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Abstract

We consider the question of robustness of the optimal nonlinear filter when the signal process
X and the observation noise are possibly correlated. The signal X and observations ¥ are given
by a SDE where the coefficients can depend on the entire past. Using results on pathwise
solutions of stochastic differential equations we express X as a functional of two independent
Brownian motions under the reference probability measure Fy. This allows us to write the filter
7 a8 a ratio of two expectations. This is the main step in proving robustness.

In this framework we show that when (X%, F") converge to (X, ¥) in law, then the correspond-
ing filters also converge in law. Moreover, when the signal and observation processes converge
in probability, so do the filters.

We also prove that the paths of the filter are continucus in this framework.

MEC: Primary 60035, Secondary 60HI0; 60017, 60044
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1. Introduction

We consider a general nonlinear filtering model with B9 valued signal process X
and B* valued observation process ¥ where the observation noise is Gaussian, We
consider the case where the observation noise could possibly be comrelated with the
signal X Let m denote the optimal nonlinear filter defined by

2 f)=E[f(X)IF)), feClR)

Here and in the sequel, for any process n, we will denote by # ) the o-field generated
by {n:0 =5 <r}b. CfS) denotes the space of bounded continuous functions on a
metric space §.

We consider approximating processes (X YY) converging to (AL Y). Let 7" denote
the comresponding nonlinear filter defined by

W) =ELfXFTL e CURY).
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In this article we address the question of robusmess of the filter 72 Does n" converge
to w (as C([0. T]..# (R)) valued processes)? Here, .# (R?) denotes the space of
positive finite measures equipped with the topology of weak convergence, C([0, TLS)
is the space of continuwous functions from [0, T] o 5 equipped with the wpology of
uniform convergence and the corresponding Borel o-field.

=4

It is well known that in general convergence in probability of (U, F") to (L) 1) does
not even guarantee the weak convergence of the conditional expectations £ 0" 1"] to
E[U|F]. Goggin (1994) obtamed sufficient conditions for convergence of conditional
expectations and applied it o deduce weak convergence of 7" to 7 assuming, among
other things, independence of signal and observation nowse. In Bhatt et al. (1993) weak
convergence of 7" to m was shown in the signal-noise independent case using unigue-
ness of solution of the (measure valued) Zakai equation. This required the assumption
that the signal is Markov. Both these results required stringent integrability conditions
to be satisfied.

Similar questions arise when one tres to prove convergence of approximate fil-
ter {(computed via time discretisation or otherwise) to the optimal filter. See Goggin
{1992), Elliott and Glowmsk (1989), Florschinger and Le Gland (1991), Budhiraja
and Kallianpur (1996).

In Bhatt et al. (1999) robustness of the filter (again in the signal-noise independent
case) was deduced direetly from the Kallianpur Stricbel Bayes' formula under minmmal
integrability conditions. The technique used was to express the filters @ " as

) =H{Y (), m"w)=H"Y"wm))
for sutable Wiener functionals & and A" and then showmg that H" converges to H
in probability.

Here, we extend these robustness results to the correlated case (Theorem 6.1). The
main hurdle m using this approach in the comrelated case s that the usual analogue of
the Bayes' formula expresses the filter as a ratio of two quantities cach of which is
a conditional expectation as opposed to expectation in the independent case. Here we
consider the model

dX, = al(t, 2. ¥) AW, + b(e. 2, ¥ )dW} + o(t. %, %) d1,
dY, = h(t. X, ¥, ) dt + dW7,
Hi(5) =X ns

"'#-J{_S} — }:J s

where W' and W72 are independent Brownian motions.
The main technique that we employ here is the following. We express X as a solution
of the following SDE.

d¥, = a(t X, ¥ )dW, + b(e, 3. %,)dY,
et X0 W) — M. A, YO X, W) de.

We assume that the reference probability measure Py exists. Now using pathwise
solutions of stochastic differential equations, we express X as a functional of the two
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independent Brownian motions W'Y (under Py). This now facilitates writing = as a
ratio of two expectations (instead of conditional expectations) leading to a new Bayes’
formula for the filter in this framework. This i turn gives a way of proving robust-
ness of the filier in the correlated case, 1.e. when the approximating processes (A, F")
satisfy equations similar to the ones for (X, Y ) given above, then weak convergence of
(A" Yy to (X Y) implies that 7" converges to m weakly.

