (Iug v | e, E). if (x,y) € Q
x(l — x) 1

—Xx

=), otherwise
and

hix,v|E, Ay =gy | E4), if(x,¥) el

=}, otherwise.

Here ghal- | g, £ is the density of a bivariate normal distribution with mean g and
dispersion Z, ¢b(- | £, 1) is the density of Ni£, )-.3}, and @ = @ = 1 1% the mixing
constant

The case with three variables, namely feldspar proportion, quartz proportion,
and mean grain-size can be handled in a similar way.

Remark 1. If feldspar proportions for all the rock samples are positive, we need
not consider the mixture distributions as given by (2) or (4). The densities i this
case are obtained from (2) or (4) pulling e = 1.

Our object is to make inference about both the number of boundaries and their
locations. Note that each set of (& — 1) boundaries partitions all the data points
into & groups. For samples within a group (subregion) we assume the random
varbles (or vectors) o be independent and identically distributed, whereas across
the groups we assume independence and homoscedasticity. Thos inour model, we
assume that data for different groups have the same dispersion parameters but other
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parameters (e.g., means) differ according to the group. For example, if we wish
to use only feldspar proportion, we use for the data in the ith group the univariale
distribution (2) for feldspar where e and o are replaced by g and «; but o does not
depend on i. 1t is clear that different boundaries leading w the same partition will
have the same likelihood and it is easy Lo ranslate inference about partitions into
inference about boundaries. So we concentrate on partiions that are slightly easier
to deal with. In passing we note that in more complicated cases than that treated
here, where there are & mock types and more than (£ — 1) boundanes because the
same ok Lypes are repeated i space, our exercise may be applied more than once
in different parts of the map.

LIKELIHOOD AND MODEL CHOICE

We first deal with the univarate case. For any fixed k = 1, a setof (K — 1)
boundaries or a partition with £ groups comresponds to a model M that states that
the observations i the ith group are Li.do with a common distribution having
density

Flx Lo, i, a) (5)

k groups of observations are also independent. The likelihood of such a partition
or model 15 given by

& i
L, pr, i =12, .. k| X) =[[[] rxy | aw. i, @)

i=1 j=I
where

n; = number of observations in the ith group, n = Zny;

and X denotes the whole data set.

Note that the above hikelihood imvolves the unknown model parameters. In
order to make a choice of a partition (that gives a map) we now find the likelihoods
of the possible partitions by integrating oul the parameters with respect to a suitable
prior. We call this the integrated likelihood. Since subjective specification of prior
distributions forall parameters of all the models is not feasible here, we use standard
noninformative priors 1o compute the integrated likelihoods. Indeed we consider
uniform prior for ¢ and standard noninformative prior ql d 1y de for g and & and
caleulate the integrated hikehhood

: da
H![X}I=fL[u,,a,,a,r'= 1,2,..., k| X}ll—[da,l_[du, iy
a
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Altematively, we can eliminate the unknown parameters by maximizing the
likelihood with respect to them keeping the partition fixed and thus obtain a sort
of “profile” likelihoods of the paritions. It tums out that the integrated and profile
likelihoods can be expressed in closed form. The expressions are given in the
Appendix.

We choose the partition with the highest integrated likelihood. If all partitions
are egually likely a priovi, thiv would cormespond to choosing the partition with
the highest posterior probability. It is also the partition that minimizes the Bayes
risk with 0=1 fess.

Altematively, we can choose the partition with the maximum profile likeli-
hood. This would be the maximum hkelihood choice, which will usually be close
Lo the Bayesian choiee described in the previous pargraph.

We now consider the bivardate data on feldspar proportion (X)) and logarithm
of mean grain-size (¥). We assume a distribution with density.

flx, v | op, p;, B8, L) (6)

for the observations (Xi. Yijh.j=1.2,..., nionthe ithgroup (i = 1,2, ..., k)
where f is as given in (4). As in the univariate case we consider uniform prior
for o;, and standard noninformative priors } dp; dE di for g & and AL The
standard noninformative prior considered for £ is| 2]~ We calculate integrated
likelihoods of possible partitions. We may also caleulate “profile™ likelihoods of
the partitions by maximizing the hkelihood with respect wo the model parameters.
The expressions of the integrated and profile likelihoods of a partition are given
in the Appendix.

In actual practice we do not calculate the integrated or profile likelihood of
all partitions. This is primarily because it would have taken a lot of computer lime.
Moreover, mostof this time would have been spent on improbable partitions. So we
choose a set of partitions using a heuristic principle that is based on the available
strike directions. The sirike directions clearly indicate a trend of the bed, which
give some idea as to which groupings of points will be more probable. Although
the boundaries may not be strictly limear, they can be, at keast approximately, be
tmagined to be “precewise linear” with the directions given by the sinke directions.

