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Abstract

We consider diffusions corresponding to the generator

Lf(x) =

d∑

i=1

xiγi(x)
∂2

∂xi2
f(x) + bi(x)

∂

∂xi
f(x),

x ∈ Rd+, for continuous γi, bi : Rd+ → R with γi nonnegative. We show uniqueness for the corresponding

martingale problem under certain non-degeneracy conditions on bi, γi and present a counter-example when these

conditions are not satisfied. As a special case, we establish uniqueness in law for some classes of super-Markov chains

with state dependent branching rates and spatial motions.
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1. Introduction

Let

γi, bi : Rd+ → R, be continuous functions and each γi be strictly positive. (1.1)

We consider the operator L on C2(Rd+) defined by

Lf(x) =

d∑

i=1

xiγi(x)
∂2f

∂xi2
(x) + bi(x)

∂f

∂xi
(x), x ∈ Rd+. (1.2)

We also consider the diffusion Xt associated to L; this is the process on Rd+ that solves the
stochastic differential equation

dXi
t =

√
2Xi

tγi(Xt)dB
i
t + bi(Xt) dt, Xi

t ≥ 0, i = 1, . . . , d, (1.3)

where Bt is a standard d-dimensional Brownian motion. The purpose of this paper is to prove
uniqueness of the martingale problem for the operator L. As is well known, this is equivalent
to proving weak uniqueness (i.e., uniqueness in law) to the solution of (1.3).
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Let Ω = C(R+,R
d
+), let Xt(ω) = ω(t) be the usual coordinate functions, let F be the

Borel σ-field on Ω, and let Ft be the canonical right-continuous filtration on (Ω,F). If ν is a
probability on Rd+, we say P is a solution to the martingale problem for L with initial law ν
(or MP (ν,L)) if

P(X0 ∈ ·) = ν(·), and Nf
t = f(Xt) − f(X0) −

∫ t

0

Lf(Xs)ds

is an Ft-local martingale under P for each f ∈ C2
b (R

d
+,R).

(1.4)

We say that an Rd+-valued process (Yt, t ≥ 0) with a.s. continuous paths is a solution to
the martingale problem for L if its probability law is a solution in the above sense. Y (or its
law) is a strong Markov solution if, in addition, it is a strong Markov process with respect to
FY
t = ∩s>tσ(Yr, r ≤ s). Add ∂ to Rd as a discrete “cemetery” point.

Here is our main result. Let ‖x‖ = maxi=1,...,d |xi|.
Theorem 1.1. Let L be as in (1.2) and suppose (1.1) holds. Assume that for all i = 1, . . . , d,

bi(x) > 0, x ∈ ∂Rd+, (1.5)

| bi(x) | ≤ C(1 + ‖x‖), x ∈ Rd+. (1.6)

(a) For any initial law ν, there exists a unique solution to the martingale problem for L.
(b) If Px is the solution in (a) with initial law δx, then (Px, Xt) is a strong Markov process,
and for any bounded measurable function f on Rd+, its resolvent

Sλf(x) = Ex
(∫ ∞

0

e−λtf(Xt) dt
)
,

is a continuous function of x.

The following corollary of Theorem 1.1 is relevant for applications to superprocesses. Let

T0 = T0(X) = inf{t ≥ 0 : Xt = 0}.

Corollary 1.2. Assume (1.1) and (1.6), and let L be as in (1.2).
(a) If for some C ≥ 0,

bi(x) > −Cxi on ∂Rd+ − {0}, (1.7)

then for every initial law there is a solution P to the martingale problem for L and
P(X(· ∧ T0) ∈ ·) is unique.
(b) If, in addition to (1.6) and (1.7),

d∑

i=1

bi(x) = 0 on Rd+, (1.8)

then there is a unique solution to the martingale problem for L.

Note that (1.7) implies that bi(x) > 0 if xi = 0 and x 6= 0.
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The degeneracy of the diffusion coefficients on the boundary means that one cannot apply
the results of [SV79] directly to establish uniqueness for the martingale problem (1.4). Unique-
ness of the martingale problem is of course equivalent to uniqueness in law for solutions (in
Rd+) to the stochastic differential equation (1.3), and would follow from pathwise uniqueness.
However, the presence of the square root in (1.3) means that the coefficients are not Lipschitz,
the standard condition for pathwise uniqueness. In the special case where γi(x) = γi(xi) de-

pends only on xi, each
√
xiγi(xi) is Hölder continuous of order 1

2 , and each bi is Lipschitz
continuous, pathwise uniqueness can be proved by a well-known local time argument (see
[YW71] or Sec. V.40 of [RW87]). However, this method fails in general, and even in the case
when γi, bi are smooth and bounded away from zero, pathwise uniqueness for (1.3) remains
an open question. (See [S02] for a related but special case where pathwise uniqueness can be
established.) Therefore we needed to develop new techniques to handle (1.4).

Our principal reason for studying this problem comes from the theory of superprocesses
with state dependent interactions. A superprocess on a state space E is a diffusion taking
values in the space MF (E) of finite measures on E. To describe it more precisely consider
a conservative generator A of a Hunt process ξ on E, a bounded continuous drift function
g : E 7→ R, and a bounded continuous branching rate 2γ : E 7→ R+. Write µ(ϕ) for

∫
ϕdµ,

and let D(A) denote the domain of A. The Dawson-Watanabe superprocess with drift g,
branching rate 2γ, and spatial motion A is the MF (E)-valued diffusion X whose law on
C(R+,MF (E)) is characterized by the law of X0 and the following martingale problem: for
each ϕ ∈ D(A)

Xt(ϕ) = X0(ϕ) +

∫ t

0

Xs((A+ g)ϕ)ds+Mt(ϕ), (MP )X0

where Mt(ϕ) is a continuous local martingale with square function 〈M(ϕ)〉t =
∫ t
0
Xs(2γϕ

2)ds.
See [D93] and [P01] for this and further background on superprocesses.

These processes arise as the large population (N), small mass (1/N) limit of a system
of branching ξ-processes. At y ∈ E each particle branches with rate Nγ(y) and produces a
random number of offspring with mean 1+g(y)/N and variance approaching 1 as N → ∞. The
independent behaviour of the individual particles makes these models amenable to detailed
mathematical study and is the key fact underlying the usual exponential duality proof of
uniqueness in (MP )X0

. From the perspective of potential biological applications it is clearly
desirable to have the individuals in the population interact through the drift g, spatial motion
A, or branching rate 2γ. One could allow these quantities to depend on the current state
Xt and hence introduce g : MF (E) × E 7→ R, γ : MF (E) × E 7→ R+ and state dependent
generators (Aµ)µ∈MF (E) defined on a common domain, D. It is not hard to see that, under
appropriate continuity conditions, the interactive analogues of the above branching particle
systems in which b, γ and A are replaced by their state dependent analogues produce a tight
sequence of processes whose limit points will satisfy, for each ϕ ∈ D,

Xt(ϕ) = X0(ϕ) +

∫ t

0

Xs((AXs
+ g(Xs))ϕ)ds+Mt(ϕ), (IMP )X0

where Mt(ϕ) is a continuous local martingale with 〈M(ϕ)〉t =
∫ t
0
Xs(2γ(Xs)ϕ

2)ds. The ques-
tion then is: Are solutions to (IMP )X0

unique in law?
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In the case when γ is constant, uniqueness can be proved for a wide class of g and A –
see [D78], [P92], [P95], [P01], [DK99] and [K98]. The change of measure technique in [D78]
allows one to assume g ≡ 0 in quite general settings, and we will do so below. The case when
γ depends on X is much harder, although weak uniqueness has been proved in some special
cases by duality methods – see [M98] and [DEFMPX00].

In the Fleming-Viot setting [DM95] established uniqueness in the martingale problem for
some state-dependent sampling (i.e. branching) rates which are very close to constant. They
used the Stroock-Varadhan perturbation technique in an infinite dimensional setting (using
completely different methods than those in this work). However, the strength of their norms
meant that it was not possible to localize and so obtain a general uniqueness result. Athreya
and Tribe [AT00] used a particle dual to calculate the moments for the solutions of a class of
parabolic stochastic PDEs, some of which could be interpreted as examples of (IMP) with a
purely local branching interaction, E = R and Af = f ′′/2. These duality arguments can be
used to show uniqueness for certain degenerate stochastic differential equations as well, though
under rather strict conditions on γi and bi.

If the state space E is the finite set {1, . . . , d} then (IMP) reduces to the d-dimensional
stochastic differential equation in the following example.

Example 1 (Super-Markov Chains). When E = {1, . . . , d} is finite uniqueness in law for a
class of the interactive branching mechanisms described above follows from our main result.
By [D78] we may assume that the drift g ≡ 0. In this setting MF (E) = Rd+ and one easily
sees that (IMP )X0

reduces to (1.4) where

bi(x) =

d∑

j=1

xjqji(x), x = (x1, . . . , xd) ∈ Rd+, (1.9)

and so

Lf(x) =
d∑

i=1

[
xiγi(x)

∂2f

∂xi2
(x) +

d∑

j=1

xjqji(x)
∂f

∂xi
(x)

]
. (1.10)

Here qji(x) is the jump rate from site j to site i in when the population is x, and γi(x) is the
corresponding branching rate at site i.

Corollary 1.3. Let qij : Rd+ → R, for i, j = 1, . . . , d, be bounded, continuous and satisfy

d∑

j=1

qij(x) = 0, i = 1, . . . , d, x ∈ Rd+, (1.11)

qij(x) ≥ 0 for all i 6= j, x ∈ Rd+, (1.12)

qij(x) > 0 for all i 6= j, if xj = 0 and x 6= 0, j = 1, . . . , d. (1.13)

If L is given by (1.10), then there exists a unique solution for the martingale problem for L.

Proof. We apply Corollary 1.2 with bi(x) =
∑d
j=1 xjqji(x). Clearly (1.1) and (1.6) hold, and

(1.8) is immediate from (1.11). To verify (1.7), note that if C > supi ‖qii‖∞ and xi > 0, then

bi(x) ≥ xiqii(x) > −Cxi.
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On the other hand if xi = 0, then qji(x) > 0 for all j 6= i by (1.12) and so bi(x) > 0 unless
x = 0. This verifies (1.7) in either case. Corollary 1.2 (b) now gives the desired result. �

Remark 1.4. By using a stopping argument as in the proof of Corollary 1.2(a), (see Section
7), one can weaken the non-degeneracy condition on γi in (1.1) to γi(x) > 0 for non-zero
x ∈ Rd+.

Conditions (1.11) and (1.12) simply assert that (qij(·)) is a state dependent generator
of a chain. Unfortunately, however, (1.13) rules out such simple chains as nearest neighbour
random walks on {1, . . . , d}. One might hope that the condition (1.5) could be replaced by

bi(x) ≥ 0, for all i, x ∈ ∂Rd+, (1.14)

but this is not possible in general – we give a one-dimensional counter-example in Section 8.
See, however, [BP01], which considers the case bi(x) ≥ 0 on {xi = 0} with γi and bi Hölder
continuous.

Example 2 (Generalized Mutually Catalytic Branching). Assume qkij : Rd+ → R for 1 ≤ i, j ≤
d are bounded and continuous, and for each k ≤ K, (qkij(x)) is the generator of a Markov chain

on {1, . . . , d} (i.e., (1.11) and (1.12) hold for each qk) and (1.13) holds for each of these K
generators. Let γk,i : RK+ → (0,∞) be continuous for i = 1, . . . , d and k = 1, . . . , K. Consider

the system of stochastic differential equations in Rd
+ for 1 ≤ i ≤ d, 1 ≤ k ≤ K,

dXk,i
t =

d∑

j=1

Xk,j
t qkji(X

k
t )dt+

√
2γk,i(X

1,i
t , . . . , XK,i

t )Xk,i
t dBk,it . (1.15)

Here Xk
t = (Xk,1

t , . . . , Xk,d
t ), and B1,1, . . . , BK,d are Kd independent one-dimensional Brown-

ian motions. This represents K populations undergoing state dependent migration on d sites
where the branching rate of the kth population at site i is a function (γk,i) of the mass of the
K populations at the same site i. The intuition is that the presence of the different types at
a site effects the branching of the other types at the site.