We extend the robustness results i another direction. All the robustness results
referred to above show weak convergence of the filter. Here, we show that =" —
m in probability when (X", ¥") — (X ¥) in probability {Theorem 7.3). We use the
weak convergence of m" — m along with a technical lemma (Lemma 7.2) to conclude
convergence in probability of =" — . This technique allows us to avoid the exponential
integrability conditions on the observation function f. Here again, the pathwise formula
for the stochastic integral plays an important role—it allows us to substitute the path
of the imfegrator in a stochastic mtegral with another process.

We also prove that the paths of the filter are continuous in this framework.

Throughout the article = will denote convergence i law.

2. The filtering model

We will consider the filtering model where the signal process X and the observation
process ¥ oare given by the following system of differential equations:

dX, =a(t, X, )W + b{t, L, ¥ ) dW? + o(e. X, %, ) dt, (2.1a)
dY, = h(t. 2. %, )dr + dW2, (2.1h)
Fs) =X (2.1¢)
Wi(s) = Yias (2.1d)

for 0 <t < T, where X, W' are the BY valued processes, ¥, W2 are the B* valued pro-
cesses and W', W? are the independent Wiener processes. Further, it is assumed that
Xy is independent of W' W7 and ¥, =0. All these processes are defined on a com-
plete probability space (£2,.%,P). Here (#,) and (#¥,) are, respectively, C([0,T].RY)
and C([0,T).[#*) valued path processes. Let £ be equal to [0,T] = C([0, T] By x
C([0. T), B*). We will denote by BA9*% the space of matrices of order d x k. Here,
the functions a, b, ¢ and A,

a:E—mM"™ pE- WM, cE-RY, hE-R

are assumed to be continuous and each satisfying the following condition:

At — Ayl =K ( sup &, — &l + sup |qu— r.l.’.l)

[ E4TE | (b =tar =y

VEE e C([0.TLRY), n.y' € C([0,T) R*). (2.2)
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Under these conditions, (2.1) admits a unique solution (see Kallianpur, 1980). It 1s
casy to see that the solution (YY) also satisfies
dX, = a(t, . ) AW, + b(e.4,.9,) dY,
(LT W) — BT, W, h( 1, X, B,)) de. (23)

Under the additional assumption that b also satisfies condition (2.2, it follows that
{2.3) along with (2.1b)—(2.1d) admit a unique solution.
Let gy be defined by

;K F
q.=cxp{ [ > M 2 B4V~ [ |ﬁ{u,-f;.,fm.h!3du}. (24)
of (¥ i=1 o0

We will assume that

dﬂp | . k [ v 1 ¥ 2
—= =gy =¢ex - i u, 2, W }d" Iﬂ_‘J -5 [ |h{u7'ir.us =Iﬁﬂr:ﬁ!_ du
g =expd - | > ;[
(25)
defines a probability measure Py.

Remark 2.1. Py defined above is always a probability measure if £ 15 bounded. More
generally, when

.
1':71:..1c1:»{%[r |h{u,.'i"',,,.“§ﬂ,]||2du} = 00

Py 15 a probability measure. See Novikov (1972) or Kallianpur (1980).

This probability measure Py is called the reference probability meavure. Under Py,
¥ oand W' are independent Brownian motions, also independent of Xj. Further, as a
consequence of Gisanov’s theorem, we get

PoXy'=PyoXy'=ny (2.6)

Morcover, the optimal filier 7, admits a representation

: _"Ia'[_.rl} s iag o
m{_f}——m“} i e CyRY), (2.7)

where

ad )= Ep,[F(X)q:| F] ] (2.8)

This observation is well known when the signal s Markovian (see Elliott (1982,
Theorem 18.21)) and the same proof carnes over to this case. This can also be verified
using Lemma 11.3.3 of Kallianpur (19807,

3. The Bayes' formula

We will express o, as a functional on the Wiener space. For this purpose let Qg = R,
O =C([0.TLRY), @:=C([0,.T].B*) and let Q=13 x & x Q5. It was shown in
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Theorem 4.3 of Kamndikar (1989) that the solution X of the SDE (2.3) can be ex-
pressed as a functional ¢ of the initial condition % and the underying driving processes
W' and ¥, e there exists a mapping e: £ — £y such that

X(en) = of Xgf o), W "{m}, M)W 1) Wi oas By (3.1)
{See also the discussion on pathwise formulae in stochastic caleulus in Kamndikar,
1995.) Here %' is the path process of W' It should be noted that the mapping ¢
depends on the coeflicients a, b, ¢ and h appearing in (2.3) and does not depend on
the undedying measure.

