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Measurements of agreement are needed 1o assess the acceptability of a new ar generic process, methodology, and formulation in areas of
laboratory performance, instrument or assay validation, method comparisons, statistical pmcess control, goodness of fit, and individual
bioequivalence. In all of these areas, one needs messurements that capture a large proportion of data that are within 2 meaningful
boundary from target values. Target values can be considered rimdom {measured with emor) or fixed (known), depending on the situation.
Warious meaningtul measures w0 cope with such diverse and complex situations have become available only in the last decade. These
measures often assume that the target values are random. This article reviews the literature and presems methodologies in terms of
“goverage probability” In addition, analytical expressions are intmduced for all of the aforementioned measurements when the target
vilues are fixed and when the ermor stucture is homogenous or heterogeneous (proportional to target values). This anticle compares the
asymptotic power of accepting the agreement acmoss all competing methods and discusses the pmos and cons of each. Data when the
target values ame random or fxed are wsed for ilustration. A SAS macro program to compute all of the proposed methods is avai lable

for download at hitp dwarwwic edw! " hedayaty,
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1. INTRODUCTION

Measurements of agreement are needed to assess the accept-
ability of a new or generc process, methodology, and for-
mulation in areas of laboratory performance, instrument or
assay validation, method comparnsons, statistical process con-
trol, goodness of fit, and individual biveguivalence. Examples
include the agreement of labomtory measurements collected
in various laboratories, the agreement of a newly developed
method with a gold standard method, the agreement of manu-
facturing process measurements with specifications, the agree-
ment of observed values with predicted values, and the agree-
ment in bioavailability of a new or genere formulation with a
commaonly used formulation. In all of these areas, one needs
measurements that capture a large proportion of data that are
within a meaningful boundary from target values. Examples
of target values include mean, gold standard, quality control
specification, predicted, and common formulation values. Tar-
get values can be considered random (measured with error) or
fixed (known), depending on the situation. There are also sit-
vations in which one is interested in companng two methods
without a designated gold standard or target values.

When the agree ment measurements show evidence of lack of
agreement, we need to address the sources of the deficiencies.
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When there is a disagreement between the two marginal distri-
butions, the source is defined as constant andfor scale “shift.”
or lack of “accuracy” When there is a disagreement due to
large within-sample vanation, the source 15 defined as lack of
“precision.”

The guestion of assessment of agreement has received con-
siderable attention in the literature. Cohen (1960, 1968) dis-
cussed this problem in the context of categorical data. Bland
and Altman { 1986) proposed a simple and meaningful graph-
ical approach for assessing the agreement between two clin-
ical measurements. hoa series of articles, Lin (1989, 1992,
1997, 200101 and Lin and Torbeck (1998) examined this prob-
lem critically in the framework of method reproducibility and
suggested a few measures and studied their properties.

In the context of bioeguivalence, similar studies have been
reported by Anderson and Hauck (1990), Sheiner (1992),
Holder and Hsuan (1993), Schall and Luus (1993), Schall
(1995), Schall and Williams (1996), and Lin (201} In
the context of goodness of fit, Vonesh, Chinchilli, and Pu
(1996) and Vonesh and Chinchilli (1997) have modified Lin’s
approach for choosing models that have better agreement
between the observed and the predicted values.

The article 15 organized as follows. In Section 2 we briefly
discuss existing methods and add anal ytical solutions for these
methods when target values are fixed. In Section 3 we propose
methods in terms of coverage probability (CP). In Section 4
we compare the power of accepting the agreement among all
competing methods, and in Section 5 we perform a simulation
study to examine the finite-sample performance of the meth-
ods. In Section 6 we present two examples based on real data,
one when the target values are mandom and one when the tar-
get values are fixed. We discuss general extension problems
and future studies in Section 7, followed by a conclusion in
Section 8.
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2. METHODS
2.1 Mean Squared Deviation
20,1 When the Target Values are Random. A meaning -

ful statistic to measure the agreement of observations (F) with
their target values (X)) has been the mean squared deviation
(MSD). Let =Y —X; then

MSD = ¢e? = E(D*) = E(¥ — X)°. (1)
We assume that the joint distibution of ¥ and X has finite
second moments with means o, and (o, variances !T_f and Er_f,
and covariance o, . Next, note that (1) can be expressed as
)+ rrf +!’J’T3 —2r,.,

€ =(u,— (2)

and the sample counterpart of MSD can be computed as
&=+ 8 +2 2,

where v, x, 5,57, and 5, represent the usual sample based on
n paired {}hu,n'dtmmnn (v, x) and each with divisor n.

The bootstrap method has been proposed for inference
based on the MSD estimate for individual bioequivalence
(Schall and Luus 1993). Lin (2000) showed that W = Inie?)
has an asymptotic normal distribution with mean @ = In(e?)
and variance

, _ 21— (n,

=

— ) fe']

n—2

(3
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For lesser bias of estimating e and o, we use ¢ to estimate
2
€-, where

ary 1 o )
&= =3 -] )
=]

n
Throughout the article, we use n— 1, n —2, or n —3 instead
of nin the denominator for lesser bias with smaller sample
size, based on results of the simulation study in Section 5.

2.1.2 When the Target Valwes are Fixed. When X is
fixed, we consider {(y,[x)i=1,..., n} as observations in a
random sample from the model

Y=8+8X+e,. (5)
Here e, is the residual error with mean 0 and varance o,
The familiar quantities b,. b,, 52, and r should be used as the
estimators for B,. B,. o2, and p.

We compute £{¥ — X)* for each x; by model (5) and then
take the average across x;. Therefore, the MSD becomes
~xP+a—f, ) tel,

€ = {p,__'_h- (6}

where fLy; = ﬁn +ﬁ,.i’. The MSD estimate remains the same

as in the case where X s random, except that the variance of
W becomes smaller: It can be shown that (3) is replaced by

___3+.3 (e 2y2
2 (]_[{n.-|.7 )2 +s2(1 H.H)_ e
2 EII('

T
Fyre =

For variance estimation, we proceed as usual.

iF: —
I (n=2)pr(1—p2)?
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2.2 Concordance Correlation Coefficient

2.2.1 When the Target Values arwe Random. Lin (1989,
1992) presented another measurement, the concordance cor-
relation coefficient (CCC), for measuring agreement (repro-
ducibility) between two methods. The MSD in (2) can be stan-
dardized as a correlation coefficient to yield the CCC denoted
by p..

NI

ol e’ Xy
Fs Eglpzﬂ o +ol+(p,— e

Here :‘F 15 the ratio of the mean square of within-sample
total deviation and the total deviation. The mean square of
the within-sumple total deviation contains the within-sample
variance and the bias square. The mean square of the wotal
deviation contains the largest possible variance among non-
negative correlated samples and the bias square. The CCC
can be written as the product of the accuracy and the preci-
sion coeflicients p, = y,p. The accuracy coefficient is x, =
m where v° = %
distributions of ¥ and X are equal (i.e., both means and vari-
ances are equal) if and only if the accuracy coefficient is 1.
The precision coefficient is the Pearson comelation coefficient.

The CCC translates the MSD into a correlation coefficient
that measures the agreement along the identity line, in which
a wvalue of | mepresents a perfect agreement (¥ = X)), a value
of —1 represents a perfect disagreement (¥ = —X), and a
value of 0 represents no agreement. The sample counterpart
of CCC is given as

and & = 2= Here the marginal
ir,

2rs, 5,
= e——
E 5 +'| +{v—x‘]-

Lin (1989) showed that £ =
normal distributon with mean

¢ =tanh '(p,) =.5|n(1 +P").
l—p.