We claim that Corollary 1.2 (and its proof) gives uniqueness in law for the solutions of
(1.15). By a result of Krylov it suffices to prove uniqueness of strong Markov solutions starting
from an arbitrary constant initial condition (see Theorem 12.2.4 of [SV79] and its proof which
applies equally well to diffusions in Rd+). Note first that for some C > 0,

bk,i(x
1, . . . , xK) =

d∑

j=1

xk,jqkji(x
k) > −Cxk,i if xk 6= 0.

This follows exactly as in Corollary 1.3. Now let T k = inf{t : Xk
t = 0} and T = mink≤K T

k.
As in the proof of Corollary 1.2 X(· ∧ T ) is unique in law. Since the total mass of each
population is a non-negative local martingale it will stick at zero when it hits zero. Hence
after time T one population is identically zero and the other K − 1 will satisfy a martingale
problem of the same type. The obvious induction now gives uniqueness in law of X(T + ·).
Piecing the solution together we obtain uniqueness in law of X, as required.
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The standard mutually catalytic branching model (see [DP98]) has K = 2, the branching
rate of each type is given by the amount of the other type at the site, and so

γ1,i(x
1,i, x2,i) = x2,i, γ2,i(x

1,i, x2,i) = x1,i.

For this model and constant (qij) uniqueness in law can be proved by duality, but the ar-
gument does not extend to more general branching rates. The nondegeneracy condition we
have imposed on the γk,i unfortunately excludes this model from those covered by our result.
However, for more than two types (see Fleischmann and Xiong [FX00]) the result above seems
to be the first uniqueness result which allows branching rate of one type to depend on the
other types at the site.

Example 3 (Stepping Stone Models). Assume qij : [0, 1]d → R for 1 ≤ i, j ≤ d are bounded
continuous and for each x, (qij(x)) is the generator of a Markov chain on {1, . . . , d} such that

d∑

i=1

qij(x) = 0 for all x, (1.16)

and
qij(x) > 0 for all i 6= j whenever xj = 0 or 1. (1.17)

For i = 1, . . . , d, let γi be a strictly positive continuous function on [0, 1]d. Then Corollary 1.2
implies that for any fixed X0 ∈ [0, 1]d, there is a solution {Xt, t ≥ 0} ∈ [0, 1]d of

dXi
t =

d∑

j=1

Xj
t qji(Xt)dt+

√
γi(Xt)Xi

t(1 −Xi
t)dB

i
t (1.18)

that is unique in law. Here again Bi, i = 1, . . . , d are independent one-dimensional Brownian
motions. Xi

t represents the proportion of the population with a given genotype at site i, qij(·)
is the state-dependent migration rate from state i to state j and γi(·) is the state-dependent
sampling rate at site i. Existence of solutions is standard.

Uniqueness is a local result in that it suffices to show each starting point has a neigh-
bourhood on which the coefficients equal other coefficients for which uniqueness holds. This
follows as in the well-known Stroock-Varadhan localization result on Rd (see Theorem 6.6.1
of [SV79] or Theorem VI.3.4 in [B97]). For starting points in the interior of [0, 1]d we may
change the diffusion coefficient outside a small open ball so that it is uniformly elliptic and
then apply standard results from [SV79]. For initial points x in ∂[0, 1]d satisfying maxxi < 1,
local uniqueness is clear from Corollary 1.3. If x is in the boundary with some coordinates
equal to 1, we want to make the transformation taking X i

t to 1−Xi
t for those i where xi = 1.

We do this by setting ψi(y) = 1 − y if xi = 1 and ψi(y) = y otherwise. We then perform the
transformation (y1, . . . , yd) → (ψ1(y1), . . . , ψd(yd)). After this transformation we have reduced
the problem to the situation where the starting point satisfies maxxi < 1.

The interested reader may now combine the previous two examples to obtain uniqueness
in law for a multi-type stepping stone model in which each type migrates according to its own
state dependent Q-matrix and the sampling rate at each site may depend on the proportion
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of each of the types at the particular site. This last example was motivated by recent work of
Greven, Klenke, and Wakolbinger [GKW99].

In Section 2 we give an overview of the proof of Theorem 1.1. Section 3 contains the
necessary resolvent bounds, while Section 4 establishes key properties of the zeros of Bessel
functions which are needed in Section 3. Section 5 and Section 6 deal with norm-finiteness and
continuity of the resolvent respectively. Theorem 1.1 and Corollary 1.2 are proved in Section
7, and in Section 8 we give the one-dimensional counterexample which shows that we cannot
weaken the condition bi > 0 on ∂Rd+. Constants which appear in the statements of Lemmas
(and propositions), say Lemma 5.2 are denoted by c5.2. Elsewhere in the paper, c, ci denote
constants whose value may change from line to line.

Acknowledgment. We thank D. Dawson for a number of helpful conversations on the unique-
ness problem for interactive branching. We also thank the referee for a very careful reading of
the paper.

2. Overview of proof

In this section we give an outline of the proof of Theorem 1.1, and state the main results
that we will need. Since existence of a solution to the martingale problem for L is relatively
straightforward (see Section 7), we concentrate here on uniqueness.

If X is a process in Rd+ and B ⊂ Rd, write

TB = inf{t ≥ 0 : Xt ∈ B}, τB = inf{t ≥ 0 : Xt ∈ Bc},

for the first hitting times of B and Bc. We will sometimes use the notation τB(X), TB(X)
when the process X is not clear from the context. Fix M > 0, and define the upper boundary
of [0,M ]d by

U = UM = {(x1, . . . , xd) ∈ [0,M ]d : x1 ∨ · · · ∨ xd = M}.
Let τM = τ[0,M)d . If ν is a probability on [0,M)d, we say that a continuous Rd+ ∪ {∂}-valued

process X is a solution to the stopped martingale problem for (L, [0,M)d) with initial law ν,
(or SMP (ν,L, [0,M)d)) if X0 has law ν, Xt = ∂ for t ≥ τM , and for each f ∈ C2

b ([0,M ]d) the

process Nf
t∧(τM−) is a continuous local martingale, and hence a martingale as it is bounded.

(Here Nf is as in (1.4) and Nf
t∧(τM−) equals Nf

τM− if t ≥ τM .) If

Ω∂ = {ω ∈ C(R+,R
d ∪ {∂}) : whenever 0 ≤ s < t, ω(s) = ∂ implies ω(t) = ∂}

and F∂ is its Borel σ-field, then we also say that the law of X on (Ω∂ ,F∂) is a solution of the
stopped martingale problem for (L, [0,M)d) with initial law ν.

A localisation argument, similar to that in [SV79] or [B97], (see Section 7) reduces the
proof of Theorem 1.1 to the following case.

Proposition 2.1. For any ε > 0 there is a K = K(ε, d) so that if bi(·), γi(·), 1 ≤ i ≤ d are
as in (1.1), and there exist constants b0i > 0, γ0

i > 0 such that

‖b0i − bi(·)‖∞ ≤ (2K)−1, ‖γ0
i − γi(·)‖∞ ≤ (2K)−1, i = 1, . . . , d, (2.1)
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ε ≤ bi(x), γi(x), b
0
i , γ

0
i ≤ ε−1, x ∈ Rd+, i = 1, . . . , d, (2.2)

2
bi(x)

γi(x)
≥ bi(y)

γi(y)
+
ε2

2
, x, y ∈ Rd+, i = 1, . . . , d, (2.3)

then uniqueness of solutions holds for MP (L, ν) for any law ν on Rd
+.

Most of the remainder of this paper will be concerned with proving Proposition 2.1. Let

L0f(x) =
d∑

i=1

γ0
i xi

∂2f

∂x2
i

(x) +
d∑

i=1

b0i
∂f

∂xi
(x). (2.4)

Note that L0 is the generator of a process whose components are independent scaled copies
of the square of a Bessel process of dimension 2b0i /γ

0
i (see Sec. V.48 of [RW87]). We write Y

for this process killed (i.e. set equal to the cemetery state ∂) at time TU . Analytically this
means we impose zero boundary conditions on U . Set b0 = (b01, . . . b

0
d) and γ0 = (γ0

1 , . . . γ
0
d).

Let Rλ = Rb
0,γ0

λ denote the resolvent of this killed process Y . The measure on [0,M ]d which

makes L0 with these boundary conditions formally self-adjoint is µ(dx) =
∏d
i=1 x

(b0i/γ
0

i )−1
i dxi.

We write L2 for L2([0,M ]d, µ) and ‖ · ‖2 will denote the associated norm, hence suppressing
dependence on (b0, γ0) in our notation.

Those familiar with the localization technique (and those not) may find (2.3) rather
puzzling. It arises because, unlike the Brownian case, the natural reference measures µ depend
on the constants (b0, γ0). It is used in the proof of Proposition 2.3 below and more specifically
in the proof of Lemma 5.3.

We now give the key perturbation estimate needed to carry out the Stroock-Varadhan
argument. This result introduces the constant K(ε, d) needed in Proposition 2.1. Set

C2
0 = C2

0 ([0,M ]d) = {f ∈ C2([0,M ]d) : f |U = 0}.

Proposition 2.2. There exists a dense subspace D0 ⊂ L2([0,M ]d, µ) with

Rλ(D0) ⊂ D0 ⊂ C2
0 (2.5)

satisfying the properties below. For each ε > 0 there exists K = K(ε, d), independent of M ,

such that if ε ≤ b0i , γ
0
i ≤ ε−1, then (recall Rλ = Rb

0,γ0

λ ),

d∑

i=1

(∥∥xi
∂2

∂x2
i

Rλf
∥∥

2
+

∥∥ ∂

∂xi
Rλf

∥∥
2

)
≤ K‖f‖2 for all λ > 0 and f ∈ D0. (2.6)

In particular the operators xi(∂
2/∂x2

i )Rλ and (∂/∂xi)Rλ extend uniquely to bounded opera-
tors on L2 satisfying (2.6) for all f ∈ L2.

Using Theorem 12.2.4 of [SV79], we will see that uniqueness in general will follow if we
can prove uniqueness for Borel strong Markov solutions of the stopped martingale problem for
any M . So let (Xt,P

x
k), k = 1, 2, be two Borel strong Markov processes, such that for each x
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the probability Pxk is a solution to the stopped martingale problem for (L, [0,M)d) started at
x. Let

Skλf(x) = Exk

∫ ∞

0

e−λtf(Xt)dt = Exk

∫ TU

0

e−λtf(Xt)dt, k = 1, 2,

where the process Xt is killed (set equal to ∂) upon exiting [0,M)d and f(∂) = 0. Some
elementary stochastic calculus (see Section 7) shows that for f in D0,

Skλf(x) = Rλf(x) + Skλ(L − L0)Rλf(x), k = 1, 2. (2.7)

We want to use a perturbation argument in L2, but sup{|Skλf(x)| : ‖f‖2 ≤ 1} will not be
finite in general; in fact |Rλf(x)| can be infinite even if ‖f‖2 <∞. So we integrate (2.7) with
respect to the measure ν(dx) = ρ(x)µ(dx) for ρ ∈ L2, take the difference for k = 1, 2, and
obtain ∫

(S1
λ − S2

λ)f(x)ν(dx) =

∫
(S1
λ − S2

λ)(L − L0)Rλf(x)ν(dx).

Set θ = sup{|
∫
(S1
λ − S2

λ)f(x)ν(dx)| : ‖f‖2 ≤ 1}. Using Proposition 2.2 and (2.1), we obtain

∣∣∣
∫

(S1
λ − S2

λ)f(x)ν(dx)
∣∣∣ ≤ θ

2
‖f‖2.

Taking the supremum over f ∈ C2([0,M ]d) such that ‖f‖2 ≤ 1, we obtain

θ ≤ θ

2
. (2.8)

To eliminate the possibility that θ = ∞ we apply the following proposition.