Let J:C([0LT]LR)Y = C{[0.T],R) — C([0.T]LR) denote the pathwise integral map

so that for continuous semmmartingales ULV

J{L V)= f U.dV, Wras

Jo
See Karandikar (1995). Define § on Q by
k
G,) = exp { Z 7 I:ﬁj'[- el e, ey, e L ), {J_:.]

i=l

= é ./:;‘ V(. e(eng; en,o0),00)| d“}v (32)
where ) = (g, e09.,002). Then,
G (Xo(e), W (@), # ) =glw) as. [Py] (33)
Let 0.0 be the Wicner measures on € and (2, respectively, and let 0 on @ be
defined by
Q=mny x 0 x 0.
Define

ri;{_f',wg}=f/‘_||"{e{mm,m|,m_a WD b e ey, e Y g (e Y O (e ) (3.4)

Mote that ri{_,l",-}=E;_;U'{r{f}}.:§‘|.f,], where #, 1s the o-field generated by {os(u):
0= u=t} Now using the fact that Py o (X W', ¥)~! =§ZI, and Egs. (2.6), (2.8),
{3.1) and (3.3), we get

ol LY () =ad i) as Py (3.5)
Now defining 7 by
Gl foea)

G(Lan) e

il fon)=
it follows that

Tl LY (o)) =l fiw) as P (3.7)

Egs. (3.5) and (3.7) express the unnormalized filter and the optimal filter, respec-
tively, as Wiener functionals of the observation path ¥, These are analogues of similar
representations obtained 1o the signal-nowse independent case in Bhatt et al. (1995,
19997,
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4, Continuity of the filter

In this section we will show that the filter 7, 15 a continuous process, The argument 15
similar to that in signal-noise independent case given in Bhatt and Karandikar { 1999b).
Note that by its definition, §, is continuous in ¢ for every @ e (2 and further is a mean
one Q-mrtingalu. Let

Pl )= [f e, ey e Y mmg{eog ) A (e ).

It follows that (§,,%,) is a (h-martingale, where (%) is the canonical filration on
(£2a, 88( 122, O ) (satisfying usual hypotheses ). Since O 1s the Wiener measure on £,
it follows that 3, admits a continuous modification denoted by g
Let
N ={wye 2y f () # piioms) for some rational »}.

Then it follows that Qs N)=0. Note that
fiy = [[{n Mgl e, o, e ) ) dmleg)dQ{en), 0= T

is a continuous process and hence (%, )-predictable. Further, p, 1s the pointwise limit
of i as n tends to oo and hence j is also (%, )-predictable.

Fix a (%, )-stopping time 7. Let t"(wa)=27"[2"t(en) + 1] (here, [x] denotes the
integer part of x). Note that () 15 mtional and hence for on & N,

ﬁ;"qﬂe '{{UE}=P:nh,e}{ﬂJ‘3}. {4_] }

Fix o2 & N. Usimg (4.1) and Fatou’s lemma we conclude that

e ;w”{wz ] = Ii“m Pingag L2 )

lim a0 )
L b

lim inf [[ G enfany L0905 01, 0 ) dmgleng ) Oy ()
= [[ Iin'lninf.ﬁr:,.h,e (g, @y, e ) drg(ex ) dQy (o)

= [fém.,”{fmwmu_:}dmrifm}dﬂmwu}

= Pofan @2 ).
Thus, p¥ = §, as. [(J2]. By Fubmi and the definition of g it follows that Ep, [§.] =1
Also, (py) 1s a mean one continuous martingale and hence Eg [pf]= 1. These obser-
vabons give us
(g, =p; =1 forall stopping tmes 7. (4.2)

Since g and p* are predictable processes, (4.2) implies that

(i g, =p; forall 1)y=1 (4.3)
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(see Métivier, 1982, Theorem 14.2). Thus §, is continuous as. (. Noting that
(aigy = 0)=1, p, is a (» martingale, and that §,(cn)=&,(1, 1) we get

s (mg: i il'Jfjl gl ) = {}) =1. (4.4)
=1=T
{See Ethier and Kurte, 1986, Proposition 11.2.15)) It follows that
1
- 15 continuous m a8 O, (4.5)
ai(l.-)

This discussion leads us to the followmg result,
Theorem 4.1, The paths of the processes (6,) and (7)) are (a-a.s. continuous.

Proof. Let Ny = {wa: f,(e2) 18 not continuous in 1} As seen earlier, (2(N )=10. Fix
£y — [

Also, for en & Ny,

G, (o, i, ) — Go(ep, ) Ve, e

and

[ [.tjr‘ﬂ{{q,,m.,f;rg}dr{;,.{{;};,}d@.{m, ] — [ [é,{{.-Jn,nn,mg}drm{nm}dQ.{m. 1.