._':In{ ] has an asymptotic

where tanh ™' (-) is the inverse hyperbolic tangent function. ks
variance is

5 ] 1—pip? 21 —p)p! vip?
e | S LRI P | g
n—=2|(1=p2)p* (1—p3p 2(1—pI)p*

222 When the Target Values are Fixed. When X is
fixed, under (5), the CCC is computed in the same way as in
the case when X is random. However, the variance of the £
transformation of the CCC estimate becomes smaller,

> pH1—p7)

[pfv3w+{p<.pw— 1)°

] 2 2 2
+;p:w-{1—p-n]
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© (n—2)p(1—p2)2

_ ey EBI(1—p)
+(p B, — 1) +'2—l
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2.3 Predsion and Accuracy

When agreement measurements show evidence of lack of
agreement, we need to address the sources of the deficiencies.
It is important to know whether the deficiencies are coming
from the large within-sample varation (imprecision) or from
the shift in marginal distributions (inaccuracy). The former
would become a variance reduction exercise, which typically
s more cumbersome than the latter. The latter most likely is
a calibration problem. The CCC has meaningful components
of precision (p) and accuracy (y,). In a way, the precision
squared is in the same scale as accuracy, where () represents no
agreement and | represents perfect agreement. The inference
on 2 when X is mndom has been routinely used for decades.
However, the inference on p when X is fixed is not known to
be addressed in the literature. To develop a large-sample infer-
ence for p, we can simply let v =0, w =1, and p, = p in (§)
and (@) when X is random and fixed. Thus asymptotic van-
ance of the £ transformation of r is ﬁ when X is random,
and 7=(1—£) when X is fixed.

We now present the inference on y,. Let the accumcy esti-
mute be

2

- =3
[v—i?

where u® = g and v = <. Then the logit function of o,

s L= In{—"—‘] The randnm variable L has an asymplotic
normal distribution with mean

,1=|n( X )
1—x,

and vanance (Robieson 19949)

e wHrlm+ e —2p)+ (e + e 420724+ (1 + 07 ) — 1)

<3 (3 —-2)1—x.F :
When X is fixed (known), the foregoing vanance estimate
becomes smaller,

pi. = LER )+ (1 -y, P — )2
o (n—=21—x 1

_ 1B+ 18— DEFx0 =) 4 (1 = B/ e — pY)/2
(n =231 —x, P '

2.4 Total Deviation Index

An intuitively clear measurement of agreement i a mea-
sure that captures a large proportion of data within a pre-
determined boundary from target values. b other words, we
want the probability of the absolute value of D less than the
boundary, &, to be large. For example. consider the agree-
ment assessment between the digital instrument used at home
and the manual instrument used in a hospital for measuring
diastolic blood pressure. In this case, a widely acceptable cn-
terion is that at least 90% of the digital observations must
be within 10 mmHg measured from the manual mstrument.
There are two approaches to measure agreement. We can fix
the predetermined & value (10 mmHg in this example), com-
pute the coverage probability @ (CP), and compare this CP
with the predetermined probability level (90% in this exam-
ple). We can also fix the predetermined CP value, compute
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the & value, and compare this & value with the predetermined
boundary (10 mmHg in this example). In Section 3 we present
the method for estimating 7 for a given k. In this section we
present the method for estimating & for a given T,

Assuming that the distribution of £ is normal with mean
fg=p,—p, and variance o = +o X — 2o, the proportion
of the fxmpu lation with |D| (absolute difference) less than k.

K = (), becomes
< k%) =y ["31 1. J-hr]
oy

where y*(-) is the cumulative noncentral chi-squared distrihu-

NI*

T =Pr(D?

tion with 1 degree of freedom and noncentrality parameter - —-.-
This noncentrality parameter is the relative bias squared. ThL
total deviation index (TD) for measuring the boundary 1

defined as
_‘ff
1!1':; .
(=1}

where ¥ () is the inverse function of ¥*(-). Ifer-
ence based on estimate of this TDI is imtractable. Accord-
ing to Chebyshevs inequality, this probability has a lower
bound of

f
TD1 =1,II||XE|--I:' [TJ_ f].ﬂ'}

2

> 2 E
PriD” =k’)>1——
el

Therefore, the lower bound of the &% value is proportional
to €%, the MSD, in (2). Lin (2000) suggested using the TDI
to approximate the value of & that yields P(DF < k%) = 7,

which is
l—ar
: )|E|.

where @7 '(-) is the inverse cumulative normal distribution and
|| is the absolute value. This can be estimated by replacing
€ in (11) with £ in (4). Lin (2000)) showed that the approxi-
mation is good under the following condiions: 7= 75 and

TDI,=«,=¢"(]— (1)

E'}Eé 7 =80 and %% <8, 7 = .85 and % <2,m = .90
and & < 1, and 7 = 99 and £ —-.- —; We may then use the
»dmplc counterpart and erIurm statistical mference in the

same way as shown in Section 2.1 on MSD  through
the asymptotic normality of W= In(e’) when X is either ran-
dom or fixed. Note that when X is fixed, we would compute
the k2 for each x; by model (3) and take the average across
;. The square oot of this average is equivalent to (11).

The TDL is proportional to the square oot of the MSD
and is intuitively much clearer than the MSD. It is the 1007
percentile of the absolute difference of paired observations.
The TDL, is similar in concept to the prediction limit, and its
confidence limit is similar in concept to the tolerance limit for
capturing individual observations. The difference is that the
boundary is set to deviate from target values, instead of from
the mean.
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2.5 Intraclass Correlation Coefficient

The intraclass correlation coefficient (ICC) (Fisher 1925)
in its original form is the ratio of between-sample variance
and the total vanance (between- and within-sample) to mea-
sure precision under the model of equal marginal distribu-
tions. However, when the marginal distrbutions are not equal
(inaccuracy), the ICC captures the deviations and considers
those as imprecision. In contrast, the Pearson correlation coef-
ficient ignores the inaccuracy component, and the CCC could
segregate inaccuracy from imprecision. The I0C is closely
related to the CCC. The subtle difference is that the I0C value
rermains the same when some pairs of v, and x; are inter-
changed, whereas the CCC does not. Unlike the CCC, the ICC
does not have meaningful components of accuracy and preci-
sion. For these reasons, we prefer to use CCC. However, we
expect the performance of the KCC and the special forms that
have evolved to be very similar to that of CCC.

3. COVERAGE PROBABILITY

In this section we present a method to compute 7 for
a given k. When the target values are considered mandom,
Anderson and Hauck (1990) proposed using this method to
assess individual bioequivalence. They used nonparametric
counting and mference for the assessment. Schall (1995) later
advocated such a proposal through the normal distribution,
and proposed using bootstmap estimation for inference. From
(11), one can also approximate 7 for a given k. Here we
have 7, = 1—2[1 —d(k/lel)] = ¥*(x?/€ . 1). Like the TDL
the approximation is subject o the restriction of reasonable
relative bias squared values. This section provides the exact
parametric estimation through the normmal distribution and pro-
vides the asymptotic vanance analytically for inference when
the target values are random or fixed.