Proposition 2.3. Let X be a solution of SMP (ν,L, [0,M)d), where ν(dx) = ρ(x)dµ(x) for
some ρ ∈ L2([0,M ]d, µ). Set Sλf = E

∫ ∞

0
e−λtf(Xt) dt, where f(∂) = 0. If there are constants

ε > 0, b0i , γ
0
i satisfying (2.1), (2.2), and (2.3), then for all λ > 0

sup{|Sλf | : ‖f‖2 ≤ 1} ≤ 2‖ρ‖2

λ
<∞.

This implies that θ < ∞, and so we conclude from (2.8) that θ = 0. It follows that
S1
λf(x) = S2

λf(x) for almost every x. To extend this to equality everywhere, we prove that
Siλf are continuous.

Proposition 2.4. Assume γi and bi are as in Theorem 1.1. Let M ∈ (0,∞] and assume
{Px : x ∈ [0,M)d ∪ {∂}} is a collection of probabilities on (Ω∂,F∂) such that:
(i) For each x ∈ [0,M)d, Px is a solution of the stopped martingale problem for (L, [0,M)d)
with initial law δx, and ω(·) ≡ ∂ P∂-a.s.,
(ii) (Px, Xt) is a Borel strong Markov process.
Then for any bounded measurable function f on [0,M)d, and any λ ≥ 0,

Sλf(x) = Ex
(∫ ∞

0

e−λtf(Xt)dt
)

9



is a continuous function in x ∈ [0,M)d.

Note that if M = ∞, solutions to the stopped martingale problem for (L, [0,M)d) are
just solutions to the martingale problem for L. This Proposition allows us to conclude that
S1
λf(x) = S2

λf(x) for every x. It is then standard to deduce from this the uniqueness of the
solution to the martingale problem.

We say a few words about the proofs of Propositions 2.2, 2.3, and 2.4. To get the estimates
we need for Proposition 2.2, we first consider the case of one dimension in Section 3. We look
at an eigenfunction decomposition of L2, and an explicit calculation shows that if Vλ is the
resolvent operator for a one-dimensional scaled squared Bessel process, then d(Vλ)/dx is a
bounded operator on L2. This entails some detailed estimates of Bessel functions and their
zeros, which is done in Section 4. To handle the d-dimensional estimates, we use the fact that
the transition density for the process corresponding to L0 factors into a product of transition
densities for one dimensional processes and some eigenvalue analysis. After we have a bound
on the first derivatives, a bound on xi∂

2(Rλ)/∂x
2
i is easily achieved using some more eigenvalue

calculations and the diagonal form of the diffusion matrix.
The proof of Proposition 2.3, given in Section 5, is similar to the proof in [SV79] of the

analogous estimate. We “freeze” the coefficients of (1.3) at a finite number of fixed times, and
prove finiteness of the corresponding resolvent. Combining this with a uniform estimate on the
resolvent obtained from Proposition 2.2, and using an analogue of (2.7), we then obtain bounds
independent of the approximation, which allows us to take a limit. Some care must be taken
here because, unlike the uniformly elliptic setting, the natural reference measures depend on
the “frozen” coefficients. This complication leads to the odd-looking condition (2.3).

Proposition 2.4 is proved in Section 6. Its analogue for uniformly elliptic diffusions is a
well-known result of Krylov and Safonov (see e.g., Section V.7, p. 116 of [B97]). The proof
uses the classical Girsanov theorem, scaling and the result of Krylov and Safonov to prove
that Xt enters certain sets with positive probability.

In Section 7 we carry out the details of the argument described above.

Remark 2.5. One should note that the above approach also simplifies the analytic part of
the classical results of Stroock and Varadhan on uniformly elliptic diffusions [SV79]. Instead
of using Lp estimates in the analogue of Proposition 2.2, which require some difficult estimates
for singular operators, one can get by with much simpler L2 estimates which follow easily from
Parseval’s equality – see for example Appendix A.0 and A.1 in [SV79]. The price for this
is that one must use Krylov selection to reduce uniqueness to the Markovian setting and the
Krylov-Safonov results to obtain continuity of the resolvent operators. Both of these, however,
have nice probabilistic proofs.

3. Resolvent Bounds

Fix M > 0, let b, γ ∈ (0,∞), and let

Af(x) = γxf ′′(x) + bf ′(x), x ∈ [0,M ], f ∈ D(A),

be the infinitesimal generator of a scaled squared Bessel diffusion killed when it hits M . In
this section γ and b are constants and do not depend on x. Let

Ja(x) =

∞∑

m=0

(−1)m(x/2)a+2m

m!Γ(a+m+ 1)
, x ≥ 0, (3.1)

10



be the Bessel function of the first kind with parameter a > −1, and let

wk = wk(b
′) be the kth positive zero of Jb′−1(·) for b′ > 0, k ∈ N. (3.2)

Proposition 3.1. Let b′ = b/γ, and set

ϕk(x) =
Jb′−1(wk

√
x
M

)√
Mx(b′−1)/2 | Jb′(wk) |

, x ∈ [0,M ]. (3.3)

Then ϕk(x) is in C2([0,M ]) with ϕk(M) = 0, ϕk satisfies

Aϕk = −λkϕk on [0,M ], (3.4)

where

λk =
γw2

k

4M
, (3.5)

and {ϕk : k ∈ N} is a complete orthonormal basis in L2([0,M ], xb
′−1dx).

Proof. Using (3.1) one can see that ϕk ∈ C2([0,M ]). The definition of wk guarantees that
ϕk(M) = 0. A direct calculation shows that ϕk satisfies (3.4); perhaps the easiest way to see
this is to write ϕk as a power series using (3.1) and perform the differentiations term by term.
The fact that the ϕk are orthonormal follows from the fact that {

√
2zJb′−1(wkz)/|Jb′(wk)| :

k ∈ N} is a complete orthonormal system in L2([0, 1]), dz) ([H71], p. 264) and the change of

variables z =
√
x/M . To check completeness, suppose f ∈ L2([0,M ], xb

′−1dx) is orthogonal

to all of the ϕk. By the change of variables z =
√
x/M the function F (z) = f(z2M)zb

′−1 can
be seen to belong to L2([0, 1], z dz) and to be orthogonal to Jb′−1(wkz) in this space for all
k. Since {Jb′−1(wkz)} is a complete basis in L2([0, 1], z dz), then F (z) = 0 a.e., which implies
that f(x) = 0 a.e. �

We will need three technical lemmas on Bessel functions and their zeros. We defer the
proofs of Lemmas 3.2, 3.3, and 3.4 to the next section.

Lemma 3.2. For each ε > 0 there exists c3.2 depending only on ε such that for any b′ ∈
[ε2, ε−2] and all 1 ≤ j ≤ k,

∣∣∣
∫ 1

0

Jb′(wkz)Jb′(wjz)z
−1 dz

∣∣∣ ≤ c3.2(wj/wk)
b′∧(1/4).

Lemma 3.3. For each ε > 0 there exists c3.3 > 0 depending only on ε such that for b′ ∈
[ε2, ε−2] and all k ∈ N,

wk ≥ c3.3k.

Lemma 3.4. For each ε > 0 there exists c3.4 > 0 depending only on ε such that for b′ ∈
[ε2, ε−2] and all k ∈ N,

|Jb′(wk)| ≥ c3.4w
−1/2
k .

We will also need the following classical analysis result–see Theorem 318 in [HLP34]. As
it is neat, short and fun, we give an alternate proof.

11



Proposition 3.5. Suppose ν > 0 and K(j, k) = 1(j≤k)j
ν−

1
2 k−

1
2
− ν . Then

∑

1≤j≤k<∞

|aj | |ak|K(j, k) ≤ (ν ∧ 1/2)−1
∞∑

j=1

|aj|2.

Proof. As the left side is clearly decreasing in ν it suffices to consider ν ≤ 1/2. Fix N for the
moment and consider the bounded linear operator KN on `2 defined by
KN (j, k) = K(j, k)1(k≤N) and (KNa)j =

∑∞
k=1KN (j, k)ak. Let K∗

N (j, k) = KN (k, j) and
note

(K∗
NKN )(j, k) =

∞∑

m=1

K∗
N (j,m)KN(m, k) =

N∑

m=1

KN (m, j)KN(m, k)

=

j∧k∑

m=1

mν−
1
2 j−

1
2
− νmν−

1
2 k−

1
2
− ν1(j∨k≤N)

≤ 1

2ν
(j ∧ k)2νj−

1
2 − νk−

1
2 − ν1(j∨k≤N)

≤ 1

2ν
(K∗

N (j, k) +KN (j, k)).

In the next to last inequality we have used the fact that ν ≤ 1/2. If x = (x1, x2, . . .) ∈ `2, let
y = (|x1|, |x2|, . . .). We have

|((K∗
NKN )x)j | ≤ ((K∗

NKN )y)j ≤
1

2ν
((K∗

N +KN )y)j ,

so

‖(K∗
NKN )x‖`2 ≤ 1

2ν
(‖K∗

N‖ + ‖KN‖)‖y‖`2 =
1

ν
‖KN‖ ‖x‖`2 .

Hence

‖KN‖2 = ‖K∗
NKN‖ ≤ 1

ν
‖KN‖,

which implies ‖KN‖ ≤ 1
ν . Let bj = |aj |. By Cauchy-Schwarz,

∑

1≤j≤k≤N

|aj| |ak|K(j, k) =
∑

j

bj(KNb)j ≤ ‖b‖`2‖KNb‖`2 ≤ 1

ν
‖b‖2

`2 =
1

ν
‖a‖2

`2 .

Now let N → ∞. �

Now let Vλ denote the resolvent associated with the generator A. Set b′ = b/γ. The

L2([0,M ], xb
′−1dx) norm will be denoted by ‖ · ‖2. Let D = D(b, γ) be the dense subspace in

L2 consisting of finite linear combinations of the eigenfunctions ϕk. Note that the constant
c3.6 in the next result does not depend on M .
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Proposition 3.6. For each ε > 0 there exists c3.6 > 0 depending only on ε such that if
b, γ ∈ [ε, ε−1], then

sup
λ>0

∥∥dVλf
dx

∥∥
2
≤ c3.6‖f‖2 for all f ∈ D.

Proof. Let b, γ ∈ [ε, ε−1], so that b′ = b/γ ∈ [ε2, ε−2]. From p. 45 of [W44] we have

d

dz

(
z−(b′−1)Jb′−1(z)

)
= −z−(b′−1)Jb′(z).

From this and (3.3) we have

ϕ′
k(x) =

−wk
2M |Jb′(wk)|

Jb′(wk
√
x/M)x−b

′/2.

This implies that if f =
∑N
k=1 akϕk then, since Vλϕk = (λ+ λk)

−1ϕk,

dVλf(x)

dx
=

N∑

k=1

ak
λ+ λk

ϕ′
k(x) =

N∑

k=1

−ak
λ+ λk

(wkJb′(wk
√
xM−

1
2 )

2M | Jb′(wk) | x
b′

2

)
,

where the λk are as in (3.4). Hence

∫ M

0

| dVλf(x)

dx
|2 xb′−1dx

=

∫ M

0

∑

1≤j,k≤N

akaj
(λ+ λj)(λ+ λk)

wkwjJb′(wk
√
xM−

1
2 )Jb′(wj

√
xM−

1
2 )

4M2 | Jb′(wk)Jb′(wj) |
x−1dx

=
∑

1≤j,k≤N

akajwkwj
4M2(λ+ λj)(λ+ λk) | Jb′(wk)Jb′(wj) |

∫ 1

0

Jb′(wkz)Jb′(wjz)
2dz

z
.

In the last line we substituted z =
√
x/M .

Set ν = b′ ∧ (1/4) and use Lemmas 3.2, 3.3 and 3.4 to conclude that for some constants
which depend only on ε,

∥∥ d

dx
Vλf

∥∥2

2
≤ c1

∑

1≤j≤k≤N

|aj ||ak|w
3

2

j w
3

2

k

M2(λ+ λj)(λ+ λk)

(wj
wk

)ν

= c1
∑

1≤j≤k≤N

|aj||ak|w
3

2

j w
3

2

k

(Mλ+ γ
4w

2
j )(Mλ+ γ

4w
2
k)

(wj
wk

)ν

≤ c2
∑

j≤k≤N

|aj| |ak|
(wν−

1

2

j

w
ν+ 1

2

k

)

≤ c3
∑

j≤k≤N

|aj| |ak|
kν+

1

2 j
1

2
−ν

≤ ν−1c3
∑

j≤N

|aj|2. (3.6)
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Here we used Proposition 3.5 in the final line. Since ||f ||22 =
∑ |aj|2 this completes the proof.