For the data sets considered in this paper, we have identified a number of
partiions that we need to choose from corresponding Lo

Case (1) No boundary assumed.
Case (1) One boundary assumed.
Case (111) Two boundaries assumed.
The methods described so far are only adequate for making a choice from a

sel of models (partitions ) of the same dimension. An explicit justification of this
for location-scale models ( like ours) as well as more general group models appears
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in Berger, Pericchi, and Varshavsky ( 1998). In the actual problem of simultaneous
determination of the number of boundaries and their locations, it is not appropriate
to make a choice based on just the integrated {or maximized) likelihoods, since the
competng models that we have considered comesponding o Cases (1), (1), and
(1ii) above, do not have the same number of parameters. (1tis w be noted here that,
due to the presence of some zero feldspar proportions, even some models with
the same number of boundaries may not have the same number of parameters.) In
such cases the principle of parsimony requires that a model with more parameters
should be penalized for its complexity. Use of maximized likelihood tends to favour
complex models. Integrating the likelihood with respect to a noninformative prior
has adifferent problem when comparing models of different dimensions. A solution
lies in the use of recently developed methods due 1w Berger and Pericchi (1996,
(" Hagan (1995), and others. We describe two of them below.

Let My and My be two competing models with the data X having density
Fitx | @) under model M ;. The unknown parameter vectors 8, are of dimension
£ and have prior distributions (@, ), j = 1, 2. The Bayes factor (BF) of M2 to
M 15 defined as

_oma(X) [ falX | 8)m,(8,) d8,
S om(X) A 8)m8,) d8,

(7

where m j(x) = [ filx | 8;)m (@) d8; is the margmal or predictive density of X
under M;. Nowe that m ;{ X} 15 the mtegrated hikelihood with respect o prior
under M.

The Inirinsic Bayes Faclor

A solution o the problem with improper priors is w use part of the data as a
training sample. The 1dea 15 o use the training sample o oblain proper postenor
distributions for the parameters that can then be used as prioss o compute a Bayes
factor with the remainder of the data. Let X(!) denote a part of the entire sample so
that the posterior 7,08 ; | X(I0) = f(X00) | 80w (8,)/m (X)) is proper. Here
m () = f Filxtly | 8hmi(8 ) d B is the marginal density of X({). The (condi-
tional) Bayes factor with the remainder of the data, using w8, | X()),i = 1.2
as priors 15 given by

my (X))

Byl = EEIE;(XU}}

= Ba B2 (X1, (say) (8)

corresponding o a trmning sample X/,
The idea of a training sample has also been used in Atkinson (1978), Geisser
and Eddy (1979), Spicgelhaller and Smith (1982), San Martim and Spezealem
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[ 1984), and Gelfand, Dey, and Chang (1992). Berger and Pericchi ( 1996) suggested
using only minimal wraining samples X({) for which the marginals are finite and
then taking an average of all the coresponding By ({)s 1o obtain what is called the
intrinsic Bayes factor (IBF). For example, the average can be done arithmetically,
leading to

|
AlBF» =

el
ol

L
Y BuX(M) (9)
I=1

i
Y Byl = By
=1

where L denotes the number of minimal training samples used. 1If the 8. (/s for
different training sample X(/)s vary much, aking an adthmetic average does not
seem reasonable and in that case Berger and Percchi (1996) suggested vsing the
trimmed averages or even the median (complete trimming) of the B,/ )s.

The Fractional Bayes Factor

" Hagan (1995) proposed a solution using a fractional part of the full like-
lihood in place of using training samples and averaging over them. The resulting
“partial” Bayes factor, called the fractional Bayes factor (FBF) is given by

mal X)) mi X, b)

FBE:, =
mi(X) malX,b)

(10

where
mlx, b) = f[fJ-[.t' | ﬂ‘J-}lf’.ﬂ'J-fﬂ‘J-}:Iﬂ‘J-. (11}

:nJ-[.r} are as defined in (7) and 0 = b = 1 is a suitably chosen fraction such that
m(X.b), j = 1,2are finite.

In the present situation a model is represented as a padition of the entire
sample into a number of groups with distributions given by the density (5) or (6)
for the ith group. The expressions for m(X) under & model (partition) M are as
given in (Al), (AZ2), (Ad), or (AS) of the Appendix depending on the case. The
expressions for m(X, b) are given in (A7), (A8), and { A9).