3.1 When the Target Values are Random

Consider the problem of assessment of agreement when D
is from the normal distribution with mean g, and vaiance o3,
Then the coverage probability for a given w, as discussed in
Section 2.4, is

CP.=m, =Pr(|¥ — X| < &)

_oaf2 g B

=X (K 5 !Tj)

- o] o k]
i iF

where 9°(-) is the cumulative normal distribution function. The
estimates of g, and o] are g, =y — X and 53 = ,,f'.a{-"'-.'? 07 e
2s,.). Furthermore, u, and s; are independent. Consequently,

an estimator of CP, can be taken o be

K— —Kk—
Px:q][ Fu']_q}[ .P'u']_
5y 5y

(12)
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Mext, we can use the fisst-order approximation to compute
E{p.). and Vip,).

S 1 M g ) -
=iy — ne
Py ( T, ) T & ( o, )“—’lu' )

i K— —K—
s j!-"ud'( #‘rj{.ﬁg—nﬂ—ﬂ’( Phr)
o o s

1 —K — .
+—¢(&)m;m

g F
e K+FJ¢(_K_#J){.TJ—!TJ]
o oy

+: U“Ila' i Phr:'z] +0[(s; —oy ]3]
+ Oy — s, —o )]

where ¢v(x) is the density function of standard normal disti-
bution and Iim_r.,n@ = 00,

Therefore, it is clear that

Elp)=m 10 (l)

and Vip.) becomes
s | TRy k—p\]|*
i o n-}‘[d’( T, ) d'( a0 ):|
+l ["_Fué("_ﬂu)_l_ K+Pu"ﬁ(_"_.“’u')]3}
2| oy [ g8 o, &,

1
+O(—j).

n?
Because CP, is bounded by O and 1, it is better o use
the logit transformation for mference. Let T = lnI[J—F‘J_r—:] Iis
asymptotic mean is 7= In{l—_rfr—:l, and its asymptotic varance

(13)

v 5 __ T
1% ﬂ']—,_ = e

TI-T P
3.2 When the Target Values are Fixed

Consider the problem of assessment of agreement when tar-
get values X are fixed. If in model (5) we further assume that
ey has the normal distribution with mean 0 and variance o2,
then the coverage probability of the ith observation is

;= Prily, —x;| = x)
£ "_.Gn_{ﬁj_”xj
= ]

r,

—k—f,— —1)x;
o[ AP Bhm Dy i
i,
We define the overall coverage probability as
] Ll _
Telx = ;ETJ_KJ' 'I:]-:'.,
=1

Suppose that we have a mndom sample {(v,.x) | i =
Ly v n} and that B,.B,. and o? are estimated by B,.b,
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and 52; then b, and b, are independent of s,. Here we use
52= %1 —r*)s]. An estimate of 7; is

pr—bu—{b,—l‘,lxl] |i—n'—b(,—{b,—1‘,|.1:J
Pu = e
5, 5,
and an estimate of T,y is
1 n
Pex = = Epm
J-'J

By the same method as in Section 3.1, it can be shown that

1
E(p ) =m +0 (')

1

and that the asymptotic vanance of p, |, is

T | Cf? {Cn-i’_ CJJE sz
T = n—73 H it T nisl ¢ n? a6
Here
o —k—f,— —lix
Cﬂ:E[‘ﬁ( -El.'l !T{.ﬁj l] J)
=] &

e

c,= i[d’(_"_.ﬁu_ (8, — 1)ij

_ ‘ﬁ("_ﬁil_{ﬁj - lix,)]x“

{.EH —1)x; d'(_"_ﬁn_ {.B] B ”-rj)
.

L k—B,— (B

( J—nx,é(«—ﬂ.'—m.—ux,)]_
o, o,

The logit transformation 15 again used for inference, and the
comesponding expression is the same as in Section 3.1

i=]

i

3.3 Sedtional Coverage Probability

In certain situations, agreement requirements might be dif-
ferent for certain sections of an analytical range. For example,
in measuring a clinical marker for cancer cells, there might
be a threshold value for which certain therapies would be pre-
seribed when the marker value exceeds the threshold value.
Therefore, we might require stricter agreement criteria near
the threshold window. Suppose that the analytical range in the
interval of @ to # can be classified into m sections based on
the gold standard method. Then the section o, becomes

dj ='aj_'aj—|'

wherca,=a,a, > a,_,a, =0b, and a; values are prespecified.
For d;. an acceptable form of agreement would mean that
¥ should largely lie inside an interval of length 27, centered
around X. Under this assumption, we need to consider the
sectional coverage probability. For this purpose. the integrated
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sectional coverage probability (ISCP) between ¥ and X over
those mtervals is defined as

o dPr[ly — X1 < 1]

|

SCP =, = (17)

h—a

This coverage probability involves only the distnbution of =
¥ —X for both mandom and fixed X, which for the purpose
of this article is assumed to have a normal distnbution with
parameters Ly and !Tj. Thus (17) becomes

ha | ﬂ:--ﬂ[“’(t“'r) - ‘1’(—'_{;—“)]
= - —id. (18)

bh—a

The estimator of 7, denoted by p,. is obtained by substituting
i, and 5, for g, and o, in (18). By the same method as in
Section 3.1, it can be shown that Py 15 a consistent estimator
of , with asymptolic variance

1 S IJ_F’J
o, = ””}_a] {[E{a a;. J]( ( T )

= lilJ_J"l’.-.l' lilJ_J"l’.-.l'
[E{a a,_n( - ¢-( - ]

+;,+p%(f, +m))rl_
I!Td- I!Td-

Again, the logit transformation should be used for inference.

(19

3.4 Proportional Error Case

In practice, both ¥ and X are vsually positive-valued vari-
ables. However r has a bounded variance. Here we evalu-
ate the pmp{}runn LhdngL { ) rather than absolute difference
(¥ — X), because the error is prnp{mmndl to the measurement.
Let 1006% mepresent the percent change between ¥ and X,
A simplified approach in this case 15 to assume that In ¥ oand
In X have a bivarate nm‘m.il distribution. Thus the probability
that ¥ lies in the interval —— to X(1+ #) is given by

TTa
= g, = AR s - -+
CP;=my, Pr[l_i_ﬁ'-c:]f’ Xil H‘]:|
1 ¥
=Pr <—=1+#
Erki
=PFr[lln¥ —InX| < In{ 1 + )]
Let D=1In¥ —InX and x =In{1+#). Then all algonthms

of the previous section can be applied to the logs o obtain
CP, and TDL,. Here the TDL, is a percent,

TO L% = 1008_% = 100" — 1)%.

In this proportional error case, we should also compute the
CCC and MSD from the log transformation of the data.