�

We now show that the one-dimensional result, Proposition 3.6, is all we need to handle
the higher-dimensional situation. Let b0i , γ

0
i ∈ (0,∞) for i = 1, . . . , d, fix M > 0, let µi(dxi) =

x
b′i−1
i dxi, where b′i = b0i /γ

0
i . Define µ(dx) =

∏d
i=1 x

b′i−1
i dxi. Let ‖·‖2 denote the L2([0,M ]d, µ)

norm.
Set

Ajf(x) = γ0
jxj

∂2f

∂x2
j

(x) + b0j
∂f

∂xj
(x), x ∈ [0,M ]d, 1 ≤ j ≤ d,

for f ∈ C2([0,M ]d) such that f(x) = 0 whenever x ∈ UM . We will also need

Ajf(x) = γ0
jxf

′′(x) + b0jf
′(x), x ∈ [0,M ]

for f ∈ C2([0,M ]) with f(M) = 0. Thus Aj is the operator Aj considered as an operator

in one dimension. Let V jλ be the resolvent for Aj . For each j let {ϕjk : k ∈ N} be the

complete orthonormal system of eigenfunctions for Aj on L2([0,M ], µj(dx)) and let λjk be the

corresponding eigenvalues. If k = (k1, . . . , kd), then ϕk(x1, . . . , xd) =
∏d
j=1 ϕ

j
kj

(xj) defines a

complete orthonormal system in L2([0,M ]d, µ). Let λ(k) =
∑d
j=1 λ

j
kj

. Recall that

L0f(x) =

d∑

j=1

Ajf(x) =

d∑

j=1

xjγ
0
j

∂2f

∂x2
j

(x) + b0j
∂f

∂xj
(x), (3.7)

and therefore
L0ϕk = −λ(k)ϕk. (3.8)

Proof of Proposition 2.2. Recall that Rλ is the resolvent of the operator L0 with zero boundary
conditions on UM . Set

D0 = {
∑

k

akϕk : ak 6= 0 for only finitely many k}. (3.9)

Since Rλϕk = (λ+ λ(k))−1ϕk, we have Rλ(D0) ⊂ D0 ⊂ C2
0 .

We begin by proving that

∥∥∂Rλf
∂xj

∥∥
2
≤ c3.6‖f‖2 for all f ∈ D0. (3.10)

We will do the case j = 1; the proof for other j is exactly the same. Suppose

f =
N∑

k1,...,kd=1

akϕk.
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Set

g(x1; k2, . . . , kd) =

N∑

k1=1

akϕ
1
k1

(x1).

Set σ(k) = λ2
k2

+ · · ·+ λdkd
. We have

V 1
λ+σ(k)g(x1; k2, . . . , kd) =

N∑

k1=1

ak
1

λ+ λ2
k2

+ · · ·+ λdkd
+ λ1

k1

ϕ1
k1

(x1) =

N∑

k1=1

ak
λ+ λ(k)

ϕ1
k1

(x1).

It follows that

Rλf(x) =

N∑

k1,...,kd=1

ak
λ+ λ(k)

ϕk(x)

=

N∑

k2,...,kd=1

ϕ2
k2

(x2) · · ·ϕdkd
(xd)(V

1
λ+σ(k)(g(·; k2, . . . , kd)))(x1),

and hence that

∂Rλf

∂x1
(x) =

N∑

k2,...,kd=1

ϕ2
k2

(x2) · · ·ϕdkd
(xd)

d

dx1
(V 1
λ+σ(k)(g(·; k2, . . . , kd)))(x1).

If m = (m1, . . . ,md),

‖ ∂

∂x1
Rλf‖2

L2(µ) =

∫
· · ·

∫ N∑

k2,...,kd=1

N∑

m2,...,md=1

ϕ2
k2

(x2)ϕ
2
m2

(x2) · · ·ϕdkd
(xd)ϕ

d
md

(xd)

× d

dx1
(V 1
λ+σ(k)(g(·; k2, . . . , kd)))(x1)

d

dx1
(V 1
λ+σ(m)(g(·;m2, . . . ,md)))(x1)

× µ2(dx2) · · ·µd(dxd)µ1(dx1).

Since
∫
ϕiki

(xi)ϕ
i
mi

(xi)µi(dxi) = 1 if ki = mi and 0 otherwise,

‖ ∂

∂x1
Rλf‖2

2 =

N∑

k2,...,kd=1

∫
| d
dx1

(V 1
λ+σ(k)(g(·; k2, . . . , kd)))(x1)|2µ1(dx1)

=
N∑

k2,...,kd=1

‖ d

dx1
(V 1
λ+σ(k)(g(·, ; k2, . . . , kd)))‖2

L2(µ1)

≤ c3.6

N∑

k2,...,kd=1

‖g(·; k2, . . . , kd)‖2
L2(µ1)

,
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using Proposition 3.6. But

‖g(·; k2, . . . , kd)‖2
L2(µ1)

= ‖
N∑

k1=1

akϕ
1
k1
‖2
L2(µ1) =

N∑

k1=1

|ak|2.

Therefore

‖ ∂

∂x1
Rλf‖2

2 ≤ c3.6

N∑

k2,...,kd=1

N∑

k1=1

|ak|2 = c3.6‖f‖2
2,

and so (3.10) is proved.
If f =

∑
k
akϕk ∈ D0, then

AjRλf =
∑

k

ak
−λjkj

λ+ λ(k)
ϕk,

and so

‖AjRλf‖2
2 =

∑

k

a2
k

( λjkj

λ+ λ(k)

)2

≤
∑

k

a2
k

= ‖f‖2
2. (3.11)

Finally, note that for f ∈ D0,

xj
∂2

∂x2
j

Rλf(x) =
1

γ0
j

AjRλf(x) −
b0j
γ0
j

∂

∂xj
Rλf(x);

the proposition therefore follows by the bounds (3.10) and (3.11). �

4. Bessel functions and their zeros

In this section we prove Lemmas 3.2–3.4. Each is standard for a fixed b′, but we need
estimates that are uniform over b′ ∈ [ε, ε−1]. We first prove

Lemma 4.1. Let Jb′ denote the Bessel function of the first kind with parameter b′ > −1.

(a) Jb′(x) ≤ (x/2)b′

Γ(b′+1) exp
(

x2

2(b′+1)

)
for all x > 0.

(b) For any ε > 0 there is a c4.1(ε) such that for all −1 < b′ ≤ ε−2

Jb′(x) =

√
2

πx
cos(x− b′π/2 − π/4) + Eb′(x) where |Eb′(x)| ≤ c4.1x

−3/2 for all x ≥ 1.

Proof. (a) follows from the series expansion of Jb′ (see (1) on p. 44 of [W44]).
(b) This is a very simple case of the asymptotic expansions on p. 206 of [W44]. We let
(x)n = x(x+ 1) . . . (x+ n− 1) and {x} be the least integer k ≥ x. Define

am(b′) = (−1){m/2}
(1/2 − b′)m(1/2 + b′)m

m!2m
.
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Choose the smallest positive integer p so that 2p > ε−2 − 1/2. Then (1) on p. 206 of [W44]
gives (for −1 < b′ ≤ ε−2)

Jb′(x) =

√
2

πx

(
cos(x− b′π

2
− π

4
)P (x, b′) − sin(x− b′π

2
− π

4
)Q(x, b′)

)
,

where

P (x, b′) =

p−1∑

m=0

a2m(b′)x−2m + R2p(b
′, x),

Q(x, b′) =

p−1∑

m=0

a2m+1(b
′)x−(2m+1) + R2p+1(b

′, x),

and
|Rq(b′, x)| ≤ |aq(b′)|x−q for q = 2p or 2p+ 1.

This shows that (b) holds with

Eb′(x) =

√
2

πx

(
cos(x− b′π

2
− π

4
)(P (x, b′) − 1) − sin(x− b′π

2
− π

4
)Q(x, b′)

)
.

The above bounds now give the required bound on Eb′(x). �

Proof of Lemma 3.2. Let ν = b′ ∧ 1
4 and combine the bounds in Lemma 4.1 to see that for

ε2 ≤ b′ ≤ ε−2,
Jb′(x) ≤ c0x

ν1(x≤1) + c1x
−1/21(x>1),

where c0 and c1 are constants depending only on ε. This implies that for j ≤ k,

|
∫ 1

0

Jb′(wkz)Jb′(wjz)
dz

z
|

≤
∫ 1

wk

0

c20(wkwj)
νz2ν−1dz +

∫ 1

wj

1

wk

c0c1(wkz)
− 1

2 (wjz)
ν dz

z

+ c21

∫ ∞

1

wj

(wjwk)
−1/2z−2dz

≤ c20(2ν)
−1(wj/wk)

ν + c0c1(1/2 − ν)−1(wj/wk)
ν + c21(wj/wk)

1/2

≤
[
c20(2ε

2 ∧ 1/2)−1 + 4c0c1 + c21

]
(wj/wk)

ν .

�

Proof of Lemma 3.3. First consider k = 1. Note that

f(b′, w) ≡ Jb′−1(w)/wb
′−1 =

∞∑

m=0

(−1)m
(w/2)2m

m!Γ(b′ +m)
21−b′
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is a jointly continuous function of (b′, w) ∈ (0,∞)× [0,∞). Since

inf
ε2≤b′≤ε−2

f(b′, 0) = inf
ε2≤b′≤ε−2

21−b′Γ(b′)−1 = η > 0,

by uniform continuity there exists δ > 0 depending only on ε such that

inf
(b′,w)∈[ε2,ε−2]×[0,δ]

f(b′, w) ≥ η/2. (4.1)

This implies
inf

ε2≤b′≤ε−2

w1(b
′) > δ. (4.2)

Let N(R, b′) be the number of zeros of Jb′−1 in [0, R]. We claim that

sup
ε2≤b′≤ε−2

N(R, b′) <∞ for all R > 0. (4.3)

If this is false there is a sequence {b′n} in [ε2, ε−2] which converges to b0 such that the number
of zeros of f(b′n, ·) in [0, R] approaches ∞. Now the series defining f(b′, ·) shows that we may
extend it to an analytic function in the complex plane for each b′ > 0. Moreover as n → ∞,
f(b′n, ·) converges to f(b0, ·) uniformly on compact subsets in the complex plane. Rouché’s
Theorem now shows that the number of zeros of f(b′n, ·) inside a smooth simple closed curve
on which f(b0, ·) does not vanish approaches the number of zeros of f(b0, ·) inside the same
curve. This implies that f(b0, ·) has infinitely many zeros in [0, R] which is impossible for a
non-constant analytic function.

We claim that there exist R, c0 > 0 depending only on ε such that if w′
n(b′) is the nth

largest zero of Jb′−1 in (R,∞], then

w′
n(b′) ≥ c0n for all b′ ∈ [ε2, ε−2] and all n ∈ N. (4.4)

Let In = [(b′−1)π/2+π/2+nπ, (b′−1)π/2+π+nπ]. It follows from Lemma 4.1(b) that there
is an R > 0 depending only on ε so that all the zeros of Jb′−1 are included in ∪∞

n=1In ∪ [0, R].
Suppose Jb′−1 has two zeros in In ∩ (R,∞). Since the zeros of Jb′−1 and Jb′ are interleaved
(see p. 479 of [W44]), this means Jb′ must have a zero in In. Now on In,

|Jb′(x)| = |
√

2

πx
cos(x− b′π/2 − π/4) + Eb′(x)|

= |
√

2

πx
sin(x− (b′ − 1)π/2 − π/4) + Eb′(x)|

≥ (πx)−1/2 − c4.1x
−3/2 > (πx)−1/2/2 > 0,

where the last line holds if we take R sufficiently large (depending only on ε). This contradic-
tion proves that Jb′−1 has at most one zero in In ∩ (R,∞). (It is in fact easy to use Lemma
4.1(b) to see it has exactly one zero in this interval but we will not need this.) This implies
that

w′
n(b

′) ≥ (b′ − 1)π/2 + π/2 + nπ,
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and so (4.4) is proved.
Now use (4.3) to obtain an integer N depending on ε which bounds the number of zeros

of Jb−1 in [0, R] for all b′ ∈ [ε2, ε−2]. Therefore (4.4) implies that

wn+N (b′) ≥ w′
n(b′) ≥ c0n ≥ c0

N + 1
(n+N) for all n ∈ N. (4.5)

For n ≤ N note that (4.2) implies that for all b′ ∈ [ε2, ε−2],

wn(b
′) ≥ δ ≥ δ

N
n.