A SAMPLING SCHEME

The observations made during a reconnaissance (first stage) study provides
only a broad idea regarding the possible boundaries between rock formations
iFig. 2). For more precise delineation of the boundary, observations on a large
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Figure 1. [t set 1 data on {feldspar percentage, mean grai n-size) at different location points.
Mean grain-size is expressed in ¢ units, when ¢ = — log, d, o being the gmin dizmeter in mm.

number of locations are required. The sampling scheme, discussed below, allow
us to answer the very important questions—{ 1) how many new samples are 1o be
collected, and (2) where these sampling points are to be located. Such a scheme
cannot be discussed or denved without a statistical formulation as presented earlier
in the paper.

Our sampling scheme is illustrated with the help of the information on feldspar
proportions in the western part of the map (Fig. 1 and Table 1). Suppose that we
have already obtained a band for the boundary in the westem part of the map from
our first stage observations (Fig. 2). We consider a finite set of uniformly spaced
possible boundares, say, {8y, Ba. ..., B} (from which we are to make a choice)
in the neighbourhood of this band and also a pnor probability distribution on this
sel. In the present sitwation, utilizing the strike directions, it 1s possible o choose
a sel of nonintersecting boundaries.
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Table 1. Observations on Feldspar Proportion, Labelled Accomding to the Trend of
the Bed {Data Set 1)

Serial number  Feldspar proportion Serial number  Feldspar proportion
| (L1304 11 0.0
2 (L1257 12 0.0
3 (LO6RS 13 0.0
4 (L0509 14 0.0016
3 0.0 15 00035
L] 0.0 [1i] 0013
7 (L0 17 (L0532
] 0.0 I8 (.01 80
9 0.0 19 (1.0552
1 .0 Al 0.0212

79740 E

Figure 2. Bands for the boundaries corrzsponding to Data set 1.
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Let X denote the data at the first stage. Given g boundary B, the data points
X are divided into two groups. As described in the Appendix [see (Al)], we can
find the integrated likelihood mi(X | B;) (say) for the partition corresponding 1o
cach B; i=1,..., k. From these one can find the marginal density mix) and the
posterdor probabilities for each of the boundaries. For a uniform prior over the set
of boundaries (which will be used here) we have

k

1
mix)= T me.r | B;)
i=l
and the posterior probability of B; is
(X) el i =1,2,....k (12)
m=p5 = —g - I=14.., . 2
Y. m(X | B))

We consider a loss LB, ﬁ}l =||8— ﬁ, the area between a choice B of the
boundary and the true boundary B (within the area 1o be mapped). This s simular
to the loss considered in Switzer { 1967). The posterior risk of B is then given by

k
> pillB — BIl.
i=]

Thus the posterior risk of B is the expected area that is misclassified when B is
chasen to be the boundary.

A (Posterior) Bayes choice of the boundary is one for which the above pos-
terior risk is minimum with respect to B and this minimum value of the posterior
risk is called the (posterior) Bayes risk. In case of nonintersecting boundaries, if
By, Ba, ..., By denote the consecutive possible boundaries starting from the west,
then the (posterior) Bayes choice isa sort of median B, where r is a positive integer
such that Y77/ p, = 1/2 and ¥7_, p; = 1/2. The (posterior) Bayes risk is then
given by

BR(X) =

k
pillB; — Bl (13)

1=l
MNote that the area of the band for the boundary (within the area to be mapped)
obtained with the first stage observations is proportionalto the corresponding Bayes

risk. Forexample, if we take five possible boundaries (as taken inour illustration),
this Bayes risk is approximately (0.3 times the area of the band.
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We now consider the problem of finding optimally the number of second
stage location points and their location given the first stage observations X, For a
particular choice of s (say) locations for the second stage, let ¥y, . .., ¥, denote the
corresponding feldspar proportions and also let X' = (X, ¥, ..., ¥ih Using the
expressions for the integrated likelihoods m(X"| Bs given in (Al) we can find
the predictive density miyv. ..., v, | X) of the second stage (future) observations
Vi ¥, given the first stage observations x:

Yo, mX,y|B)
S m(X | B)

miy | X)=

We can also caleulate the posterior probabilities p( X) of the boundaries given
X’ and the (posterior) Bayes sk BRIX") {given X') that is given by (13} with p;
replaced by pi( X'). Since the Bayes risk BR{X") depends on ¥ which is yet unob-
served, we find the average Bayes dsk, averaged with respect to the predictive dis-
tribution miy | X). It is, however, difficult to integrate with respect to the distribu-
tion miy | X). So, we proceed as follows, We draw samples y'' = f_v‘l".] _____ _1.':.".:'}

then find —,L Z'Ll BR({X.y"/"), which serves as an approximation to the average
Bayes sk for large enough N.