4. ASYMPTOTIC POWER

In this section we investigate the asymptotic power of
accepting agreement among estimates of MSD, CCC, and CP.
Inference based on TDI can be assessed through MSD. There-
forre, the asymptotic power of the estimate of TDT is the same
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as that of MSD. For comparison, we must establish a common
ﬂgFL‘L‘erI[ criteria. We say that ¥ and X are in agreement if
vl va,, n—' < = @, and p = @, where v,, =, and p, are
prespecified values. We refer to these as null values. We com-
pute the chance of declaring agreement under the alternative
values at v* = vf. w =o, and p = p,. We refer to these as
power In addition, let the null and alternative values of o o |
be o 4o and o7, and let & _*::':::" Let the null and dl[Ll’-
native values of p, —p, be o, — g and @, — o, Further-
more, let sign, be positive when @, — g = 0 and EIELd[i\-'L‘
otherwise, and let sign; be positive when o, — g, = 0 and
negative otherwise. '

4.1 When the Target Values are Random
Let the corresponding I{Jg M"QD, Z value of CCC, and logit

CP values evaluated at v’ =v3, w=w,,, and p=p,. m=
0,1, be
w, =In(e),
- (1 +P:'."I j
E!.III = IFI ]
] _P:'JJI
and
T
T ™= In( — ) (200
]' TR TTK."I
where
1
e, = ‘-J.II 'rJ.u{l’I o+ o, +—- zpml]'
. 2p.
- v}:jl + m’”l + ]'IILE-JJI
k k
Tpw — i (_ B am) i q}(__ - a.lll )'
Fim Fim
Er::}.ll !T\JJIETTJJI{E-.HI + ]'lllrm-ﬂl = 2!?J.ll.]"
and L
= 8, =sign, -
(w, +1/w, —2p,)*
Let
=7|]— vl (21}
L (vi+taw, +1/m, —2p,)°| 3
_ U =padpe, 4 26,00~ PPy,
TUepndey T Umpliea
4 4
UJJIP{'JJI fzz}

Hi—pl. Pk
and

llr'rm =

3
T ) l]-

[ B |
Afleep)
a)“ (23)

i (1~

k
+(—+a

(o
F i T im
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The uxymptmic varances of W, Z, and T statistics evaluated

at v2, @, and p, become
¥ Tm
F g — n—2"
o= ==,
: n—2
and s i
Tm n—1 i

The regions for declaring agreement by using W, Z, and T at
the e significance level are

W < ay =@ (1~ a)oy,,

Z>L+07(1—a)oy,,
and -

Tzr+d (1 —aloy,.

The asymptotic powers of accepting agreement at v* =
vf, w=r,and p=p, by using W, Z, and T are

Py = {IJ[MII oty =AY = n:’]:‘r.,m:|1
Ty
(4 9
and

Py =]—Q)[T“_T|+q}-]“_ﬂ']nm:| E

Ory
The required sample sizes yielding the same power 1 — 3 by
using W. £, and T are

_[era-pvmteta-avn]

" e, = B

n =-¢_|“_EJV'(TI_I_¢_|“_“]\«"E 3+'1

A | L4 k
and

e O (1= B) I — & (1— a) /iy 2+1

T T~ T N

We do not show the asymptotic power and sample size for
precision and accuracy here; one can easily follow the same
principles for precision and accuracy.

4.2 When the Target Values are Fixed

When X is fixed. we simply use x and 57, in place of
My dnd ”'Fm Equations (14), (7), (9), and (16) are evaluated
at both the null and altemative values to obtain the fixed X

equivalents of equations (200, (21}, (22), and (23).
4.3 Comparisons of Asymptotic Powers

The above powers and sample sizes for TDIMSD) and CP
when X is random and for TDI when X is fixed depend on
the value of h = ir'"ir‘" To compare these powers, we assume
that i =1.

The power of CP depends on the choice of k. We let
K = 1.5 4. 20 4. 2.5, when X is random and k = o,
1.5 4. 20, when X is fixed. We let v, = .15, @, = |.15,
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and p, = .8,.9, 95, 99 and evaloate the power at v =
05 and .10, @, = 1.05 and 1.10, and p, = tanh[tanh ' (g, ) +
.1] and tanh[tanh ' (p,) +.2)]. The null hy potheses correspond

o a 15% location shift per (oo )" and a 15% scale shift for
various precision values. These null hypotheses are compared
o alternatives with two levels of improved precision, location,
and scale shifts. The ranges were chosen so that most power
values are in the broad mange of 2 to 99, When X is fixed,
from model (5) we let X = —1.0, and 1. We let ¥ have val-
ues equally distributed among the three levels of X values. We
ket B, =pw, B, = (v’s’w)"*, ando? = sZw (1 —p”) for the
comesponding v, o, and p values in the null and altemative
CHases.

Table 1 presents the asymptotic powers among TD L CCC,
and CP when X is mandom and fixed for n = 30 and o =
05, The results indicate that the asymptotic powers of TDL
CP,,.CP.,., and CP; are in general quite similar whenever X
is random or fixed. Therefore, the choice of x has little impact
on the power.

The asymptotic power of CCC is inferior to that of TDI
(MASD) in all test cases when X is random or fixed. Presum-
ably, the estimation for the denominator of the CCC increases
the noise. Therefore, for statistcal inferences, CP and TD1
are always preferable to CCC, especially with normally dis-
tributed data. However, in the case of a higher comrelation coef-
ficient (99) when X is fixed, the CCC has a similar power
Regardless of the fact that the power performance is not very
appealing, the CCC, precision, and accuracy remain as useful
descriptive wols.

5. SIMULATION

For statistical inference based on any of the foregoing agree-
ment measurement estimates, we would replace the param-
eters with ther sample counterparts in the respective variance
expressions. To assess the asymptotic normality and power of
the methods, we performed two Monte Caro simulations for
X when random and fixed. In each simulation, we examined
bwo cases: one case representing the null hypothesis and the
other representing the altemative hy pothesis. For comparison,
we selected the same cases as shown in Table 1. The simula-
tions also attempted to cover those CP, CCC, precision, and
accuracy values near their boundanes.

For the simulation when X is random, paired samples were
generated from cach of the following bivariate normal distr-
bution cases:

l. The null hypothesis case with mean (.15,0), variance
(1.15, 1/1.15), and comelation g,. Here v, = .15 and @, =
1.15.

2. The altemative hypothesis case with mean (-1, 0), van-
ance (1.1, 1/1.1), and correlation tanh[tanh™'{g, +.2)]. Here
w=.l,wm=1land h=1.

For the simulation when X is fixed, we generated uni-
variate normal samples, with equal sample size among the
X=-1,0,1 values. We let B, = pw. B, = (v’s’w)' ", and
r?=s2w?(1 — p*) under (3) for the comesponding v, @, and
£ values in the following null and alternative cases:

1. The null hypothesis case with v, = .15, @, = 1.15, and
comelation @,
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2. The altemative hy pothesis case with v, = .1, @, = 1.1,
and correlation p, = tanh[tanh ™' (p, +.2)].

In cach of the these random and fixed cases, we let p, = .95
and .99, The samples generted comespond to n =15, n =30,
and n =60. We have a total of 24 situations: 2 cases by 2
levels of precision by 3 levels of sample size for X when
random and when fixed. For each situation, 5000 runs were
performed. Tables 2-5 present the simulation results for cases
where X is mandom and fixed. In all of these tables, the fourth
column presents the theoretical value of precision, accuracy,
CCC, TDL and CP for the null and alternative hypotheses.

To assess the mobusmess of each agreement statistics esti-
mate, in each run, we calculated estimates of the respective
transformation of precision (£), accuracy (logit), CCC (),
TDI, (In M5D), CP,,, and CP_; (logit). The k| and &3 values
correspond with those in Table 1. The mean and standard devi-
ation of each estimate based on 5,000 runs were computed.
The respective antitransformation of cach mean estimate 15
reported in the fifth column. Comparisons between the fourth
and fifth columns were used to assess the robustness of the
estimates. The standard deviation of each estimate is reported
in the sixth column (“5td of estimate™). The mean of the stan-
dard deviation estimate of each estimate based on 5,000 runs
wits also computed. This is reported in the seventh column
(“Mean of std™). Comparisons between the sixth and seventh
columns were used to assess the robustness of the variance
estimates.