Thus, for ws & N, {g.(-.-oem)nz 1} s my @ (y-uniformly integrable. Since
Fleleng, e e W)Y 15 bounded and 5 continuous 1 ¢ for all (e, e, ), 1t now fol-
lows from (3.4) that &, ( f.wa) — &4 fon) for all ws & Ny Almost sure continuity
of @ 15 now mmediate.

Continuity of # follows from this and Egs. (3.6), (4.5). O

Remark 4.1. It should be noted that we have not explicitly used the continuity of the
signal process in the above arguments. Similar arguments would yield continuty of
the filter even when (2.1a) has a jump component.

5. Approximating the filtering model

Let @ b, h be as in the previous section. We will assume that these sansfy (2.2)
and (X, ¥ defined on (€2, #, P) sausfy (2.1). We will now consider processes (X, F")
which approximate (X, 1Y),

Let K < oo be fixed. Let &", £, " and &" be continuous functions

a E— MY, pE - e, M ESRY MLE—-R

cach satisfying condition (2.2) (with the same fixed K). As before we also assume
that the product function A"4" also sansfies condition (2.2).
Let X ¥" be solutions to the system of equations

dX) =a" (L, 2B AW + B B AW 4 (A, ) de, (5.1a)

dY! =K', 3". %" dt +dH""'3, (5.1b)
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7 (5)=Xips (5.1¢)

B (s) =i, (5.1d)
for 0 <t < T, where the processes X", ¥" W™ W"? are defined on some complete
pmbability space (", F" "), X" W"! are B valued processes, ¥, wn? are Y val-
ued processes and W', W™ are independent Wiener processes. The processes 7 and
" are C([0, T).[BY) and C([0,T]. B*) valued, respectively. Further, it is assumed that
X is independent of W' ™2 with P o (X2)~' = and ¥ =0,

We will assume that

?E:-:‘ = Wy {5-2}
and for ¢ € C([0,T).RY) and y € C([0,T].R*)
sup |a"(t.C.n) —alt.ion)| — O,

01T
sup [P En) —b(L )| — 0,

0=rT

sup et Ey) — (i) — O,

O=r£T

sup Bt En) — Mt g)| — O

O=r=T

(53)

Even in the case when the processes are Markovian the above condition is weaker than

uniform convergence of coefficients on compacts. Here we require that the coeflicients

converge uniformly m ¢ for every fixed £, 5.

Let g" be defined as in (2.4) with A, . % replaced by A", 3", %" Define Py by

dPy

— =(gF) ™. (54)

We assume that P s a probability measure. Again, P o (X)) =7 and under

P Y", W*! are Brownian motions and X}, ¥, W™ ! are independent. Moreover, X, ¥”

also sansfy

'I'.:I..X‘“ it ﬂ“{.f‘.a :f:I : ﬁf:l } d '_V:I., | + .I’J‘“{_f,,.-irrl, 5'_'5"‘" ::I d }-‘JI

(LA WY — B WA, A ) (5.5)

Here again the SDE, along with (5.1b)—(5.1d) admits a unigque strong (and weak)
soluton. Let ¢ be the pathwise solution map of this SDE so that

X' =e"(Xg, WL YY) as. Py (5.6)
Analogous to (3.2) define §" on @ by

k
i) =exp {Z TR, (g e ), 0 e )

i=l

1 |
y: [ 1 (e, € 01, e ), ) du} . (5.7)
Jo

Then,
Gm) =G (o) %7 (w), %" () as. [P). (5.8)
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Theorem 5.1. (a) P o (X", ¥" )" = Plo(X,¥) ",
(b) P o (X", ¥")! = Po(X,¥)"\.

Proof. If all the processes were defined on the same space and if the convergence
of X' w Xy was in probability, then the Theorem would follow from the results on
stability of solutions of SDE given in Emery (1979) or Karandikar (1989, Theorem
3.3). The situation at hand 15 handled via Skormokhod representation.

For part (a), using Skorokhod representation theorem we get a sequence of random
vanables J?; and X on a probability space (I, %.R) such that }?:L — Xy as. [R], and
Rn{)?:,}_' =y and R:u{.fﬂ}_'=r{ﬂ.