Simulation from the distribution miy | X) is possible. We can draw samples
FiaF2seees v, one by one. The function m(y; | X) will be of the form.

miv | Xi=p ifyy =10
: 1 1
1 I e
¥ — P ¥
550 (g (e )

where (;(z) are gquadmtic expressions iz, the constants gy, wy, A, and the

if vy = 0, (14)

constants in the quadiratic ¢ depend on X. For an appropriate linear function
Z of logiv, /(1 — v}, the density miy, | X)on v > 0can be writlen as

and then sampling can be done, for example, by Acceptance-Rejection method
(see,e.g., Fishman, 1978, p. 399).

For several possible choices of the second stage location points we now find
the average Bayes risk on the basis of which we can make our final choice of
the second stage locatons. For example, given a threshold we find the number of
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location points (5) and ther location such that the average Bayes risk 1s kess than
or equal tothe given threshold. Alternatively, given a threshold we find the second
stage location points such that the probability of the posterior Bayes risk (not
averaged) being less than or equal to the threshold s at least 0099 or so. It can be
shown that as the number of second stage units, suitably distributed, increases, the
average Bayes risk can be made as small as we wish. So in principle our methods
will work.

For location of the boundary in the western pant of the map (Fig. 2) we
first choose a set of possible boundaries suggested by the corresponding band
and the local strike directions. Indeed, we have chosen five (noninlersecting ) uni-
formly spaced piecewise linear curves in the neighbourhood of the band. Let
Biiiian Bs denote these five possible choices of the unknown boundary (starting
from the west). Given 8. ..., Bs, the whole region 1s divided into six subregions
Ry, ..., Ry where R and R denote respectively the regions o the left of B and
to the rght of Bs and Ra, ..., R are the regions in between consecutive bound-
ares. We represent a particular choice of the second stage observation points by
the six-tuple (s, ..., %), ; being the number of points in ®;, because the aver-
age Bayes risk for a particular choice is the same as long as (5, .. ., 5) remains
the same. Comresponding to different values of the wtal number of second sage
observation points 5, we calculate the average Bayes risk for all possible alloca-
tons (s, ..., s) and can find the (optimum) allocation with minimum average
Bayes nsk.

NUMERICAL CALCULATIONS

We begin this section by presenting a description of our method in the form
of an algorithm.

Or method is apphcable when candidate boundaries may be approximated
by precewise hinear curves with slopes determimed by local siike directions. The
data consist of mineral proportions, like those of feldspar and guartz, and also
the mean grain-sizes in rock samples collected at different location points. Below
we use either the univariate data on feldspar proportion or the bivariate data on
feldspar proportion and mean grain-size. The successive steps of our method are
as follows.,

1. The firststep of our method consists of labelling the data along the trend

them. To do this we think of a continuum of (nonintersecting) piecewise linear
curves, fixed by local strike directions, We then proceed along a line traversing
all of them, and number the data points as they appear one after another on the
Successive precewise linear curves.

A partition of the data into & groups may then be specified by assigning n)
of these points o the first group, rs o the second group, ete., with ZL, np=n.
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Usually, but not necessarily, the ny points of the first group will be the “first”

ny poants with labels 1.2, ..., ny, the second group will have points with labels
s i PR ny + naand soon. In this case we specify the comresponding partition
by the k-tuple(ny . na, ..o, npwithd =n; =n, i=1,2,..., K and Zf=| n; =n.

In other cases, like the one appearing in the fourth row of Table 6, we specify each
group of a partition by mentioning the labels of the observations falling in that
Zroup.

Each partition specifies the distribution of the observed data as random vari-
ables, that is, it specifies a “model”

2. We consider next all possible partitions of the form (ny, na, ..., ny) for
different values of k, where each group consists of data points having consec-
utive labels. Each of these partitions corresponds to a model M for which we
caleulate the value of the integrated likelihood using one of the expressions (Al),
(A2), (Ad), and (AS5) depending on the case. If we have zero feldspar proportions
for some of the rock samples, we use (Al) for univariate data and (A4) for bi-
variale data; otherwise we use (A2) and (AS) for univariate and bivanate data,
respectively.

3. The next step consists of identifying the partitions having the highest
valuesof the integrated likelihood foreach kb k =1,2, ..., kg forsome appropriate
ki that 1s the geologist’s choice. For the data we have analyzed, kg 1s taken 1o be 3.
These give us the best partitions, and accordingly boundaries, for each k.