To assess the asymptotic normality for the significance level
(case 1) and power (case 2) of each estimate at o = .05,
for each run we computed the proportion of each estimate
among 5,000 runs that falls intw the respective rejection region
(accepting agreement) in Section 4. These proportions are
reported in the eighth column (“Proportions in reject region™).
The proportionsin case | represent the significance level while
the proportions in case 2 represent the power of accepting case
2 against the null hypothesis of case | at @ = .05, For com-
parison, the corresponding theoretical probabilities are shown
in the last column.

For point estimates, the results showed that all but the pre-
cision estimates are robust (e, have little bias) for all 24 situ-
ations in this study, even when n = 15. The precision estimate
performs well when X is random, but tends to overestimate
when X is fixed and the sample size is smaller.

For standard deviation estimates, there was practically no
discrepancy between the sixth and seventh columns in all sit-
vations. For significance level and power the results showed
that all but the precision estimates are accurate for all 24 situ-
ations in this study, even when # = 15, The precision estimate
performs well when X is random, but tends to reject more
often due to overestimates when X is fived and the sample
size is smaller The power of the CCC estimate tends to be
larger in the simulation study than its theoretical value.

6. EXAMPLES

This section presents two examples based on real data. One
example compares the agreement of two instruments in mea-
suring blood counts in human samples, and the other com-
pares the agreement of an assay to measure factor VT against
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Table 1. Asympiotic Powar of Accepting the Agreement, Whena k1 =1 57 , k2 = 3r , and k3 =2 47 , (Random); kT = k2 =1 .57 ; and
k3 =2r . (Axed); and v, = .15, 5, =1.15.n= 30, and o« = .05

Random Fived
P v o, i o CCC CP., CP.. CP., L) CCcC CP.,, CP_, CP,_,
B0 05 1.05 B332 2601 1936 A28 258 3330 905 2623 4246 4468 4625
BE14 5149 3666 A5TE1 H5916 5086 6609 S5120 B783 a4 T 7048
1.10 B332 2368 ATE3 2854 2975 3043 2081 2357 3204 3488 3627
BE14 AT98 432 5451 5502 5BET 5589 4815 5875 BOTO0 6197
A0 1.05 A332 2341 ATET 2822 2048 3017 586 2399 3020 4141 4300
BE14 ATET 3421 5413 5562 5645 6238 ATHE 6459 BE3T 6756
1.10 B332 2126 1643 2564 2BTT 2T43 2702 2144 2043 A178 4313
BE14 4417 196 5082 5235 5320 5201 4477 5510 5T21 5863
o0 05 1.05 9174 Aars2 2644 4379 4513 4574 5200 4008 5512 5T06 5828
S318 6478 4551 6031 i 7054 Nrra BTE3 TTo4 7869 7914
1.10 8174 3217 2286 805 3933 3991 928 3438 4264 4458 4601
S318 5815 4060 362 46T 6514 6585 6203 BTEE 910 G008
&[] 1.05 2174 A155 2200 Aras 3880 o588 4553 3437 4873 5080 5239
A318 5T38 4026 6208 430 6506 7145 6086 7240 7aAT4 7464
1.10 8174 2879 1968 3200 3328 3398 3333 2000 3647 a849 902
a318 5082 562 5700 5848 5027 LRT2 5495 5110 6303 6434
a5 05 1.05 0589 5814 AT 6323 6391 6391 7259 6291 .T35T 7431 7454
0862 B148 B112 8239 8243 B228 036 8522 BRE2 B854 BB2G
1.10 0589 4712 A3 5302 5388 53490 5560 5234 5836 5879 6042
SB62 7134 5202 7441 7475 T4BT 7851 T34 TEED 7909 7924
A0 1.05 0589 4585 3293 S182 5326 5397 6131 5102 6313 G486 6595
Oe62 7020 5089 7356 7468 7532 8249 7532 B153 8234 8290
1.10 0589 588 2508 4164 4208 4355 4390 4058 4684 4881 5006
OE62 58094 4211 63909 B8535 J6e0a BT30 6555 JGR36 T001 7110
a5 05 1.05 L2918 0936 D486 OTET o726 B675 S903 0985 9063 2923 S870
0933 H989 0813 L2 Sa66 9839 0000 0908 Bo86 D955 0937
1.10 9918 9270 8388 9118 A9g2 JBR30 A805 A796 9705 9630 9514
0933 0697 9186 o502 0401 8301 9951 9951 86T o824 ATe3
A0 1.05 2918 8241 7875 20499 2195 8220 O856 ar1 H676 2592 S640
0933 ar12 AT02 0544 0598 B612 D056 0923 848 o858 9828
1.10 2918 7201 5880 7376 7493 7496 A803 Be58 BT02 BEBO 8508
0933 8240 6957 8249 Bare Ba02 473 413 5243 G246 S230

HNOTE: & =1 far TDI and CP whean ¥ i=randarm, and far TDlwhan X & foad.

known target values in test tubes (in vito). The former is the
constant emror case when X is random, and the latter is the
proportional emor case when X s fixed.

6.1 Constant Error When the Target
Values are Random

Diaspirin crosslinked hemoglobin (DCLHDB) is a solution
containing oxygen-carrying hemoglobin. The solution was cre-
ated as a blood substitute to treat acute trauma patients and to
replace blood loss duning surgery. Measurements of DCLHB
in patient’s serum after infusion are routinely performed using
a Sigma instrument. A method of measunng hemoglobin
called the HemoCue photometer was modified to reproduce
the Sigma instrument DCLHb results. To validate this modi-
fied method, serum samples from 299 patients over the ana-
Iytical range of 50-2000 mg/dL. were collected. DCLHb val-
ues of each sample were measured simultancously with the
HemoCue and Sigma methods. Agreement was defined as
having at least Y% of pair observations over the analytical
mnge of 50-2000 mg/dL within 150 mg/dL of each other
and a within-sample total deviation not more than 15% of the

total deviation. This translates into a least acceptable CCC of
9775 (1 —.15%).

Figure | presents the plot of HemoCue versus Sigma mea-
surements of DCLHb. The plot indicates that the within-
sample crror is relatively constant across the clinical range.
The plot also indicates that the HemoCue accuracy is excel-
lent and that the precision is adequate.