This and (4.5) complete the proof. �

Proof of Lemma 3.4. Let b′ ∈ [ε2, ε−2] and assume wn(b
′) ≥ R ≥ 1, where R depending only

on ε will be chosen below. By Lemma 4.1(b) we have

0 = Jb′−1(wn) =

√
2

πwn
cos(wn − (b′ − 1)π

2
− π

4
) +Eb′−1(wn)

and so, as wn ≥ 1, Lemma 4.1(b) implies

| cos(wn − (b′ − 1)π

2
− π

4
) |≤

√
π

2

c4.1
wn

= c0w
−1
n . (4.6)

Use the equality cos(x− π/2) = sinx to see that for wn(b
′) ≥ R ≥ 1 and b′ ∈ [ε2, ε−2],

|Jb′(wn)| =
∣∣∣
√

2

πwn
sin

(
wn − (b′ − 1)π

2
− π

4

)
+ Eb′(wn)

∣∣∣

≥
√

2

πwn

√
1 − c20w

−2
n − c4.1w

−3/2
n ≥ 1

2
√
wn

. (4.7)

We have chosen R large enough so that the last inequality holds, and in the next to last
inequality we have used (4.6) and Lemma 4.1(b).

Assume next that b′ is as above and wn(b′) < R. Implicit in the normalization in (3.3)
(or see p. 258 of [H]) is the fact that

1
2Jb′(wn)

2 =

∫ 1

0

zJ2
b′−1(wnz) dz = w−2

n

∫ wn

0

uJb′−1(u)
2 du.

Therefore

1
2Jb′(wn)

2 ≥ R−2

∫ w1(b
′)

0

uJb′−1(u)
2 du

≥ R−2

∫ δ

0

u2b′−1
(Jb′−1(u)

ub′−1

)2

du. (4.8)
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In the last line δ = δ(ε) is as in (4.2). If η is as in (4.1) then (4.1) shows that (Jb′−1(u)/u
b′−1)2 ≥

η2/4 for (b′, u) ∈ [ε2, ε−2] × [0, δ]. So (4.8) now implies

|Jb′(wn)| ≥ R−1 ηδ
b′

2b′
≥ c(ε) ≥ c(ε)

√
δw−1/2

n

(the last by (4.2)). This together with (4.7) gives the required lower bound. �

5. Finiteness of resolvents

In this Section we prove Proposition 2.3. Our strategy is to approximate Xt by processes
Xn
t of the form (5.1) below, obtain the analogue of Proposition 2.3 for these processes, and

then pass to the limit; cf. [SV79], Theorem 7.1.4. One complication that arises here and that
is not present in the work of Stroock and Varadhan is the following. In order to ensure that
|Sλf | <∞ for f ∈ L2 we must start the process with an initial distribution that is absolutely
continuous with respect to the measure µ. This requires us to show that the distribution of
Xn
t at each of the times [s]n is also absolutely continuous with respect to µ; this is used in

Lemma 5.3.
Let L be given by (1.2), M > 0, and assume X is a solution of the stopped martingale

problem for (L, [0,M)d) with initial distribution ν on [0,M)d. Recall that we write τ = τM
for the first time ‖Xt‖ = M and if f : [0,M ]d → R we set f(∂) = 0 and let

Sλf = E
(∫ ∞

0

e−λtf(Xt)dt
)

be the resolvent operator associated with X. Let

‖Sλ‖ν = sup{|Sλf | : ‖f‖2 ≤ 1}.

We may assume there is a d-dimensional (Ft)-Brownian motion Bt = (B1
t , . . .B

d
t ) such

that

Xi
t = Xi

0 +

∫ t

0

√
2γi(Xs)Xi

s dB
i
s +

∫ t

0

bi(Xs)ds for t < τ and i = 1, . . . , d.

Let γi(∂) = γ0
i , bi(∂) = b0i , and define Xs = ∂ for s < 0. Set [s]n = ([ns] − 1)/n, and

approximate X by the unique solution of

Xn,i
t = Xi

0 +

∫ t

0

√
2γi(X[s]n)Xn,i

s dBis +

∫ t

0

bi(X[s]n)ds, t ≥ 0 and i = 1, . . . , d. (5.1)

Note that for j ≥ 0 on [ jn ,
j+1
n ] and conditional on Fj/n, Xn = (Xn,1, . . . , Xn,d) has generator

of the form (3.7) but with γ0
i and b0i replaced by the random coefficients γi(X(j−1)/n) and

bi(X(j−1)/n) (which will equal these constants for j = 0 or j large enough), respectively. With
this in mind, one sees that pathwise uniqueness in the above equation for Xn is immediate
from the classical result in [YW71]. Note also that, unlike X, Xn

t 6= ∂ for all t ≥ 0.
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Lemma 5.1. For any T > 0, supt<T∧τ ‖Xn
t −Xt‖ P→ 0 as n→ ∞.

Proof. Since the bi and γi are bounded on [0,M ]d, it is routine to show that the sequence
{(Xn(· ∧ (τ−)), X(· ∧ (τ−)), B) : n ∈ N} is tight in C(R+,R

d
+)2 ×C(R+,R

d). Let (X∞, X,B)
denote any weak limit point. Then standard arguments (e.g. see [Ke84] ) show that on an
appropriate filtered space (Ω,F ,Ft,P), B is an Ft-Brownian motion and (X∞, X,B) satisfies
for i = 1, . . . , d

X∞,i(t ∧ (τ−)) = X i
0 +

∫ t∧(τ−)

0

√
2γi(Xs)X

∞,i
s dBis +

∫ t∧(τ−)

0

bi(Xs)ds

Xi(t ∧ (τ−)) = X i
0 +

∫ t∧(τ−)

0

√
2γi(Xs)Xi

s dB
i
s +

∫ t∧(τ−)

0

bi(Xs)ds.

Using the inequality
√
x− √

y ≤ √
x− y for 0 ≤ y ≤ x, we can bound the local time at zero

of X∞,i −Xi (see [RY91]) by

L0
t∧(τ−)(X

∞,i −Xi) = lim
ε↓0

ε−1

∫ t∧τ

0

2γi(Xs)(

√
X∞,i
s −

√
Xi
s)

21(X∞,i
s −Xi

s∈(0,ε)) ds

≤ 2‖γi‖∞ lim
ε↓0

ε−1

∫ t∧τ

0

(X∞,i
s −Xi

s)1(X∞,i
s −Xi

s∈(0,ε)) ds

≤ 2‖γi‖∞ lim
ε↓0

∫ t∧τ

0

1(X∞,i
s −Xi

s∈(0,ε)) ds = 0.

By Tanaka’s formula this means that E(|X∞,i
t∧(τ−) − Xi

t∧(τ−)|) = 0 and so X∞ = X a.s. It

follows that sups<T∧τ ‖Xn
s −Xs‖ w→0, and hence also converges to 0 in probability. �

Now let Tn = inf{t : ‖Xn
t ‖ = M}, set

Y nt =

{
Xn
t if t < Tn

∂ if t ≥ Tn,

and let Snλf = E

(∫ ∞

0
f(Y nt )e−λt dt

)
be the resolvent associated with Y n (with the fixed initial

law ν), where as usual f(∂) = 0. We will prove Proposition 2.3 by obtaining an upper bound
on ‖Snλ‖ν = sup{|Snλf | : ‖f‖2 ≤ 1} which is uniform in n.

Let L0 be as in (3.7) for b0i , γ
0
i > 0 as in the statement of Proposition 2.3, let Xγ0,b0

be a solution to the stopped martingale problem for (L0, [0,M)d), denote the corresponding

resolvent operators by Rγ
0,b0

λ , and recall µ(dx) =
∏d
i=1 x

b0i/γ
0

i −1
i dxi. The notation ‖Rγ

0,b0

λ ‖2

will refer to the norm as an operator on L2([0,M ]d, µ). A trivial eigenfunction expansion
shows that

‖Rγ
0,b0

λ ‖2 ≤ λ−1 for all γ0, b0 ∈ (0,∞)d and λ > 0. (5.2)

Lemma 5.2. For any δ > 0 there exists c5.2 = c5.2(δ) such that if qγ
0,b0

t (x, y) is the transition

density of Xγ0,b0 with respect to µ and t ≥ δ, γ0
i ≥ δ, and δ−1 ≥ b0i /γ

0
i ≥ δ, then

‖qγ
0,b0

t ‖∞ ≤ c5.2.
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Proof. It suffices to consider d = 1 since qγ
0,b0

t factors into the product of its one-dimensional
marginals. It also suffices to show the required bound holds for the corresponding transition

density, pγ
0,b0

t (x, y), of the process which is not killed upon exiting [0,M). Dropping the
superscript zeros, and using the above notation for these unkilled processes, we note first that
2
γX

γ,b
t is equal in law to X2,2b/γ and so is the square of a Bessel process of dimension 2b/γ. If

α = b/γ − 1, and hα(z) =
∑∞
m=0

zm

m!Γ(m+α+1) , then (see p. 411 of [RY91])

pγ
0,b0

t (x, y) = (γt)−b/γ exp(−(x+ y)/γt)hα(xy/γ2t2).

The fact that supα≥−1+δ,z∈[0,K] hα(z) <∞ for any δ,K > 0 now implies the result. �

Lemma 5.3. Assume ν(dx) = ρ(x)µ(dx) for some ρ ∈ L2(µ). Suppose (2.2) and (2.3) hold.
Then ‖Snλ‖ν <∞ for each λ > 0, n ≥ 1.

Proof. Set γk = γ(X(k−1)/n), b
k = b(X(k−1)/n), and µk(dy) =

∏d
i=1 x

(bk
i /γ

k
i )−1

i dxi for k ≥
0. Let f be a non-negative function in L2(µ) and let Ex(f(Xγk,bk

)) denote the (random)
expectation with respect to the solution of the stopped martingale problem for (L0, [0,M)d),
with initial law δx, where (γ0, b0) = (γk, bk) are now random. By the definition of Snλ we have,

Snλf =
∑

k≥0

e−λk/nE

(
EXn

k/n

(∫ 1/n

0

e−λtf(Xγk,bk

t )dt
))

≤
∫
Rγ

0,b0

λ f(x)ρ(x)dµ(x) +
∞∑

k=1

e−λk/nE
(
E
(
Rγ

k,bk

λ f(Xn
k/n)|F(k−1)/n

))

≤ λ−1‖f‖2‖ρ‖2

+
∞∑

k=1

e−λk/nE

(∫
Rγ

k,bk

λ f(x)qγ
k−1,bk−1

1/n (Xn
(k−1)/n, x)µk−1(dx)

)
, (5.3)

where (5.2) is used in the last line and qγ
k−1,bk−1

1/n (∂, ·) ≡ 0 by definition. Now use Lemma

5.2 and (2.2) to bound the (random) transition density in the above summation and conclude
that the expectation in the above summation is at most

cnE

(∫
Rγ

k,bk

λ f(x)µk−1(dx)
)

≤ cnE

((∫
Rγ

k,bk

λ f(x)2µk(dx)
)1/2(∫

[0,M ]d

d∏

i=1

x
1−(bk

i /γ
k
i )

i

d∏

i=1

x
2(bk−1

i
/γk−1

i
−1)

i dx
)1/2)

≤ cnλ
−1‖f‖2E

((∫

[0,M ]d

d∏

i=1

x
2(bk−1

i
/γk−1

i
)−(bk

i /γ
k
i )−1

i dx
)1/2)

. (5.4)

In the first inequality we have used Hölder’s inequality and in the second we have used (5.2).
Now use (2.2) and (2.3) to see that

2ε−2 ≥ 2bk−1
i

γk−1
i

≥ bki
γki

+
ε2

2
,
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and hence (5.4) is at most

cnλ
−1‖f‖2

(∫

[0,M ]d

( d∏

i=1

x
(ε2/2)−1
i +

d∏

i=1

x2ε−2

i

)
dx

)1/2

.