It should be noted here that our mode of grouping the data depends heavily
on the way the candidate boundaries are fixed by local strike directions. It is quite
possible that actual boundary may show a moderate deviation from strike direction.
Tocope with this possibility we allow afew more partitions as follows. Foreach &,
we first consider all the pattitions of the form (g, na, . .., . ) and choose top few
partiions from them. Each of these chosen partitions (ny, na, ..., ng ) suggests
approximate location of & — | boundares. For each of these k — 1 boundaries,
we reallocate the location points, close 1oL, to anyone of the subregions on both
sides of it and thus obtain a number of new partitions. We calculate integraled
likelihood for all these paritions and choose those with highest values of the
mntegrated likelihood.

4. We address next the issue of choosing the best partitions over the choices
of & we have made. This involves pairwise comparison of partitions that corre spond
to models of differing dimensions. Suppose that we want Lo compare two partiions
Py and Ps that correspond to two models My and M where the number of groups
in Py is less than thatin P, We caleulate the (adjusted) ratio of likelihood given by
default Bayes factors such as IBF or FBE. If a Baves factor of Ms 10 My is bigger
than 1, we accept My ( Py, otherwise we accept M| (P ). Inthe present context, the
FBF is easier to calculate because it does not mvolve choices of “training samples™
as in the 1IBF approach. The readers mterested only in FBF can omit the next three
paragraphs.
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The IBF Approach

This approach involves the notion of minimal training samples. These are
minimal subsets of the whole data set for which the integrated likelihoods are
finite. For each minimal training sample Xi({), we calculate the conditional Bayes
factor (CBF) By (1) using (7) and (8) noting that m ;{ X) andm (X () of (7) and (8)
are respectively the integrated likelihoods for the whole data X and for a training
sample XiI) under M ; the mtegrated likelihoods are calculated as described in
Step 2 with model M, used as model M. We then calculate the arithmetic average
(ALBF), rimmed arithmetic averages and the median {Median 1BF) of the CBFs
Bay(l).

To compute the IBFs, we need 1o choose minimal subsets Xi(f) of the whole
data X for which the integrated likelihoods m ( X(0) are finite. Consider, for exam-
ple, the univariate data on feldspar. Let & (ky; ) denote the number of groups with at
least one positive observation under a model M (M ;). From the expression (Al) of
the integrated likelihood miX) under a model M, we note that for this 1o be finite,
the total number of positive observalions must be greater than ky. Thus for com-
paring twomodels My and My a training sample X(0) must have max(ky) ., kge) + 1
positive observations and should represent all the groups (corresponding to both
the models) containing positive obse rvations.

In particular, it M is nested in Ma (i.e., if P;is oblained from Py by splitting
some of its groups), a minimal taining sample may consist of two positive ob-
servations from one of the groups corresponding to Ma that contain (at least one)
positive observations, and one positive observation from each of the remaining
groups conlaning positive observations.

The FBF Approach

FBF is defined in (10). The values of FBF can be obtained using (107, (11),
one of the expressions (A L), (A2), ( Ad), and (A5), and one of the expressions (A7),
( AB), and (A9) depending on the case. FBF involves a fraction b. For the case with
univariate data, we choose b = (maxiky . kg2 )+ 13/ m where kg 18 the number of
groups with at least one positive observation for model M, and m is the total number
of positive observations. For bivariate data we choose b = (max(k, kj2)+ 2)/m
where ky; is the number of groups with at least one positive feldspar proportion
for model M; and m is the total number of rock samples with positive feldspar
proportions.

5. Comparison of the best partitions for different values of k on the basis of
the IBF or FBF yields a best partition from which we oblain approximate location
of the boundaries and also the comresponding bands for the boundaries using the
available srike directions.
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One can write computer programs for the caleulations involved in the steps
mentioned above. A few FORTRAN programs are available from the authors (SP
or TS).

As examples of how our methods work in practice, we now present some of
the numerical calculations we have done with two sets of data.

Example 1. We first consider a real data set collected by one of us (55) from the
Godavan Valley, India. Figure 1 gives a plot of the 20 location points at which
rock samples were collected, with data on feldspar percentage and mean grain-
size (after a logarithmic wransformation) shown against each of these points. Since
feldspar proportions were found 1o have the highest discriminating power, we show
our calculations with feldspar data only; the idea is to use the other vadables for
fine tuning. Table 1 presents the observations on feldspar labelled according Lo the
trend of the bed.