Recall the definitions of &4, 0% and (4,0 from the previous section. Let .7 be
the coordinate processes on (3, €25 respectively. Let X.X" be defined on (% R)y=®
(Q.F40))® (22, F%,00) by

}?‘{j‘, (IO =r{f“{;'},m|,wz Wi, (5.9)

)E’:I{;',m.,m_:} = r”{.f’?,{;'},m. Jea (1), (5.10)

Then X.¥" are solutions of the Egs. (2.3) and (3.5), respectively, with the driving
processes 7. The stability results referred above now imply
sup |X, —X,|— 0 inR®Q ® (O probability. (5.11)
=T
The result {a) follows from this as the law of (X¥".Z) under R ® (4 @ is the same
as the law of (X" Y") under Py and law of (X.Z) under R @ 0y @ (s 15 the same as
the law of (X, Y) under Py.
For part (b) nstead of considering the pathwise solutions of Egs. (2.3) and (5.5),
we look at pathwise solutions to (2.1) and (5.1), respectively. The rest of the argument
15 same as n part (a). [l

6. Robusiness of the filter

We continue to use the notations mtroduced in the previous sections. We start by
noting that the functional 7 defined by (3.4) can also be expressed as

Ea{_f',w_:}=[ SR (enon)) pil o, @2) dR(7)d Oren ), (6.1)
where the probability measure R 15 as in the proof of Theorem 5.1 and
MNote that

k I
: - : 1 o
= exp {f 5 W&, 2)dz, — 5 [ !h{u,.i"',,?’ﬂzdu}. (6.3)
Jo o Ju

Stmilarly, we define p" and 7" by

Pl oL o) =X (ko) (6.4)
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and
&M f en) = f FUX (0w D P, o) dR(7)d Q1 (en). (6.5)

Once again note that

;b
P:l = exp {f Zhal.;{‘u*f!"j}dzﬂ— é f |h-'l{"g_£l-""'1f}|3 du} ) (6.6)
L] =1

]
Let 7 be defined by
o &, (fsen)
H‘{_fﬁ{hrg}—m. {ﬁ._u"}

Define " and =" by

o, (f W) =a/(f. Y (w")), (6.8)

W Y= (L Y (")) (6.9)
Asin (3.7) we pet

T(f) = Ep[XF]]. (6.10)

Now we state the main theorem of this article. We restate all the assumptions explicitly.

Theorem 6.1. Led (X V), (X" Y") be solutions of SDE 5 (2.1) and (5.1), respectively.
Let the coefficients a,b,c b bha" B, " 000 sarisfy condition (2.2) for a fived
constant K. Asstwne that Py and Py defined by (25) and (54), respectively, are
probahility measures. Further let (52) and (5.3) be satisfied Then,

(a) supy., .y |6, (frma) — G fen)| — 0in 2 probability.

(b) supy ., 7|75 (fron) — & flen)| — 0 in Oy probability.

{c) P! o)™ = Pos!.

(d) PPo(a") ' = Por!.

Proof. (1) We will first show that for t, — 1, p} — p, in LR & O @), where p
and p" are defined by (6.3) and (6.6), respectively. Notwe that

sup WA F) — hit.F, )|
h=r= T

< sup |W(eTZ)- KX, Z)|

O=r£TF

+ sup WA F)— T, D)

124 £
— 0 asn —oom RE Q) &0 probability, {6.11)
We have used (5.9)—(5.11) to get that the first term on the RHS of the above inequality
tends to zero, since for every n, the function &' satisfies the Lipschitz condition (2.2)
with the same fixed K. The second term tends to zero by (5.3).
It now follows that

sup

O=rgT

]
f W 4", #)dz, - f h"{uﬁ-f;f}dzi‘*ﬂ as n — o0
] 0



AGo Bhar, RL. Karandikar! Stochastic Processes and their Applications 97 (X02) 41-58 51
in R Oy @ 0y probability for 1 <7 <& and

r
[ W', &, 2) — W ¥, 2) du— 0 as n— oo (6.12)
Sk

in & 04 @ Oy probability. As a consequence we get that

i — p inRE 0 @Q; probability.
Since

ff.[ﬂ’:‘deQ' dQE:f[[P:deQ|dQJ=1

for all n, we get
p— p nL'(R® Q@ ). (6.13)

Since _,f'{)?:ﬂ} is bounded and converges to f(X,) in R® O ® 0 probability it follows
that

f f [ | AP — £ )pd dRAQ, Qs — 0.
Invoking Fubini’s theorem this gives
f[|_f{£:}ﬁ; — f(X)p|dRAQ; — 0 in Qs probability.
Thus, we get
|Gp(fown) —G(foen)| — 0 in Q) probability. (6.14)
This now mmplies (a).
{b) Note that as in (4.4) we have nfy- -7 67(Lon) =0 as [(4] for all # Part
{b) now follows from part (a), (3.6), (6.7) and (4.4
(¢) Note that for G € C,(C[0, T)..4 (),
Ep[Gl(a")] = Epg[ G(a” )]
= Epa o 00.[G(6") Pr]-
Similarly,
-Ef"[ﬁ{.ﬂ}l=£f’l|[l:;{ﬂ}qu
= Epgp a0, 0(6) pr].