We use this bound in (5.3) to conclude that

Snλf ≤
[
λ−1‖ρ‖2 + λ−1c(n, ε,M)

]
‖f‖2.

The required result follows by applying the above to the positive and negative parts of an
arbitrary function in L2(µ). �

Proof of Proposition 2.3. Using the notation fii = ∂2f/∂x2
i , define

L(y)f(x) =

d∑

i=1

γi(y)xifii(x) + bi(y)fi(x), f ∈ C2(Rd+),

so that in particular L(∂)f = L0f , and let B(y)f(x) = (L(y) − L0)f(x). If f ∈ C2([0,M ]d),
f |U = 0, and f(∂) = 0, then by Itô’s lemma,

f(Y nt ) = f(X0) +Nf
t∧τ +

∫ t

0

L(X([s]n))f(Y ns )ds,

where Nf
t is a martingale. The above is clear for t < τ but then follows for all t ≥ 0 because

our assumption on f implies that f(Y nTn−) = 0 and so both sides vanish for t ≥ τ . Therefore
if λ > 0,

Snλf = E

(∫ ∞

0

e−λt
[
f(X0) +

∫ t

0

L(X([s]n))f(Y ns )ds
]
dt

)

= λ−1E(f(X0)) + λ−1E

(∫ ∞

0

e−λsL(X([s]n))f(Y ns )ds
)
. (5.5)

Recall the definition of D0 from (3.9), and write Rλg for Rγ
0,b0

λ g. Let g ∈ D0. Since
(λ− L0)Rλg = g, we have

L(y)Rλg = B(y)Rλg + L0Rλg = B(y)Rλg + λRλg − g. (5.6)

Now set f = Rλg in (5.5): using (5.6) we have

λSnλ (Rλg) = E(Rλg(X0)) + E

(∫ ∞

0

e−λsL(X([s]n))Rλg(Y
n
s )ds

)

= E(Rλg(X0)) + E

(∫ ∞

0

B(X([s]n)Rλg(Y
n
s )e−λsds

)
+ λSnλ (Rλg) − Snλg.
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Therefore by (2.1) we have

|Snλg| =
∣∣∣E(Rλg(X0)) + E

(∫ ∞

0

B(X([s]n)Rλg(Y
n
s )e−λsds

)∣∣∣

≤ |
∫
Rλg(x)ρ(x)µ(dx)|+ 1

2K
E

(∫ ∞

0

[ d∑

i=1

Y n,is |(Rλg)ii(Y ns )| + |(Rλg)i(Y ns )|
]
e−λsds

)

≤ ‖ρ‖2λ
−1‖g‖2 + (2K)−1||Snλ ||ν

( d∑

1

‖xi(Rλg)ii‖2 + ‖(Rλg)i‖2

)
,

where (5.2) is used in the last line. By (2.2) we may apply Proposition 2.2 and conclude that
for all g ∈ D0,

|Snλg| ≤ λ−1‖ρ‖2‖g‖2 + (2K)−1‖Snλ‖νK‖g‖2

= λ−1‖ρ‖2‖g‖2 + 1
2‖Snλ‖ν‖g‖2.

Since Snλ is a bounded linear functional on L2 by Lemma 5.3 and D0 is dense in L2, we see that
‖Snλ‖ν ≤ 1

2‖Snλ‖ν + ‖ρ‖2λ
−1. Lemma 5.3 implies that ‖Snλ‖ν <∞ and so the above implies

‖Snλ‖ν ≤ 2‖ρ‖2

λ
. (5.7)

By Lemma 5.1 and by taking a subsequence, if necessary, we may assume

sup
t<τ∧n

‖Xn
t −Xt‖a.s.→0.

This implies lim inf Tn ≥ τ a.s. and therefore limn→∞ Y ns = Xs for all 0 ≤ s < τ . Therefore,
Fatou’s Lemma and (5.7) show that for f ∈ C([0,M ]d),

Sλ(|f |) ≤ lim inf
n→∞

Snλ (|f |) ≤ 2‖ρ‖2

λ
‖f‖2.

The above inequality now follows easily for all f ∈ L2. �

6. Continuity of resolvents

In this section we prove Proposition 2.4. The main step in the argument (in Theorem 6.4)
is the prove the continuity of harmonic functions for the process X. This is done by adapting
an argument of Krylov and Safonov. All the difficulty is at the boundary; if X0 ∈ ∂Rd+ then
we have to control the behaviour of X as it leaves the boundary. Using a comparison with
Bessel processes (Lemma 6.2) we show X leaves the boundary sufficiently rapidly so that the
other components of X do not change much. Once X has left ∂Rd

+ we can use the estimates of
Krylov and Safonov (extended in Proposition 6.1 to diffusions with bounded drift) to deduce
an oscillation bound, which is then used to imply the continuity of harmonic functions.

The Lebesgue measure of a Borel set G will be denoted by |G|. Recall that TG and
τG are the first hitting times of G and Gc, respectively. A closed box is a set of the form
[a1, b1] × · · · × [ad, bd]. We use Int(Q) to denote the interior of Q.
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Proposition 6.1. Let Q0 and Q1 be closed boxes in Rd with Q1 ⊂ Int(Q0). Let Y satisfy
the stochastic differential equation

dY it = αi(Yt)dB
i
t + βi(Yt)dt, i = 1, . . . , d, (6.1)

where B is a d-dimensional Brownian motion, αi and βi are functions on Rd, the αi are
continuous and the βi are Borel. Let {Py, y ∈ Rd} be the laws of Y with Y0 = y. Suppose
there exists λ > 0 such that

λ−1 ≤ αi(y) ≤ λ, |βi(y)| ≤ λ, y ∈ Rd. (6.2)

Let G ⊂ Q0 with |G| ≥ 1
2 |Q0|. Then there exists a constant p1 > 0, depending only on d, Q0,

Q1 and λ such that
Py(TG < τQ0

) ≥ p1 for all y ∈ Q1.

Proof. Let Qy denote the unique solution to the martingale problem corresponding to the
stochastic differential equation

dY it = αi(Yt)dB
i
t, i = 1, . . . , d.

Since the αi are continuous and uniformly elliptic, both Py and Qy are uniquely defined by
[SV79]. The Girsanov theorem tells us that the Radon-Nikodym density of Qy with respect
to Py on Ft∧τQ0

equals

Mt = exp
( ∑

i

(

∫ t

0

Hi
sdB

i
s −

1

2

∫ t

0

|Hi
s|2ds)

)
,

where the Hi are adapted processes with |H i
s| ≤ λ2.

By the theorem of Krylov and Safonov (see, e.g., [B97], Theorem V.7.4) there exists p2 > 0
(depending only on d, λ, Qi) such that

Qy(TG < τQ0
) ≥ p2 for all y ∈ Q1.

Also, by the Dubins-Schwarz theorem ([B95], Theorem I.5.11) there exists t > 0 sufficiently
large so that

Qy(τQ0
≥ t) ≤ 1

2
p2 for all y ∈ Q1.

Therefore if F = {TG < τQ0
< t}, we have Qy(F ) ≥ 1

2p2 for all y ∈ Q1. So, writing T = t∧τQ0
,

1
2p2 ≤ Qy(F ) = E

y
P
1FMT ≤ Py(F )1/2(Ey

P
M2
T )1/2 for all y ∈ Q1.

Since E
y
P
M2
T ≤ exp(2dλ4t), the result now follows. �

Remarks. 1. Since this result only concerns the behaviour of the process Y up to its first
exit from Q0, we only need assume that Y satisfies (6.1) for 0 ≤ t ≤ τQ0

(Y ).

2. As the proof of Proposition 6.1 is invariant under translations in Rd, the constant p1 =
p1(d, λ,Q0, Q1) can be chosen so that it is not affected by a translation of the boxes Qi.
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Lemma 6.2. Let H and J be predictable processes satisfying, for some constant 1 ≤ κ <∞

κ−1 ≤ Hs ≤ κ, κ−1 ≤ Js ≤ κ, s ≥ 0.

Let B be a Brownian motion and let V satisfy, for some v0 ≥ 0,

Vt = v0 +

∫ t

0

Hs

√
2VsdBs +

∫ t

0

Jsds.

Let t0 > 0, and S be a random variable uniformly distributed on [ 12 t0, t0], independent of B,
H and J . Then for each ε > 0 there exists a constant δ > 0, depending only on t0, κ and ε,
such that

P(VS ≤ δ) ≤ ε. (6.3)

Proof. Let At =
∫ t
0
H2
sds and σt be the inverse of A. For any process X we write X̃t = Xσt

.
Note that we have the bounds

κ−2t ≤ At ≤ κ2t, κ−2t ≤ σt ≤ κ2t.

The process Ṽ satisfies, for a Brownian motion B′,

Ṽt = v0 +

∫ t

0

√
2ṼsdB

′
s +

∫ t

0

J̃sH̃
−2
s ds.

Let Ũ be defined by

Ũt =

∫ t

0

√
2ŨsdB

′
s +

∫ t

0

κ−3ds;

then as κ−3 ≤ J̃sH̃
−2
s by a comparison theorem (see Theorem V.43.1 in [RW87]) we have

Ũt ≤ Ṽt for all t ≥ 0. Set Ut = ŨAt
. Write p(s) = (2/t0)1(t0/2,t0)(s) for the density of S. Since

S is independent of Ũ and A we have, for any λ > 0

P(VS ≤ λ) ≤ P(US ≤ λ) = P(ŨAS
≤ λ)

= E

∫ ∞

0

1[0,λ](ŨAs
)p(s)ds

= E

∫ ∞

0

1[0,λ](Ũt)p(σt)H̃
−2
t dt

≤ κ2E

∫ t0κ
2

t0/2κ2

1[0,λ](Ũt)(2/t0)dt.

The process Ũ starts at 0 and has transition density qγ,bt as in Lemma 5.2 with respect to µ,
with d = 1, γ = 1 and b = κ−3. Therefore

P(VS ≤ λ) ≤ (2κ2/t0)

∫ λ

0

dx

∫ t0κ
2

t0/2κ2

q1,κ
−3

s (0, x)xκ
−3−1ds. (6.4)
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The integral (6.4) converges to 0 as λ → 0 by Lemma 5.2, and so, taking δ small enough we
have proved (6.3). �

Remark 6.3. Write TM = inf{t : Vt > M}, and T ′
M = inf{t : Ũt > M}. Then we have, using

the comparison between U and V above, that TM ≤ h2T ′
M . Since a squared Bessel process

with a positive parameter has integrable hitting times, we obtain

ETM ≤ h2ET ′
M ≤ h2c(h−3,M) < ∞.

Definition. Assume D0 is a domain in Rd+ and ((Px)x∈D0∪{∂}, Xt) is a Borel strong Markov

process taking values inD0∪{∂}. IfD is open inD0, a Borel function h : D → R isX-harmonic
in D if h(X(t ∧ τD)) is a Px-martingale for every x ∈ D0.

Theorem 6.4. Suppose that M ∈ (0,∞], and ((Px, x ∈ [0,M)d), Xt) satisfies the hypotheses
of Proposition 2.4. Let D be open in [0,M)d, and h be a bounded X-harmonic function in D.
Then h is continuous on D.