We did our calculations with feldspar data following the steps mentioned
above. Moreover, we calculated also the profike likelihood for all the partitions
considered using the expresswons given i (A3). We choose the patition with the
highest integrated likelihood or profile likelihood. 1t was expected that the methods
with profile likelihood and integrated likelihood would yield similar results since
in a sense one is an approximation 1o the other. Interestingly, the partitions are
ordered exactly in the same order of preference on the basis of both the integrated
likelihoods and the profile likelihoods caleulated from the observed data.

Table 2 shows the top two preferred panitions, for both the case with one
boundary and the case with two boundanes, wgether with the corresponding values
of the integrated likelihood and logarithm of the profile likelihood.

MNote that all models (partitions) comresponding W the case with one boundary
that we considered are of the same dimension, and therefore, comparison in this
case can be made on the basis of the mitio of the integrated likelihoods ( BF). Thus
we select the partinon (13.7) 1l only one boundary s assumed.

On the other hand the models corresponding to the case with two boundaries
are not all of the same dimension. Indeed, the model (4,11.5) is of higher dimension

Table 2. The Integrated Likelihood and the Logarithm of the Pmofile Likelihood for the Feldspar
Data (Daty Set 1)

Partitions Profile loglikelihood Integrted li kelihood
All observations in a group (no boundary ) 152 290,60
Case with one boundary
(137 1A% 48755449
{4,16) 1369 39591 .43
Case with two boundaries
4,115 2569 4543 » 107

497 X405 96247 w2 107
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Table 3. BFs, [BFs, and FBFs of (4,1 1,5) Relative to the Other Models Considered { Data Set 1)

Models {4,11,5) 10 {4.9,7) 4, 11,51 o (13,7) (4, 11L5)t0 (4,16)
BF 4732 Q4.97 11,474 64
IBF—AM (133 0513 79092
IBF—10% trimmed memn 108 21585 98
IBF—20% trimmed mean L.14 X832 ITT2AS
IBF—median 1.13 TR0z IR05.23
FBF 538 285.74 168777

than the model (4.9.7). Thus in order o make a final choice we are 1o calculate the
IBFsof (4.11.5) and (4,9.7) relative to (13,7) and (4, 16) and of (4,11.5) elatve 1o
(4.9.7). Now it is intuitively clear that comparison of the model (4.9.7) with (13,7)
or (4,16) may be based on the ratio of the integrated likelihoods { BF) because the
former has only one additional a-parameter for which proper prioris used. Indeed,
it can be easily seen that the IBF of (4.9,7) relative to (13.7) or (4,16) is the same
as the comesponding BE

From Table 2 we can conclude that (4.9.7) 15 clearly preferred over (13,7)
and (4,16), the corresponding BF (or IBF) bemg 200.2 and 243 1.0, respectively.
Table 3 presents the values of IBFs and FBFs of (4,11, 5) relative to (4,9.7), (13,7},
and (4,16). We have also presented 10 and 20% wrimmed means of the By, (s
and also the median (complete rimming). The models (4,11,5) and (4.9.7) are
preferred over the other models we have considered.

Remark 2. Choice of the wraining samples for calculation of IBF in the general
case with special mention o the nested case is deseribed above in Step 4 of the
algorithm. When we compare (4,11.5) with (4.9, 7) or (13,7) we are in a nonnested
case and we form training samples in such a way that all the groups of (4,11.5)
(and hence the groups of (4,9.7) or (13,7) with positive observations) are repre-
sented. Here a training sample must contain four positive observations and we
take, in a training sample, one or two (positive) observations from the first group
of (4,11.5), one of the two positive observations from the second group, and two
or one (positive) observations from the third group.

As an illustration of the use of our sampling scheme proposed in the previous
section, we consider, as an example, the problem of locating a boundary in the
western portion of the map (Fig. 2) for the feldspar data of Table 1.

As mentioned in the last paragraph of the previous section, we have calculated
the average Bayes rsk for all possible allocations of the second stage observation
points corresponding to different values of s (the total number of second siage
observation points). Table 4 presents the best possible allocations of 5 second
stage observation points and the corresponding average Bayes dsks (in sq. km) for
different values of 5. For example, if we want to sample from six more location
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Table 4. Best Possible Allocations of s Second Stage Sample Points and Average
Bayes Risks (in sg. km) Corresponding to Diferent Values of 5 (Data Set 1)

Avemge Bayes risk for the

5 Best possible allocation hest al location
3 (0,0,3,2,0,0 08601
L] (0,1,3,2,0,0 07750
7 (0,1,3,2,1,0 07014
] (L,1,3,2, 1,0 La3a4
9 (1,1,3,3,1,0 (L5883
1 (L1431, 0.5469
15 (3,0,5,5,2,M 04014
L] (4, 1,11 10,4,0) 02215
5 e z
II"."’]":'l G e 4,
\ iw Y
3
* 36 o
"-,H it \ %
| Ky
\ LR ¥ LR Y
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Figure 3 Fifty location points and boundanes comesponding to
Diata set 2.
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points, the optimum allocation is (0,1,3,2.0,0,), that is, we collect one rock sample
fromregion R, three from Ry, and two from R, where R are as defined in the last
paragraph of the previous section. If we require the expected area of misclassified
region 1o be less than 0.3 sg. km, we need 1o sample 30 points (see last ow of
Table 4).