The result now follows from (a) and (6.13).
Part (d) follows similarly using (b). [

Remark 6.1. Instead of assuming (5.3) we can get the same conclusions as in Theorem
6.1 1if we assume the weaker condition

z T
FI o (XJI,\/‘ h“{u_}_‘f.“_-‘ :ﬁfﬂl}du:\/‘ |hl|{.u,.¥"ﬂj Eﬁfll}lzdu)
L ]

: T
= Po (,!r[ h{u,.i”',f‘ﬁ‘}du,[ |h[u,.i"',:'ﬁf}i3du)
S0 Jib
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This can be seen as follows. In the proof of Theorem 6.1 the convergence of the coef
ficients was used to prove that the expression in (6.12) converges to 0 in probability,
where the processes X and X are versions of X" and X, respectively, defined on some
appropriate representation space. Here, by choosing another appropriate representation
space and proceedimg as m Lemma 3.1 of Bhatt et al (1999) we can show that the
expression corresponding to (6.12) goes to zero in probability. It may be noted that
the Lemma referred to above proved the same result m the context of signal-nowse
independent case. The remainder of the proof s similar to that of Theorem 6.1,

Remark 6.2. Note that we have deduced robustness of the filter without any reference
to the FKK {or Zakai) equation though it is known that 7 satisfies the FKK equation.
Indeed, at this level of generality, unigueness of solution to the FKEK equation may not
hold.

When the dependence of the coefficients a,b,c. f on X 15 Markovian, e a(r. q) =
alt, &, n) for a suitable 4 (and similar conditions on b, ¢, #), uniqueness of solution to the
Zakal and FKK equations was proved in Bhatt and Karandikar, 1999a. No continuity
assumptions on the coefficients are required—only requirement being that system of
Egs. (2.1) admits a unique weak solution,

Remark 6.3, Here we have stated the results for finite-dimensional signal and noise.
However, the methods used can be casily carned over to infinite-dimensional setting.

7. Convergence in probability of the filter

In the previous section we considered the question of robusmess of the filter under a
farrly general framework. In this section we will further assume that the approximating
processes are all defined on the same space and will show that in this setup the filters
will converge in probability.

We need to use the Emery topology on the space of semimartingales which is given
by the following metric 4. (Sce Emery, 1979). For a semimartingale 7, define

n[z}=iz-"£{1;~.( sup gz‘;)}

Gh=rsn
n=1 =

and for semimartingales Zy, Za,
d(Z.Z3)
=5up{r (f_,f'd{Z. —2_:‘1) . f predictable and unformly bounded by 1} i
Let X and ¥ satsfy the stochastic differential equations

dX, =a(t, 2, B) AW, + b(L, X, Y,) AW + (X, )dL,

dY, = h(t. 2. %,)dt + dW2,
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Ay(5) = Xipys
Hi(5) = Yins (7.1)

for 0 <t < T, where X, W' are the Y valued processes, ¥,W? are the B* valued
processes and W' W? are the independent Wiener processes. Let X be indepen-
dent of W', W? and ¥, =0. All these processes are defined on a complete probability
space (£2,.#, P). As before the functions a, b, ¢, & and bk will be assumed to satsfy
condition (2.2). Further, let X", ¥" satisfy the equations

dX)' = a" (.2 Y ) AW, + B (LA W) AW + (2, W) dr,

dY = K" (.27, %" ) dt +d W),

27 (s) =X

H(s)="Y}, (72)

for 0 <t < T, where the W', W? are as in (7.1). We will assume that for all n, X7 is
independent of W' W? with Po(X)™' == and ¥ =0. We will continue to assume
that the coefficient functions g", &', o', A" and A"R" satisfy (2.2) and (5.3). We will

now assume
Xy — Xy in P-probability. (7.3)

Under these conditions we have the following result. (See Emery ( 1979) or Karandikar
{1989, Theorem 3.3).)

Theorem 7.1, (X". V") — (X Y) in the Emery topology on the space of semi-
miartingales.