Proof. It is enough to prove that h is continuous at each z ∈ D. If z ∈ (0,M)d, then by
changing the diffusion coefficients outside of a small ball B, centered at z, we may assume
that h is X ′-harmonic on B where X ′ is a diffusion with bounded, continuous, and uniformly
elliptic diffusion coefficients. It is then well-known that h is continuous on B – see [B97],
Theorem V.7.5.

Now let z ∈ ∂Rd+ ∩ D; by permuting the axes if necessary we can assume that z =
(z1, . . . , zk, 0, . . . , 0) where 0 ≤ k < d and zi > 0 for i ≤ k. (If z = 0 then k = 0: this is covered
in the calculations below, but some of the estimates required for the general mixed case are
not needed.) Choose q ∈ (0, 1), and for η ≥ 0, set

Rn(z, η) =
k∏

i=1

[zi − qn, zi + qn] × [η, η + q2n]d−k.

Choose N = N(z) so that RN (z, 0) ⊂ D and 2qN ≤ min(z1, . . . zk). The hypotheses on bi and
γi imply that there exists a constant ε1 = ε(z) > 0, (depending on z) such that

ε1 ≤ bi(x) ≤ ε−1
1 , ε1 ≤ γi(x) ≤ ε−1

1 , x ∈ RN (z, 0), 1 ≤ i ≤ d.

If D′ ⊂ D let Osc (D′, h) = sup{|h(x) − h(y)| : x, y ∈ D′}. To prove that h is continuous
at z it is enough to prove that there exists ρ = ρ(z) < 1 such that

Osc (Rn+2(z, 0), h) ≤ ρOsc (Rn(z, 0), h), n ≥ N(z). (6.5)

Fix n ≥ N(z). By looking at c1h+ c2 for suitable c1 and c2, we may assume supRn
h = 1

and infRn
h = 0. Define ψ : Rd+ → Rd+ by ψ(x) = (q−nx1, . . . , q

−nxk, q
−2nxk+1, . . . , q

−2nxd).

Note that if wn = ψ(z) then ψ(Rn+m(z, 0)) = Rm(wn, 0). For any function g : Rd+ → R

write ĝ(y) = g(ψ−1(y)). Let Yt = ψ(Xq2nt), P̂y(·) = Pψ
−1(y)(Y ∈ ·), and P̂∂ = P∂ ; then

((P̂y, y ∈ ψ([0,M)d) ∪ {∂}), Y ) is a Borel strong Markov process, and ĥ is Y -harmonic in
R0(wn, 0).
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We use τ·, T· for the exit and hitting times of the process Y . To prove (6.5) we only need
consider Y up to the time σ = τR0(wn,0). The process Y satisfies

dY it = qn/2
√

2Y it γ̂i(Yt)dB̂
i
t + qnb̂i(Yt)dt, i ≤ k, 0 ≤ t < σ (6.6)

dY it =
√

2Y it γ̂i(Yt)dB̂
i
t + b̂i(Yt)dt, k + 1 ≤ i ≤ d, 0 ≤ t < σ (6.7)

Here B̂ is a d-dimensional Brownian motion. For i ≤ k, set αi(y) = qn/2(2yiγ̂i(y))
1/2. Then

since for x ∈ Rn(z, 0),
1
2
zi ≤ zi − qn ≤ xi ≤ zi + qn ≤ 2zi,

we have 1
2q

−nzi ≤ yi ≤ 2q−nzi for y ∈ R0(wn, 0). Thus

(2ε1zi)
1/2 ≤ αi(y) ≤ (2ε−1

1 zi)
1/2, y ∈ R0(wn, 0), i ≤ k. (6.8)

The k-dimensional process on R0(wn, 0) defined by (6.6) therefore has uniformly elliptic diffu-
sion coefficients, but with the ellipticity bounds depending on z. To prove (6.5) it is sufficient
to prove

Osc (R2(wn, 0), ĥ) ≤ ρOsc (R0(wn, 0), ĥ), (6.9)

for a constant ρ = ρ(z) < 1. We do this by, first, finding η > 0 such that Y hits R1(wn, 2η)
with high probability, and then using Proposition 6.1 to handle the behaviour of Y in the
cubes R1(wn, 2η) ⊂ R0(wn, η).

Standard estimates for semimartingales imply that there exists t0 > 0, depending only on
z and ε1(z), such that

P̂y
(

max
1≤i≤k

sup
0≤s≤t0

|Y is∧σ − Y i0 | > 1
2
(q − q2)

)
≤ 1

4
, y ∈ R2(wn, 0). (6.10)

This controls the oscillation of the process (Y 1, . . . , Y k). We now look at (Y k+1, . . . , Y d).

Define processes Y
i

t for k + 1 ≤ i ≤ d by setting Y
i

t = Y it for t ≤ σ, and

dY
i

t =

√
2Y

i

tγ̂i(Yσ)dB̂
i
t + b̂i(Yσ)dt, t ≥ σ.

So Y
i

satisfies the hypotheses of Lemma 6.2 with κ = ε1(z)
−1, and therefore there exists

1/2 > η = η(z) > 0 small enough so that if S is independent of Y and is uniformly distributed
on [t0/2, t0] then

P̂y( min
k<i≤d

Y
i

S > 2η) ≥ 3
4 , y ∈ R2(wn, 0). (6.11)

Write τj = τRj(wn,0)(Y ), j = 0, 1, and T1 = TR1(wn,2η)(Y ). From (6.10) and (6.11) we obtain

P̂y(T1 < τ1) ≥ 1
2 , y ∈ R2(wn, 0). (6.12)

Now let Qn0 = R0(wn, η), Q
n
1 = R1(wn, 2η), and G = {y ∈ Qn0 : ĥ(y) ≥ 1

2}; replacing h by

1 − h if necessary we can assume |G| ≥ 1
2 |Qn0 |. Use (6.8) for i ≤ k, and for i > k note that on

Qn0 , √
yiγ̂i(y) ≥

√
2ηγ̂i(y) ≥ c

√
η
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to see that the coefficients of (6.6), (6.7), restricted to Qn0 , satisfy the hypotheses (6.2) of
Proposition 6.1 with a λ which may depend on z but is independent of n.

Using Proposition 6.1 and the remarks following we deduce that there exists a constant
p3 > 0, depending on z but not n, such that

P̂y(TG < τR0(wn,η)) > p3, y ∈ R1(wn, 2η). (6.13)

So for y ∈ R2(wn, 0), (6.12), (6.13) and the strong Markov property imply

P̂y(TG < τ0) ≥ Êy1(T1<τ1)P̂
YT1 (TG < τ0) ≥ 1

2p3.

Thus if y ∈ R2(wn, 0), the Y -harmonicity of ĥ on R0(wn, 0) gives

ĥ(y) = Êyĥ(YTG∧τ0) ≥ Êy1(TG<τ0)ĥ(YTG
) ≥ 1

4p3.

So, taking ρ = 1 − 1
4
p3 and recalling that Osc (R0(wn, 0), ĥ) = 1, we have proved (6.9). �

Proof of Proposition 2.4. Fix λ > 0, and a bounded Borel measurable function f : we can
assume ||f ||∞ = 1. Let B(x, δ) denote the set of points in Rd+ within a distance δ of x ∈ Rd+.

Fix x ∈ [0,M)d and ε > 0, and choose δ > 0 so that B = B(x, δ) ⊂ [0,M)d. We claim that
we can choose δ > 0 sufficiently small so that

sup
y∈B

EyτB ≤ ε. (6.14)

If x ∈ (0,M)d, then we can take δ so that B(x, δ) is bounded away from ∂Rd
+ and so the

diffusion coefficients are uniformly elliptic on B(x, δ). A simple application of the Dubins-
Schwarz theorem (see Theorem I.5.11 of [B95]) now gives the required δ. If x ∈ ∂Rd

+, then we
can argue as in Remark 6.3 to bound the left-hand side of (6.14) by the mean hitting time of
δ by a squared Bessel process with some positive parameter starting at 0. This can be made
arbitrarily small by making δ small by dominated convergence and so (6.14) is proved in either
case.

Let D = B(x, δ). For x ∈ D set

hD(x) = ExSλf(XτD
).

Note that as Sλf(x) ≤ λ−1, hD is bounded, and since it is X-harmonic in D, hD is continuous
in D by Theorem 6.4. If y ∈ D we have

Sλf(y) = Ey
∫ τD

0

e−λsf(Xs)ds+ Eye−λτDSλf(XτD
).

Therefore
|Sλf(y)− hD(y)| ≤ EyτD + λ−1Ey(1 − e−λτD ) ≤ 2EyτD ≤ 2ε, (6.15)

where (6.14) is used in the last line. By the continuity of hD we can choose 0 < δ′ < δ so
that y ∈ B(x, δ′) implies that |hD(y) − hD(x)| < ε. This together with (6.15) shows that
|Sλf(x) − Sλf(y)| < 5ε if y ∈ B(x, δ′), and hence Sλf is continuous at x. �
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7. Proof of main theorem

Proof of Proposition 2.1. Let Pi, i = 1, 2 be distinct solutions to MP (ν,L). A standard
argument (see p. 136 of [B97]) shows that for ν-a.a. x, the regular conditional probability
Pi( · |X0 = x) solves MP (δx,L) and so it is enough to consider ν = δx. In the setting the
local martingales in MP (δx,L) are all martingales. The construction in Theorem 12.2.4 of
[SV79] (Krylov’s Markov selection theorem) now gives a pair of Borel strong Markov processes
(Qx

i , Xt), i = 1, 2, so that Qx
i solves MP (δx,L) for each x ∈ Rd+, and Q

x0

1 6= Q
x0

2 for some x0.

Here we are applying this result in the positive orthant rather than Rd but one can extend the
coefficients to all of Rd by replacing xi with x+

i and note that solutions starting in the orthant
must remain there by a comparison argument as in the proof of Lemma 6.2. Recall that τM
is the exit time from [0,M)d and let

Yt =

{
Xt, if t < τM
∂ if t ≥ τM .

(7.1)

Then Y is a Borel measurable function of X because τM is the hitting time of a closed set by
a continuous path X (it is the increasing limit of a sequence of hitting times of open sets).
If Pxi (·) = Qx

i (Y ∈ ·), and P∂i is point mass at the trivial path, then (Pxi , Xt) is a Borel
strong Markov process for i = 1, 2. This follows as in Section III.3 of [BG68], but universal
completions can be avoided by the Borel measurability noted above. It is also clear that Pxi
solves SMP (δx,L, [0,M)d) for each x ∈ [0,M)d and that we may take M sufficiently large to
ensure P

x0

1 6= P
x0

2 . To obtain a contradiction and hence complete the proof we now show that
these Borel strong Markov solutions to the stopped martingale problem must coincide.

First consider an initial law ν(dx) = ρ(x)dµ(x) for some ρ ∈ L2(µ). Extend any function
f on [0,M ]d to [0,M ]d ∪ ∂ by setting f(∂) = 0. Recall that C2

0 is the set of functions in
C2([0,M ]d) such that f(x) = 0 if x ∈ UM . Let D0 be defined as in (3.9). For f ∈ C2

0 we have
by Itô’s formula

f(Xt) = f(X0) +

∫ t

0

Lf(Xs)ds+Nf
t∧(τM−), (7.2)

where the last term is an FX
t -martingale under each Pxi . Note that as f(XτM−) = 0 both sides

of (7.2) are zero for t ≥ τM . Let

S
k

λf =

∫
Skλf(x) ν(dx) =

∫
Exk

(∫ ∞

0

e−λtf(Xt)dt
)
ν(dx).

Taking expectations and integrating (7.2) we have,

λS
k

λf =

∫
fdν + S

k

λLf =

∫
fdν + S

k

λ(L − L0)f + S
k

λL0f. (7.3)

Let g ∈ D0, and set f = Rλg. Then f ∈ D0 by Proposition 3.1, and rearranging (7.3) by using
the fact that (λ− L0)Rλg = g, we get

S
k

λg =

∫
Rλg(x)dν(x) + S

k

λ(L − L0)Rλg.
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Hence, writing Wg(x) = (L− L0)Rλg(x), we have

(S
1

λ − S
2

λ)g = (S
1

λ − S
2

λ)Wg for all g ∈ D0. (7.4)

Apply Proposition 2.2, and (2.1) to see that for g ∈ D0,

|(S1

λ − S
2

λ)g| ≤ ||S1

λ − S
2

λ||ν‖Wg‖2 ≤ 1
2‖S

1

λ − S
2

λ‖ν‖g‖2.