Example 2. Wenow demonstrate applicability of our method on a larger and more
complicated data set. For this second data set we assume the same strike directions
(i.e., the same trend of the bed) as in the preceding example, and 50 location points
(as opposed o 20 in the previous case) and generate data on feldspar proportion
and mean grain-size using information available from the real data set we have.
Figure 3 gives a plot of these 50 location points scattered over the area. The data
on feldspar proportion and mean grain-size, after a logarithmic transformation, for
50 location points are presented in Table 5. We identified the probable partitions as

Table 5. Observations on Feldspar Poportion and Mean Grain-Size, Labelled According to the Trend
of the Bed {Duta Set 2)

Seral Feldspar Serial Feldspar
numher  proportion Mean grin-size number  proportion Mean grin-size
| 01121 L.141 i (L0761 1.926
2 (L1014 1. 134 ) (L0703 2024
3 (L{K55 L1435 28 (L0725 2134
4 (LK 30 1102 X (1.0674 1.673
5 00922 1108 x L0812 1.935
Li] (L08R L7 3 (L0811 1.910
7 (L0862 (1903 32 (LOB21 1.772
] 0778 LIS 33 (L0831 1.876
9 (L7 LO14 M (L0819 1.863
1 (L0829 1.127 35 (LORH 1.249
11 (L0829 L1y 3a (L0877 1.255
12 0OELL 1.743 kr) 00894 1.367
13 (LOE 13 1.736 38 (L0820 0.741
14 (L0821 1.789 k! (L0797 1.124
15 (LOBET 1982 4 (L0819 1.116
1131 (L7 ER 1.765 41 (L.(K38 1.022
17 (L0744 1.477 42 (L{BZ1 1.288
I8 008G 1938 43 (LORES (1.834
19 01725 1L.E43 44 (LKA 1.257
X (L3 1.732 45 (L0847 .89
| (L0684 1.a53 46 (LORH 1005
n ({17 39 KT 47 01042 1.262
n (L0657 Lasd 48 0107 1.454
4 (L0642 1.432 49 LE® 1.339
25 L0877 2031 ] (L{K35 1.282

Nore. Mean grain-size is expressed in ¢ units, whemre ¢ = — log, &, o heing the grain dizmeter in mm.
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Table 6. Integrted Likeliboods of Most Preferred Partitions for Data Set 2

Partitions Integrated likelihood

Case with one boundary

(3.16) 1487 = 100

(1, ..., 3 39; 35 ., 38 40,... 50 1.217 = 10
Case with tan boundaries

(11.23,16) 8.205 = 1077

O 10 12, 34, 37:35,36, 38, ..., 50 1.599 = 107

above and calculated the corresponding integrated hikelihoods using the expression
ziven in (AS). Table 6 shows the top two preferred partitions, for the cases with
one boundary and two boundaries, together with the comesponding values of the
integrated likelihood. In order to compare the best three-group partition (11,23,16)
with the best two-group parition (34,16) we caleulated the AIBF and FBF of
(11,23,16) relative 1o (34,16), which were found tobe 3.1286 x 10" and 5.2397 =
10, respectively. Thus the most preferred partition is (11,23,16).
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APPENDIX: EXPRESSIONS FOR THE LIKELIHOODS

In order to make a choice of a partiion or model we need to find the integrated
or profile likelihoods of the possible partitions. Expressions for these likelihoods
are given below.

Univariate Data on Feldspar

Let us consider a partition with n; observations X, j = 1.2, ..., n;. in the
ithgroup. i =1,2, ..., k and let M be the comresponding model.

Let m; be the number of positive observations in the ith group, I be the set
ofalli(i=1,2,..., k) for which the ith group contains at least one positive
observation, &, = number of elements in the set I.m =% m;.n =% n;, and X
denote the whole data set.