Table & presents the agreement statistics and the appropr-
ate 95% upper or lower confidence limits. The CCC estimate
is 9866, which means that the within-sample total deviation
is about 11.6% of the total deviation. The COC one-sided
lowwer confidence limit is (9838, which is greater than 9775,
The precision estimate 15 9867 with a one-sided lower con-
fidence limit of (9839, The accuracy estimate is 9999 with a
one-sided lower con fidence limit of 9989, The MSD estimate
is 6007 with a one-sided upper confidence limit of 6,875,
The TD 1, estimate is 127.5 mg/L, which means that 90%
of HemoCue observations were within 1275 mgdL of their
target values. The one-sided upper confidence limit for TD I,
is 1364 mg/dL, which is less than 150 mgdL. Finally, the
CP, 5 estimate is 9463, which means that 94.6 % of HemoCue
observations are within 150 mg/L of their target values. The
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Table 2. Results of the Simulation Study When X is Random for Moderate Precision
Sample Theoretical Mean of Sid of Mean of Proportion in Theoretical
Case size Slatistics value esiimale astimate std raject region probabilily
Precision 950 8531 2848 2BAT L0550 05
Accuracy G709 STET 9218 SHES 0498 05
15 TDI 6200 B213 3696 S804 0485 05
CCC 9304 G248 2531 2437 0364 05
CP_, 8303 8143 5971 B098 0474 05
CP_, 9789 G765 12977 12469 0596 05
Precision 8500 8516 1913 1925 0548 05
Accuracy e g G783 E448 £391 0558 05
H, an TOI 6200 B209 2807 2616 0532 05
CCC B304 i) AT2T 1650 0354 05
CP_, 8303 B2 4017 A096 0482 05
CP., 9789 8776 B381 8353 0592 05
Precision 9500 G506 1314 1325 0528 05
Accuracy G709 o788 4324 4375 0518 05
80 TOI 6200 £211 AT799 1825 0488 05
CCC G304 e i) 1188 1186 0368 05
CP,_ 8303 8267 2789 2837 0482 05
cP., 9789 a7a5 S775 5786 0550 05
Precision G662 G585 2824 2BAT 1926 ATET
Accuracy 9905 S892 1.0575 1.1993 A736 2554
15 TDI 4843 4848 3756 JAB41 3250 3568
CCC 8571 8539 2552 2505 2084 2584
CP_, 220 2132 8542 A286 3088 4347
CP_, 969 G965 2.0338 19178 3486 4582
Precision 662 G673 J901 1925 2952 2786
Accuracy 9905 S0 FT43 FHA4 2890 Ava4
H 20 TOI 4843 4856 2610 2534 ST12 58594
CCC 9571 9555 A734 1739 3764 4211
CP_, G220 2180 5679 5577 5534 B399
CP_, L9609 SO6T 1.3489 12914 5945 B608
Precision G862 S5EG 1327 1325 AT44 4513
Accuracy G905 S04 5293 5310 5088 B575
TDI 4843 4831 1825 1838 BE26 B516
&0 CCC 8571 G566 1230 A2 G442 B613
CP,, G220 a182 A3817 S840 8434 B573
CP_, 9969 9967 8922 ABB68 8604 B613
NOTE: wy=_18.mg= 118, 05= 88 vy = 1@y = 11,0, = BEE2.

one-sided lower confidence limit for CP, 5, is 9276, which is
greater than (9. The agreement between HemoCue and Sigma
is acceptable with excellent accuracy and adequate precision.
The relative bias squared is estimated to be 003, and so the
approximation of TD 1 should be excellent.

6.2 Proportional Error When the Target
Values are Fixed

A study was designed to evaluate Dade International’
reagent test system for clottable factor VIII (FVIID assay.
The FVIIT assay involved measuring modified activated par-
tial thromboplastin time (APTT) with varying dilutions of
plasma and specific factor-deficient substrate. Using a refer-
ence plasma of known FVIID activity, a standard curve was
prepared. The dilution scheme of the standard curve started
at either 1:5 or 1:10, and senal dilutions were prepared until
the target values were reached. The percent of FVIIT activity
present in plasma was determined by the degree of comec-
tion of the APTT. The reagent test system consisted of Dade
actin-getivated cephaloplastin reagent and Dade factor assay
reference plasma. The target values were 3%, 8%, 38%, 91 %,
and 108%. Each level was assayed for six FVIIL observations
starting at 1:5 and 1:10. One FV I value started at 1:5 at the
91% target value was missing.

Figure 2 presents the results started at 1:5, and Figure 3
presents the same at 1:10 for the plots of observed FVII
assay results versus targeted values in log, scale. Note that
in Figure 2, four 3% and two 2% were observed at the tar-
get value of 3%. Circles at the target value of 8% mepresents
duplicate readings of 8%, 9%, and 10%. Duplicate readings
of 45% were observed at target values of 38%. Also note that
in Figure 3, four 5% and two 4% were observed at the target
value of 3%, three 11% and two 12% were observed at the
target value of 8%, duplicate readings of 49% werne observed
at target values of 38%, and duplicate readings of 124% were
observed at target values of 91%. The plots indicate that the
within-sample error was relatively constant across the target
values in log scale. The precision was good for both, but the
accuracy was not as good for the assay started at 1:10.

The client defined an acceptable agreement as having 80%
of FVIIT assay values over the analytical range of 3% -108%
within 50% from the target percentage values. The client also
wanted, in log scale due to proportional emror by dilution, the
within-sample total deviation to be not more than 15% of the
total deviation. This translated into a least acceptable CCC of
0775, Table 7 presents the agreement statistics and their 95%
upper or lower confidence limits for the assays started at 1:5
and 1:10.
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Table 3. Results of the Simuwlation Study When X is Random for High Precision

Sample Theoretical Mean of Sid of Mean of Proporfion i Theoretical
Case siza Satistics valug asimate astimate std rajact mgion probability
Pracision 8900 8907 2820 2887 0618 1]
Accuracy A794 A7ra 5252 5086 05390 05
15 TOI 4088 4104 567 3592 0558 117
CCC 9696 8671 2176 2108 (0320 05
CP.. 7600 7448 5103 5373 0452 05
CP_, 8590 48563 1.0542 1.0348 (0624 05
Pracision A500 48903 1883 1925 0568 05
Accuracy AT94 A7ea 3556 3486 0440 1]
H an TOI 4088 4116 2490 2465 0520 (117
o CCC S696 8683 J472 1455 (0350 (1]
CP., 7600 7545 3472 3606 (0462 05
CP_, 8590 9586 5958 B934 (0672 05
Pracision 4900 8902 130 1325 0554 f11]
Accuracy AT94 4790 2434 2432 (0436 05
&0 TOI 4088 4103 AT24 A7 (0544 05
CCC 9696 8691 1005 A016 (0384 117
CP., 7600 7571 2483 2483 0500 05
CP_, 48590 4587 A875 AT50 632 05
Pracision 8933 84938 2831 2887 1986 A788
Accuracy 9905 9897 5879 5753 3690 ALHa
15 TOI 2965 2978 636 664 5166 5481
CCC 8839 8826 2235 2205 AT04 4400
CP., 8031 8957 7845 J728 ATTE 5549
CP_ 8959 84957 2.0080 1.8336 5410 5382
Pracision 8933 8936 1898 1925 3096 2807
Accuracy 8905 8902 a924 3908 6678 F043
H 30 TOI 2965 2969 2494 2518 B270 8240
' CCC 9839 9834 A5 A521 6696 B957
CP.. 8031 B8998 5075 5166 .B182 B249
CP_, 8959 44958 1.2364 12190 .B500 Bap2
Pracision 8533 5834 30 1325 4782 A548
Accuracy 8905 8904 2772 2730 9138 58
&0 TOI 2965 2968 A743 758 .9850 S797
CCC 8839 8837 J074 1065 8124 521
CP., A031 Aa018 3539 3564 8834 5697
CP_, 8959 8959 B481 B397 9898 =1
NOTE: vy =18, mg =118, pp= 88 vy =1, 1 = 1.1, p; = 5533,

For the results started at 1:5, the CCC was estimated to
be 9917, which means that the within-sample total devia-
tion is about 9.1% of the total deviation. The one-sided Tower
confidence limit was (9875, which is greater than 9775, The
precision was estimated to be 9942 with a one-sided lower
confidence limit of 9908, the accuracy was estimated to be
0975 with a4 one-sided lower confidence imit of .9935, and
the MSD was estimated to be (0356 with a one-sided upper
confidence limit of .0549 (both at log scale). The TD 1% was
estimated w0 be 27.3%, which means that 80% of observations
were withina 27.3% change from the target values (percentage
of percentage values). The one-sided upper confidence limit
wits 35% . which is less than 50%. Finally, the CP, . was esti-
mated to be 9653, which means that 96.5% of observations
were within a 50% change from target values. The one-sided
lower confidence limit was 8921, which is greater than (8.
The agreement between the FVI assay and the actual con-
centration was acceptable, with good precision and accuracy.
The relative bias squared was estimated to be (009, so that the
approximation of TDT should be excellent.