Since the S
k

λ are bounded linear functionals on L2 by Proposition 2.3 and D0 is dense in L2

by (2.5), this implies ‖S1

λ − S
2

λ‖ν ≤ 1
2
‖S1

λ − S
2

λ‖ν . By Proposition 2.3 again we conclude that

∫
S1
λf(x)ρ(x)dµ(x) =

∫
S2
λf(x)ρ(x)dµ(x) for all f, ρ ∈ L2. (7.5)

We therefore conclude that S1
λf(x) = S2

λf(x) for almost every x (with respect to µ). But by
Proposition 2.4 Skλf is continuous, k = 1, 2, hence we have equality for all x ∈ [0,M)d. With
this fact, we now appeal to Corollary 6.2.4 and Lemma 6.5.1 of [SV79] or Theorem VI.3.2 of
[B97] to conclude that Px1 = Px2 for all x, and we are done. �

Proof of Theorem 1.1. For existence it suffices to consider ν = δx0
(e.g. by Exercise 6.7.4 of

[SV79] and the uniqueness below. We first prove existence in the case when γi, i = 1, . . . , d,
are bounded. This is a well-known result of Skorokhod (see Theorem 6.1.6 of [SV79]) when
the state space is all of Rd (rather than the non-negative orthant). To apply the above result
to the orthant, extend xiγi(x) and bi(x) to all of Rd by replacing xj by x+

j for j ≤ d. In
particular, xiγi(x) = 0 if xi < 0 and bi(x) > 0 for x outside the positive orthant, the latter by
(1.5). Since these extended functions are continuous, we have a solution P to the martingale
problem for L on Rd by the above. As in the proof of Lemma 6.2 we can apply a comparison
argument to see that each coordinate of X is locally bounded below by the square of a Bessel
process. This implies that if X starts in Rd+, it will remain there and so P is a solution to the

martingale problem for L on Rd+.

To remove the boundedness condition on the γi, let XM = (XM,i) be a solution of the
above martingale problem with γMi in place of γi, where these functions agree on [0,M ]d and
γMi is bounded. We will assume XM satisfies the associated stochastic differential equation
driven by Brownian motions Bi. Set

YM,i(t) = xi0 +

∫ t

0

|bi(XM
s )|ds+

∫ t

0

√
2XM,i

s γMi (XM
s )dBi(s).

Then YM,i is a non-negative submartingale dominating XM,i and a standard argument using
the linear growth of bi shows that first E(

∑
i |X

M,i
T |) and then E(

∑
i Y

M,i
T ) is bounded above

uniformly in M . An application of the weak maximal inequality to
∑
i Y

M,i now shows that

supt≤T
∑
iX

M,i
t is bounded in probability uniformly in M for each T > 0. It is now standard

to establish tightness of {XM ,M ∈ N} and show that any weak limit point satisfies the
martingale problem for L with initial law ν.
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We now turn to uniqueness. As in the proof of Proposition 2.1 we may assume ν = δx0
.

Since the γi and bi are continuous, the γi are strictly positive, and the bi are strictly positive
on ∂Rd+, for some ε > 0, every point y ∈ [0,M ]d has a neighborhood Vy = B(y, η(y))∩ Rd+ in

Rd+ such that either:

(a) V̄y ∩ ∂Rd+ = ∅,
or

(b) (i) ε ≤ bi(x), γi(x) ≤ ε−1 for x ∈ Vy, i = 1, . . . , d;
(ii) |bi(x) − bi(y)|, |γi(x) − γi(y)| ≤ (2K(ε, d))−1 for x ∈ Vy, i = 1, . . . , d, where K(ε, d)

is given by Proposition 2.1;
(iii) 2bi(x)/γi(x) ≥ bi(z)/γi(z) + (ε2/2) for x, z ∈ Vy, i = 1, . . . , d.

In case (a) an appropriate truncation will allow us to define bounded continuous coeffi-

cients aii(x) and b̃i(x) on all of Rd which agree with xiγi(x) and bi(x), respectively, on Vy, and
for which the matrix a is uniformly continuous and positive definite. Existence and uniqueness
in law of solutions to the martingale problem for L̃f =

∑
i aiifii+ b̃ifi follows from the classical

theorem of Stroock and Varadhan [SV79].
Assume now that case (b) holds. It is easy to use the values of these coefficients on ∂Vy to

define coefficients γ̃i, b̃i on all of Rd+ which agree with γi and bi, respectively, on Vy, and which
satisfy the hypotheses of Theorem 1.1 and (b) on all of the non-negative orthant, not just Vy.
Now apply Proposition 2.1 with b0i = bi(y) and γ0

i = γi(y) to see that there is uniqueness in

law for solutions to the martingale problem for L̃f =
∑
i xiγ̃i(x)fii(x) + b̃i(x)fi(x). Existence

of solutions was already established above.
We therefore have shown that in a neighborhood of each point we can find diffusion

coefficients which agree with our given coefficients and for which the martingale problem
is well-posed. We now apply Stroock-Varadhan’s localization argument (Theorem 6.6.1 of
[SV79]–see also Theorem VI.3.4 in [B97]), trivially modified to our positive orthant setting,
to see that solutions to the martingale problem for L are unique. (Note the measurability
required in Theorem 6.6.1 follows from the uniqueness of the martingale problem as in Ex.
6.7.4 of [SV79]).

The Borel and strong Markov properties now follow from the uniqueness and existence
established above by well-known arguments (see Theorem 6.2.2 of [SV79] and the ensuing
comments). The claimed continuity of the resolvent operators associated with this Markov
process follows from Proposition 2.4 with M = ∞. �

Proof of Corollary 1.2. The existence of a solution follows by a minor modification of the
proof of Theorem 1.1 (existence only requires (1.1), (1.6) and (1.7)). To prove the uniqueness
assertion in (a), first assume (1.7) with C = 0. For M > 0 one can suitably change γi, bi
outside the set {x ∈ Rd+ : 1

M
≤ ‖x‖} so that (1.5) and (1.6) hold. If

T (M) = inf{t ≥ 0 : ‖Xt‖ ≤ 1/M},

then T (M) ↑ T0 ≤ ∞ a.s. Apply Theorem 1.1 to the martingale problem for these mod-
ified coefficients to see that P(X(· ∧ T (M)) ∈ ·) is uniquely determined, and hence so is
P(X(· ∧ T0) ∈ ·). Turning now to the general case under (1.7), note first that by considering
the solutions up to the first time they exit from [0,M ]d we can assume without loss of gener-
ality that bi and γi are bounded and γi is bounded away from zero for all i. With Girsanov’s
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theorem in mind, set L̂ = L+
∑

i Cxi
∂
∂xi

, where C is as in (1.7). Then b̂i(x) = bi(x)+Cxi > 0

for all x ∈ ∂Rd+/{0}. If P̂ is any solution of the martingale problem for L̂, then the C = 0

case proved above shows uniqueness in law of P̂(X(· ∧ T0) ∈ ·) and so the same is true for any
solution P of the martingale problem for L by Girsanov’s theorem. Here we have used the fact
that γi is bounded away from zero and bi and γi are all bounded. This establishes (a).

For (b), note that
∑
iX

i
t is a non-negative supermartingale by (1.8) and so must be

identically 0 after T0. Therefore X is a.s. equal to a fixed Borel function of X(· ∧ T0) and so
uniqueness of the solution of the martingale problem for L follows from (a). �

8. A Counter-example

The following example shows that, even if d = 1, we do not have uniqueness in Theorem
1.1 if we weaken (1.5) and only assume b ≥ 0.

Proposition 8.1. Let b(x) =
(
c/ log+ 1

x

)
∧ 1 for x > 0, and let b(0) = b(0+) = 0. If c > 1

then the stochastic differential equation

dXt = (2Xt)
1/2dBt + b(Xt)dt, X0 = 0, (8.1)

has a solution X ≥ 0 which is not identically 0. Since 0 is also a solution, uniqueness in law
fails for solutions of (8.1).

Remark 8.2. X will solve (8.1) if and only if X is a solution of the martingale problem for

L = x d2

dx2 + b(x) ddx . This Proposition is an exercise in the classification of boundary points for
one-dimensional diffusions (see, e.g., Section 16.7 of [B68]). 0 is a regular boundary point for
the generator L on (0,∞) if and only if c > 1. It follows that there are non-trivial solutions to
(8.1) if and only if c > 1. We give a direct construction of a non-trivial solution for the sake
of completeness.

Proof. Let x0 = e−c and u(x) =
∫ x
0

exp
{
−

∫ y
x0

(b(z)/z)dz
}
dy. Then u : [0,∞) → [0,∞) is a

strictly increasing continuous function whose range is all of [0,∞). Let s(y) denote the inverse
function to u, and set

σ2(y) = 2s(y) exp
{
−

∫ s(y)

x0

2b(z)

z
dz

}
, y > 0.

Clearly σ2 is a strictly positive continuous function on (0,∞). It is easy to see that σ2(0) ≡
σ2(0+) = 0. Note that u′(x) is strictly positive and continuous on (0,∞) and has right-hand
limit ∞ at x = 0. It follows easily that s′ is continuous on [0,∞) and

s′(y) = u′(s(y))−1 = exp
{∫ s(y)

x0

b(z)

z
dz

}
for all y > 0, s′(0) = 0. (8.2)

It follows from the above that

s′(y)σ(y) =
√

2s(y) for all y ≥ 0. (8.3)
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It is clear from (8.2) that s′ is differentiable on (0,∞) and if we differentiate both sides of (8.2)
we easily derive

s′′(y)σ2(y)/2 = b(s(y)) for all y > 0. (8.4)

Now let Zt = Wt + L0
t (Z) be a reflecting Brownian motion in R+ starting at 0, where

Wt is a Brownian motion starting at 0 and Lat (Z) is the local time at a of Zt. Set At =∫ t
0
σ−2(Zs)ds =

∫ ∞

0
σ(a)−2Lat (Z)da. An easy calculation shows that

∫ x0

0

σ−2(a)da =

∫ x0

0

1

2x
(log(1/x)/c)−cdx < ∞

because c > 1. Therefore A is finite. Clearly A is strictly increasing and as Z is recurrent,
limt→∞ At = ∞ a.s. Therefore A has a continuous inverse τt, t ≥ 0. Let Yt = Zτt

, so that Y
satisfies

Yt = Mt + L0
t (Y ).

Here L0
t (Y ) is the local time of Y at 0, and M is a martingale with 〈M〉t =

∫ t
0
σ2(Ys)ds. Hence

we can write dMt = σ(Yt)dBt, where B is a Brownian motion.

We now define Xt = s(Yt). Since s′ is increasing (by (8.2)), we may apply Tanaka’s
formula to see that

Xt =

∫ t

0

s′(Yr)dYr +
1

2

∫ ∞

0

Lat ds
′(a)

=

∫ t

0

s′(Yr)σ(Yr)dBr +

∫ t

0

s′(Yr)dL
0
r(Y ) +

1

2
lim
δ↓0

∫ ∞

δ

Lat s
′′(a)da

=

∫ t

0

s′(Yr)σ(Yr)dBr +
1

2
lim
δ↓0

∫ t

0

s′′(Yr)σ
2(Yr)1(Yr≥δ)dr.

In the last line we have used the fact that s′(0) = 0 (see (8.2)). Now use (8.3) and (8.4) to see
that

Xt =

∫ t

0

√
2XsdBs + lim

δ↓0

∫ t

0

b(Xs)1(Ys≥δ)ds.

Since b(0) = b(0+) = 0, it is clear that (8.1) follows from the above. As it is clear that X is
not identically 0 from its definition, we are done. �

Note added in proof. In Theorem 1.1 (1.5) may be weakened to bi(x) > 0 if xi = 0 by
a Girsanov argument (see Theorem A and the ensuing remark in [BP01]).
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