Integrated Likelithood

The expressions for the integrated likelihood under model M, denoted by
mi{X), are given below.,

Case 1. Some of the observalions are zero.

k

(mm; Wiy — m;)! 1
m(X) =
EII (n; + 1) Ha.j:xﬁ:cr“ — X)X

L T

— - (Al)
b1 VM )t 2TCSS) T
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where

My My

TLss_ZTL‘:S{:}_ZZ log— _—;Zlug

= = '-l ‘

We note that the expression in (Al) is finite only if m = k.

Case 2. All the observations are positive.

(X} : e 1 1"{" : (A2}
m =i——— | | =g .
[T, — X)Xy L1 Jni (m)F 2TCSS)T
where TCSS s asin (Al withmy =n;and T =1{1,2,..., Kk}
FProfile Likelihood

Maximizing the hikelihood with respect o the parameters we have

" L m; m; m 2T
log LY(X) = E m; log : 4+ (g —m;) log|1— F = log ;
1=l ] 1

m m
— ) loglXy(1 — Xl — 5 — 5 log[TCSS] (A3)

eS|
where LY denotes the maximized likelihood.
Bivariate Data
We now consider the bivardate data on feldspar proportion (X)) and logarithm

of mean grain-size (¥).
Let us consider a partition with n; pairs of observations (X, ¥l j =1,

Aoseiy ng.mtheithgroup,i = 1,2, ..., koand ket M be the corresponding model
Letm; = number of pairs in the ith class with positive X -observation, [ is the
setofalli (i = 1,2, ..., k) for whichm; =0, histhesetofalli (i =1.2, ..., k)

such that m; < n;. k. = number of elements in the set f..r=1,2.n = Zn,,

m=Ym
Si=3" ) (y-&°

iely jiX;=0

= Z E (Ui — U — ),

igd j:X;=0

&= iy — ZJ Xii =i ]" U‘J = flt}ngU-l.-’l - XJJ' ) rl.l'}:= and j; = ﬁzj:n;_—»ﬂ UU'
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Integrated Likelithood

Case [. Some of the feldspar proportions are zero. The integrated likelihood
m{ X, ¥) under model M s given by

k

(m ) g — mg !
Dhhoks L= l_[ (n; + 1! I—[(

iely

! m—k m—k —1 — i —ir— T
x;l"( ')1_.( | )5'; k)2 g (k2 Ay

w (m }—1.'|+.'.lr—_:'k| —ka—1 :l_,"_:'l- ( n H— "-3 ) 1
2 HJ.J’:X,.I.:-H{]' 3 Xl'j }XU

2

Case 2 All the feldspar proportions are positive. Here

1 1 L n—k
(X.¥)= : —|r
m ::' l—L.J_f]_ — XJIJ'}XJJ' _I—l-.u—J:—I;E D (!‘!J ) ( 2 )

—k—1 :
s ("—) ESEE—ﬂal—k:I_.'E Eﬁj}

3

Profile Likefthood

Maximizing the likelihood with respect to the parameters we obtain the profile
likelihood L*(X, ¥) that is given by

log L*(X.¥)= Z Im, log ) +(n; —m;) Ing(l — ﬂ) |
n;

-+ m
— E Z log{ X; (1 — X0 — = log 2x
igd j:X;=0 =
n4+m m [& ] n—m) 5
Loh _‘}_ — E I{)g | E| - 2 Iﬂg (” R . {A'EI‘}

where my, ny,m,n, 0y, 5, and 5, are as in (A4).
For calculation of FBF we also need to caleulate integral of a fractional part of

the likelihood denoted by miX, byorm( X, ¥, bydefined in (11) where 0 = b = 1.
The expressions for different cases are given below.
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515
Case 1. Univarate data with some zem observations
m(X.b) = ﬁ Fibm,; 4 llq}ll"fbfnl- —m;+ 1) 1 ;
£ (br; 4+ 2) HJ.J‘:X,,-:»(?“ — X,-J-}'"XJJ.
x |1 L) (AT)
il J’T{Ir}ﬁ'“ TCSS) =™
where n;,my,.m., Xk, I, and TCSS are as defined in (A1)
Case 2. Univariate data with all positive observations
; {.'m—k
Xig)h X ”ﬁ(n}"‘ _Jm;_zrrcssﬁ'—* i

miX,.h) =
]._L.J':X.-..:»II! ijoi=l1

where n;, n, X,k and TCSS are as defined in (A1)

Case 3. Bivarate data.

For the bivarate data analysed in this paper, all the feldspar proportions are

positive and we give below the expression of m( X ¥, b) only for this case.
k

1 ! !

m(X, Y. b= P v l—[(_)
TT AT — XXy 72 |\

Ba—k—1 ¥

i )b_kibﬂzi—ﬁm—k.{.‘l {Ag}

xr(”";")r( ;
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