We will need to use the followmng consequences of convergence in Emery topology.
Whenever /" and f are predictable, locally bounded processes with

P( sup | )= fi] = z) — 0 Ye=0, (7.4)
0sisT
then we have
| |
P( sup f frdyn — [ _,f'd}r" }a) —~0 ¥e>0. (7.5)
t=s=T S Jo
{Similar statement holds for X and X)) In particular, we have for all &= 0,
F( sup |¥'— ¥ | = a) — 0, (7.6)
LS E-o
F( sup X" — X }E) — ), (7.7)
0sisT

We will once again assume that Py and Py defined, respectively, by (2.5) and (5.4)
are probability measures on (2,9 ). Let m and 7" be the optimal nonlinear filters
{defined by (2.7) and (6.9), respectively ). Simularly, let o and ¢ be the unnommalized
filters (defined by (2.8) and (6.8), respectively ).
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Recall that a,(f W) =6, . Y{w)) as. [P] and &]( W)= a;(f. V")), where 6,
and 77 are defined by (3.4) and (6.5), respectively. A similar statement holds for the
normalzed filters. In Theorem 6.1 we showed that 7" converges m probability to 7
on the Wiener space and deduced the weak convergence of =" to m. Here, we will
show that the convergence of 7" to 7 is o fact in P-probability, The following lemma
is a crucial step towards this. It seems to be a simple measure of theoretical result.
However, we are unable to find a reference for the same and hence mclude the proof

here.

Lemma 7.2, Let U be a vandom variable and {U,} be a sequence of random variables
on a probability space (%, F* P such that

(a) P*o(U,) "' = P o U,

{b) iminf U, = U/ as. P*.

Then U, — U in P*-probability.

Proof. Let ¥, =tan ' (U,)., ¥ =tan~'(L/). Then ¥, and ¥ are bounded, P o(¥, ) =
Poo ()" and

liminf ¥, = ¥  as. [P*). (7.8)

Since {F,} are bounded, we get E(F,) — E(V).
On the other hand, using boundedness of {F,}, we get by an application of Fatou’s
lemma

E(liminf P:,) liminf E(¥,) = E(V). (7.9)

H—+300

MA—+ 30

Mow (7.8) and {7.9) imply

liminf ¥, =F as [P*]
Let ¥V, = inf, = P,, Then Pm — lmmf ¥, =F as
We thus have ¥V, < ¥, ¥, — ¥ a.s and ¥, = V. Since {P,,}- and { ¥} are converg-
ing in law, the sequence {(V,. ¥, )} is tight as 22 -valued random variables. If (Vas V)
is a convergent subsequence, with {i:'ﬂ,, Fob as a weak limit, then i:',,* = ¥, |mpl|u-. that
Vo < ¥y a.s. On the other hand, ¥y, ¥, both have same law as V. Hence, V=¥, as.
We then conclude,

(Vs V) = (V. V).

It then follows that P{!i:',, K| 22)— P(|VF—V| 2 2)=0 for any & = 0. Since F,, — V
a5, it follows that ¥, — F i probability. [

Recall that .4, () denotes the space of positive finite measures on B¢ with
Prohorov metric.

Theorem 7.3, Let (X, V) (X" ¥") be solutions of SDE 5 (7.1) and (7.2), respectively.
Let the coefficienis a,b,c h,bha", 0", ", /0K satisfy condition (2.2) for a fived
constant K. Assume that Py and Py defined by (2.5) and (54), respectively, are
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probability measures. Further let (5.3) and (7.3) be satisfied. Then,
(a) @ — & in P-probability as C([0,T],.# . (R')) valued processes.
(b) n" — m in P-probability as C([0.T)..# (R)) valued processes.

Proof. (a) Let (I,% R) be the Skorokhod representation space as in the proof of
Theorem 5.1. Let X, Xy be random variables defined on this space such that X" —
X as. [R], and Ro(Xy) '=nl, Ro(X) '=my.

Consider the product space

(Q.#.P)=(I%.R)® (2, F.0) & (Q#.P).

{Recall that € = C([0, T). BY) and that {7 is the Wiener measure.) Define X' X and
F'.p on Q2 by

)f’:l{j'._,w.,w} =t r"{)f':l,{;.'},wh Y ew)), i’,{;‘,w.,w} = t{}fﬂ{r},m., Yie)), (7.10)

e, w)=ply o Ya)) e, o)= plro, o)), (7.11)

where e, e, p", p are as in (5.6), (3.1}, (6.6) and (6.3 ), respectively. Note that X' rm
is a solution of the SDE (5.5) with W"™! replaced by f and hence the law of X" under
P is same as the law of X" under P. Similarly, the law of ¥ under P is same as the
law of X under P. It follows that for f & Cy([RY),

a:‘{_,f'._,w}=f f{j’:'irﬁm,,w}}ﬁ‘;{;1,;::,,w}dR{;;]dQ,{w,},

ool fLm) = [ _,f'{}f',{;'._,{;.r.,w}}ﬁ‘{};w.,m}dR{j‘}dQ.{m. ). (7.12)