For the results started at 1:10, the CCC was estimated to be
0669, which means that the within-sample total deviation is
about 18.2% of the total deviation. The one-sided lower confi-
dence limit was 9584, which s less than 9775, The precision
was estimated to be (9947 with a one-sided lower confidence

limit of 9917, the accuracy was estimated to be 9721 with a
one-sided lower con fidence limit of (9638, and the MSD was
estimated to be . 1308 with a one-sided upper confidence limit
of 1677 (both at log scale). The TD 1% was estimated to be
S589%, which means that 80% of observations were within
a 58.9% change from the target percentage values. The one-
sided upper confidence limit was 69.0%, which is greater than
50%. Finally, the CPgq was estimated to be (7016, which
means that 70.2% of the observations were within a 50%
change from the target values. The one-sided lower confidence
limit was 5898, which is less than (8. The agreement between
the FVIIT assay and actual concentration was not acceptable
with good precision and mediocre accuracy. The relative bias
squared was estimated to be 3747, so the approximation of
TD1should be acceptable.

7. DISCUSSION AND FUTURE STUDY

7.1 Agreement Measurements Summary

Under the normal or log-nommal distobution, each of the
agreement measurements (MSD, CCC, TD L and CP) basically
measures the same information but from different perspec-
tives. Note that the asymptotic variances of MSD, CCC, preci-
sion, and accuracy were derived from the covariance matnx of
the sample moments, in which the normality assumption was
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Table 4. Resuls of the Simulation Srdy When X is Fixed for Moderase Precision
Sample Theoretical Mean of Sid of Mean of Proportion in Theoretical
Case size Slatistics value esiimale astimate std raject region probabilily
Precision 950 8587 2106 2126 1282 05
Accuracy 8794 5800 8585 A914 0670 05
15 TDI 6339 B30 3751 AT06 0545 05
CCC 9304 8351 A740 AT10 0760 05
CP,, 8302 A191 £109 B066 0504 05
CP_, 8339 5305 9218 AB25 0594 05
Precision 8500 8543 A417 422 0982 05
Accuracy e g aTaT 5895 5878 0662 05
H, an TOI 6339 6359 2564 2569 0516 05
CCC 8304 G322 A189 1189 0870 05
CP_, 8302 vy 3996 4044 0485 05
CP., 9399 8305 5856 5840 0552 05
Precision 9500 8525 0959 L0880 iry: 05
Accuracy G709 G795 4019 A011 0650 05
80 TOI 8339 B327 ATTS 1800 0496 05
CCC G304 S317 0823 L0832 0612 05
CP_, B30 8276 2761 2811 0484 05
CP_, 9339 B33 4014 A060 0545 05
Precision G662 G730 2115 2095 4034 2357
Accuracy 9905 9904 9707 11114 2094 2824
15 TDI 4843 A2 A7z 754 3896 A264
CCC 8571 S0 AT7S 774 4854 4076
CP,, 9285 8235 BB A562 3696 4537
CP_, G841 G837 14270 1.3586 4078 5052
Precision G662 GG 1407 1403 5204 4028
Accuracy G905 Sa06 7395 750 3454 4141
H a0 TDI 4843 4852 2506 2600 B340 B730
CCC 8571 9581 1229 A232 6828 B555
CP,, 9285 G238 S703 SBTT 6226 5836
CP_, G841 SE30 G058 A926 6498 110
Precision G662 G578 L0980 L0966 7380 548
Accuracy 9905 S5 4851 4975 5750 B05%3
&0 TOI 4843 g 1843 821 G060 G088
CCC 8571 8577 0876 L0862 9154 BA8T
CP_, 9285 SO8T 4012 23951 G026 G006
CP.s G841 8837 B344 L5205 9104 8023
NOTE: vy =8, mg= 118, pp= 88; vy = 1, @y = 10,04 = 09662

used, even though the point estimates do not depend on the
normality assumption. None of the methods proposed in this
article is expected to be mobust against outhers andfor large
deviation from normality.

The interpretation of MSD is difficult to understand. The
TD1is desirable as an alternative because of its straightforward
interpretation. The CP is the most intuitively clear approach;
it mirrors the information provided by the TD L Both TD Tand
CP depend on the normality assumption and offer better power
for inference than the CCC. The CP would have difficulty dis-
criminating among instruments or assay s that have excellent
agreement, all because the CP values would be very close to
l. In this case, the TDI can be vsed to discriminate among
these.

When a meaning ful clinical range is known and the study is
conducted over that range, the CCC offers a meaningful geo-
metric interpretation and is unit free. Furthermore, the accu-
racy and precision components of the CCC offer more insight.
Therefore, the CCC, accuracy, and precision remain very use-
ful tools. Note that when ¥ and X are not linearly related, the
CCC will capture the total deviation. However, it will treat the
nonlinear deviation as imprecision rather than inaccuracy.

The CCC, ICC, and Pearson cormrelation coefficient depend
largely on the analytical range and the intrasample vanation.

This property makes sense when we want to assess agree-
ment over the mange of all potential outcomes. Good agree-
ment over 4 small rmange of measurements (e.g., at low concen-
tration only ) can not be extrapolated to infer good agreement
over a larger range of measurements (e.g., at higher concen-

Figure 1.
Measunng DCLADB.