MNote that p" and p can also be represented by

') k I
B =exp { f > ki A, Ay Ay — % [ | B, 4, :zf"}qu} . (7.13)
L i)

ik
) 2 : 1 .
ﬁ‘=cxp{[ > hi(u W) dY - Ef|h{u,.i"',f‘ﬁf}|3du}. (7.14)
J0 T 1]

As i (6.11) we get
sup | KA "y — b, 4.9) — 0 in P probability. (7.15)
G=r=T

Using (7.4) and (7.5) we conclude that

sup — 0 i P probability

O=rslT

I
f B, 3 Ay dym — [ W 4,9 dy!
S Jp

(7.16)

and

,
f [ 2"y — b, &%)  du — 0 in P probability. (7.17)
L}
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Let #, — ¢ and let f € Cy(R¥). As a consequence of (7.16) and (7.17) we get

B — p, in P probability (7.18)
and hence
FXB, — fIX)p, inP probability. (7.19)

Let (1, =_f'{)lf::1 ), and let H=_,|"{.f"}ﬁ‘_ Consider any subsequence (0, ) of 0,. Then
ih, — thin Ry @ P probability. Thus there exists a further subsequence, say ng,
such that

0y, — 0 as [R®0 ®P]asj— oc.

Mow applying Fatou's lemma and vwsing (7.12) we get

lim inf [[ 0, dR dQ; > [f liminf ,, dRdQ, =f 0 dRAO,. (7.20)
J—=a f s ¥ ¥ == ! .

On the other hand, using (7.12) and Theorem 6.1 we have
lim inf [f 0,, dRAQ, =, {_r;-}:-a,u;-h[f fdRAQ,. (7.21)
Pt ; j .

Thus, using (7.20), (721) and Lemma 7.2 we get that

o (f2) = alf.-)
in P-probability. Smee the subsequence (mg ) was arbitrary, we have shown that any
subsequence of o) has a further subsequence that converges in P-probability o ;.
This implies that

7y (f.-) = ad f.-) in P-probability. (7.22)
Since f, 15 an arbitrary sequence converging to f, we get

sup |a'(f.-)—a(f.-) — 0 in P-probability. (7.23)
0=

This holds for all f & Cy(RY). Hence we get (a).
{b) As in (4.4) we have

P (w i i_nf_?.rlj'{l,w} = {}) =1 Yn,
s

P (w i inf o (1) = {}) =1.

=127

The proof of part (b) follows from this fact along with the definitions of 7" and 7 and
part (a). [

Remark 7.1. In literature, we find that robustness of the filter 15 studied vis-a-vis con-
vergence n law of 7 to m This may be useful when we want to stmulate the wue
filter m =7 ¥ ), but are only able to simulate an approximate filter =" = 7"(¥"). Here
we have shown that this convergence holds in probability. In the context of filtenng
theory, this is of more practical relevance, as seen in the following two Remarks.
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Remark 7.2. Suppose that the true (signal, observation) pair 1s given by (7.1) but is
approximated by the (signal, observation) pair modelled by (7.2) (for a large parameter
n). Then the true filter m1s given by 70 Y) where as the filter computed based on the
model (7.2) will be #"(¥). Since the law of ¥ is absolutely continuous with respect
to the Wiener measure, Theorem 6.1 would mply that 7#"(Y) converges w 7 Y) in
probability. Thus, no serious error s committed by using an approximate model.

Remark 7.3. Now suppose that the true (signal, observation) pair s given by (7.2) (for
a large parameter n) but 1s approximated by the (signal, observation) pair modelled by
{7.1). Then the true filter = is given by 7'(¥") (for the true observations are ¥"') where
as the filter computed based on the model (7.1) will be 7 ¥"'). Using arguments similar
to those used in the proof of Theorem 7.3, it can be shown that 7(¥") converges to
7 ¥) in probability. Since 7" ¥") also converges in probability to 7(Y), it follows that
Yy — 7 ¥y converges in probability to 0 agam justifying the approximaton.

Remark 74. In the wsual signabnoise independent case, where the observation ¥ is
given by

}f‘.=fhumd.‘-+m
Sk

with B being a Wiener process independent of signal X, if we approximate X by A"
in probability and consider

]
}_-‘.u s [ hJI{XI:I }dﬁ' + H_.-'“‘

S

we can conclude that the filters =" converges to 7 in probability 1f
e
[ [h"(X") — h(X,)?ds — 0 in probability.
Jo

This supplements the results in Bhatt et al. (1999) where we had shown convergence

in law.
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