HemoCue (Verical) and Sigma Readings (Horzon@al) on
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Table 5. Results of the Simulation Study When X is Fived for High Precision
Sample Theoretical Mean of Sid of Mean of Proporfion i Theoretical
Case siza Satistics valug asimate astimate std rajact mgion probability
Precision 5800 8919 2010 2059 1200 05
Accuracy 8794 8795 3690 A599 .0586 05
15 TOI 4180 4258 2923 A013 0456 05
CCC 9696 AT07 342 31 0702 05
CP,, 7534 7473 4232 A52T7 0520 05
CP.4 8879 8880 6513 L6995 .32 05
Precision S0 S910 364 JA373 1048 05
Accuracy 8784 8795 2556 2529 .0566 05
H ag TOI 4180 A214 30 2059 0482 05
o CCC 9696 8703 0832 L2z . 0660 05
CP,. 7534 7514 2899 A011 .0538 05
CP.a B8T9 8888 4337 A421 0634 05
Precision 8500 8805 0843 0946 0872 05
Accuracy 8784 8795 ATT3 T84 .0558 05
&0 TDI 4150 4199 410 J434 0500 05
CCC 9696 8700 L6548 L0651 0630 05
CP,, 7534 7527 2010 2065 .0536 05
CP.4 8879 8885 2963 A020 0610 05
Precision 8933 Sa47 2 2053 4276 2508
Accuracy G905 S906 4564 4379 6090 £5351
15 TOI 2965 2993 A165 A198 6960 F452
CCC 9839 8847 1484 1450 7802 F236
CP., S101 S108 7608 7546 7250 7165
CP.a 8809 9832 1.3544 12804 .TE14 F437
Precision 8833 S840 1381 1369 .5596 AZTE
Accuracy 8805 5906 A104 3079 .BB886 BT30
H ag TOI 2965 28984 2172 2205 8482 8473
' CCC 9839 S84z J020 Jd022 . 9664 5413
CP,, S10 8096 A8TS AG44 .9556 5243
CP.4 9809 8817 B37 B259 Sb44 5230
Precision B533 8837 L0845 L0943 7766 5853
Accuracy 8905 5906 2169 2166 G842 5874
&0 TOI 2965 2968 1554 1542 G992 5985
CCC 9839 8841 0732 0721 = h H5982
CP,. S101 8106 A422 3397 G992 5354
CP.a aa09 8816 5759 5643 gaa2 5933
HNOTE: vy =18, @y = 1.8, pp = 88 vy = mmy = 1.0,04 = 9933
tration ). However, caution must be taken when using these 8-
correlation coefficients. Comparisons among these coefficients
are meaningful only when the clinical study manges are simi- b e
lar. Ranges by different units can be compared as long as they )
have similar clinical interpretations.
-
7.2 Categorical Data
L
The CP has long been used in categoncal data by summing
the diagonal elements of the joint probability matrix based on B
assigning subjects’ scores to two raters. Cohen (19600 pro-
posed using the kappa coefficient to comect for the probahbil- ¥
ity of agreement by chance. Cohen (1968) later improved the g
- L]
1. L] L] L] T L] T L] L] L]
Table 6. Agreement Statistics and Their Confidence Limits 1 2 4 [} - -] ] 28 ]

for Example 1
Satistics Estimate 85% Confidence limit Allcwance
CCC H866 H838 OT75
Accuracy S999 5989
Precision G867 H839
MSD 6,007 6875
TD 4 127.5 136.4 150
CPy, B463 L8276 L)
HNOTE: Reatiee bassquamd was esimated b be (003 [<1; see sac. 2.4).

Figura 2. Obsewed FVINl Assay Results (Vertical, %) Versus Targetad
Values {Horzomtal, %) Started at 1:5.

kappa coefficient by assigning different weights according to
the degree of disagreements. Interestingly, CCC becomes the
weighted kappa proposed by Cohen (1968). Therefore, we can
use the COC for categorical data in most situations (Robieson
1999; King and Chinchilli 2001 ).



Lin et al.: Assessing Agreemaent

E. 2
b
[ 5
Ly
18-
Ly
Fa
2-
1-| T T T T T T T T
1 2 L] 2 b = [ oA F-

Figure 3. Observed FVII Assay Results (Verical, %) Versus Targeied
Values {Horizontal, %) Started ai 1:70.

7.3 More General Cases

This article provides a systematic treatment of modeling
agreement measurement methodology based on the most basic
bivarate model when X is mndom and on the regression
model when X is fixed. When X is random, the model does
not allow us to assess agreement among repeated estimates
of the target method. Therefore, it is not known whether any
mediocre agreement between two methods may have resulted
from imprecision in the target method. Inoan individoal bioe-
guivalence (IBE) study., measures of the bioavailability are
recorded when a patient 15 given a test formulation twice (T
and T, ) and a reference formulation twice (R, and R,) by a
four-period crossover design (Schall and Williams 1996). The
cumment FDA guideline is based on the absolute and relative
measures of E{T — ) — E(R,— RE‘JE. The denominator of
the relative measure is E(R, — R.)%.

The many gold standard assays include immunoassays or
enzyme assays, which are imprecise. The methodologies and
designs used in an BE study should be adopted for imprecise

Table 7. Agreement Statisics and Their Confidence Limits

for Example 2
Statistics Estimate 95% Confidence Imis Allowance
Started at 1:5
CGCC 9917 9875 a775
Accuracy 8475 54935
Precision Sh40 S908
MSD L0356 0549
TDI, % 27.347 35.010 50
CPope G553 A921 A
Sarted at 1:10
CCC SHED 9584 S775
Accuracy A7 S638
Precision G047 2917
MsD 1308 JAEFT
TDI, % 58.949 69.007 50
CPepe F016 5808 A

NOTE: Relatve bas squared was esimated o ba 009 for e amay stwtad at 15 and 3.747
far e as=ay stafed a1 1:10 {<8; sea sac. 24).
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assays. More importantly, to prove that a new method is better
than a gold standard method, one should adopt the four-pernod
design and principles used in the IBE study. Here we would
be in a position to demonstrate an acceptable E{(T — R)* and
further that E(T, —T,)* < E(R,— R,)*. We would then trans-
late the measurement into CCC, precision, accurmcy, TDLL and
CP for better interpretation. Qur future articles will address
those more general cases.

When assessing the agreement coefficients, there might be
situations where some other controllable factors could be
present. For example, in a four period crossover bioequiva-
lence study, treatment-order effects might be present. In these
situations, we can climinate these effects by fitting 8 mixed-
effects model with these fixed effects and a mndom subject
effect in the model. Then the methods presented here can
be applied asymptotically by letting ¥ and X represent the
respective residuals computed from the model.

Chinchilli Martel, Kumanyka, and Lloyd (1996) extended
Lin’s CCC to repeated-measures designs by using a weighted
CCC. The CCC on multiple mters with robust estimates has
been studied by King and Chinchilli (2001). For more gen-
eral appmaches, the use of generalized estimating equations
(GEEs) possibly could be used to model the functions of the
agreement coefficients. Bamhart and Williamson (2001 ) used
GEEs to model CCC with good results. They used three esti-
mating equations, one to model location sums, one to model
the sums of squares, and one to model the cross-products with
Z transformation of CCC values computed from functions of
the foregoing. Potentially, GEEs also can be used to model
MSD, TDL and CP. This approach s flexible enough to allow
comparisons of multiple agreement coefficients in the pres-
ence of some ex planatory covariates. Such an approach would
allow us to compare, for example, the agreements of two come-
peting methods (A and B) with a pold standard method (C)
or, in other words, to compare the agreement of A and C to
the agreement of B and C. Thus GEE will fit nicely into the
framework of an IBE study for comparing the agreement of T
and R melative to the agreement of B, and R,, while control-
ling for pernod and order effects.

8. CONCLUSION

We have summarized varows methods for assessing the
agreement among individoal paired samples when X is ran-
dom or fixed and when emor is constant or proportional.
We suggest using CCC, TDL and CP to summanze the agree-
ment results. These offer the same information from differ-
ent perspectives. In addition, the coefficients of accuracy and
precision should also accompany the results to identify the
sources of any disagreement. When we are confident that the
data have normal or lognormal distribution, inference should
be based on TDI and CP for better power of accepting
the agreement. We plan to provide more general approaches
regarding all of the above in the future.

For convenience, a valdated SAS macro 15 provided at
httpeffeoww nic.edud ~ hedayat! that computes the estimates
and confidence imits for CCC, precision, accuracy, TDL and
CP. We can specify when X is random or fixed and the emror
15 constant or proportional, along with the confidence level,
CCC, CP, and TDI allowances. The program also generates
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the agreement plot of ¥ versus X with the identity line under
a customized scale.
[Received December MNHL Revizged Julv 2004 |
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