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Abstract. It is shown that fractional factorial plans represented by orthogonal
arrays of strength three are universally optimal under a model that includes
the mean, all main effects and all two-factor interactions between a specified
factor and each of the other factors. Thus, such plans exhibit a kind of model
robustness in being universally optimal under two different models. Proce-
dures for obtaining universally optimal block designs for fractional factorial
plans represented by orthogonal arrays are also discussed.
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1. Introduction

The study of optimal fractional factorial plans has received considerable atten-
tion over the last two decades; see Dey and Mukerjee ((1999a); Chapters 2, 6
and 7) for a review. Most of these results however relate to situations where all
factorial effects involving the same number of factors are considered equally
important and, as such, the underlying model involves the general mean and
all effects involving up to a specified number of factors. Also, most of these
have been obtained in unblocked situations.

In practice however, the presumption of equality in the importance of all
factorial effects involving the same number of factors may not be an appro-
priate one. For example, there may be a situation where it is known a priori
that only one of the factors can possibly interact with each of the factors, all
other two-factor and higher order interactions being absent. The model then
includes the general mean, all main effects and only some but not all two-
factor interactions. The issue of estimahility and optimality in situations of
this kind in the context of two-level factorials has been addressed by Hedayat
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and Pesotan (1992, 1997) and Chiu and John (1998). Continuing with this line
of research, Dey and Mukerjee [ 1999b} have shown that under a hierarchical
model, if a fractional factorial plan for an arbitrary factorial has inter-effect
orthogonality, then it is universally optimal in a relevant class of competing
designs. Here the term universal optimality is used in the sense of Kiefer [1973)
and Sinha and Mukerjee (1982). Dey and Mukerjee (1999h) also obtain a nec-
essary and sufficient combinatorial condition that ensures inter-effect ortho-
gonality and hence, universal optimality under a hierarchical model.

In this paper, further results on the optimality of fractional factorial
plans for arbitrary factorials are obtained. In Section 2, some preliminaries are
introduced. In Section 3, it is shown that fractional factorial plans represented
by orthogonal arrays of strength three are universally optimal under a model
that includes the general mean, all main effects and all two-factor interactions
between a specified factor and each of the other factors. Recall that fractional
factorial plans represented by orthogonal arrays of strength three are also uni-
versally optimal under a model that includes the mean, all main effects and all
two-factor interactions and the parameters of interest are contrasts belong-
ing to the main effects, the two-factor interactions in the model acting as nui-
sance parameters. Our result thus shows that such plans are universally opti-
mal under two different models. Finally in Section 4, procedures for blocking
fractional factorial plans based on orthogonal arrays are discussed. These
blocked designs are also seen to be universally optimal.

2. Preliminaries

Consider the set up of an my » --- xm, factorial experiment involving n
factors F,..., F, appearing at m,....m, levels respectively (m; =2, i =
1,....n). The v = [iL, m; treatment combinations are represented by ordered
n-tuples fy . f (i =0,....m;—1;i=1,..  n). Let r denote the v x 1 vector
with elements 7{ i .../, ) arranged in the lexicographic order, where (/) .. . j,)
is the fived effect of the treatment combination j ... j,. Also, let £2 denote
the set of all binary n-tuples. For each x = x...x, 2, define z(x) =
IT (i — 1),

]éur a positive integer 5, we denote the 5 x | vector of all ones by 1, and the
identity matrix of order s by .. For i=1.....n, let P, be an (m; — 1) x my
matrix such that the my; = m; matrix {:n[”zl,,,__,f}’j is orthogonal. For each
x=x...x, €8 letthe z{x) x v matrix P*¥ be defined as

ol sl O (2.1)
where fori=1,..., i,

pY— ml-_l'ql:,,__, if x;,=0 (22)

‘ P if x; = 1, aE

and & denotes the Kronecker product. Then it is well known that for each
Xx=2x...x, €8 x00. .0, the elements of P*r represent a complete set of
orthonormal contrasts belonging to the factorial effect F" ... F = F*, say.
Also P"-%7 — ¢!2¢ where 7 is the general mean, and in this sense the general
mean will be represented by F%--2.
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In this paper, we consider only hierarchical factorial models. Recall that
hierarchical factorial models are such that if a factorial effect F* is included in
the model then so is F¥ for every y € £2 satisfyving y < x, where y < x means
wexfori=1,._..n

Let I" = £2 be such that F* is included in the model if and only if x e I
The parametric functions of interest are then Pr, where

B O (23)

Assuming that the observations are homoscedastic and uncorrelated, the
information matrix for Pr, under a plan 4, is given by

Sy = PR4F', (24)

where R, is the v » v diagonal matrix with diagonal elements r (7 ... J),
arranged lexicographically and ry{f; .. _j,) is the replication of the treatment
combination jj .. j, in 4.

Mow consider a hierarchical model specified by "= 2. For any x =
X...x; and 7 =z ...z, both members of I, ket

S{x,z) = {i:eitherx; =l orz; = 1}.
Define
I' = {x: xe I', there does not exist y € I' such that x < y and x # y}.

Let < be the class of all N-run plans for an my x --- »x m, factorial such that
all effects in the model specified by [ are estimable via any d € %. The fol-
lowing result from Dey and Mukerjee (1999b), giving a combinatorial char-
acterization for a plan to have inter-effect orthogonality under a hierarchical
model, will be needed in the sequel.

Theorem 2.1. Under a hierarchical model specified by I, a fractional facto-
vial plan d € % has inter-eflect orthogonality {and hence, d is universally opti-
mal over ) i and only if for every x, g I all level combinations of the factors
15 i e 8(x. 1)} appear equally often in d

3. A property of orthogonal arrays of sirength three

An orthogonal array OA(N_n my = --- % iy, g), having N rows, n columns,
my. ..., m, symbols and strength g is an & x »n matrix with elements in the ith
column from a set of m; = 2 distinet symbols (i = 1,..., n) in which all pos-
sible combinations of symbols appear equally often as rows in every NV x g
subarray. In this section, we deal with orthogonal arrays of strength three, i.e.,
g=3

Consider a factorial experiment with » factors F,... F,, the ith factor F
appearing at my; (=2) levels, i = 1,...,n. Suppose it is desired to estimate (1}
the mean, (ii) complete sets of orthonormal treatment contrasts belonging to
all main effects and (iii) all two-factor interactions between a chosen factor

and all the rest, i.e., two-factor interactions of the type FiF;, j=2,....n,
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where, without loss of generality, we consider /| as the chosen factor. All
other effects are assumed to be zero. The model then is clearly a hierarchical
model. From Theorem 2.1, it follows then that a fractional factorial plan 4,
involving N runs under this model is universally optimal in the class of all
Nerun plans if and only if in & all level combinations of the following sets of
factors appear equally often:

{FER}, 2=j<k=n

MNow, if d is represented by an orthogonal array, OA{N, n,omy - -2 2, 3,
then clearly  satisfies the requirement above and thus, 4 is a universally
optimal plan under the stated model.

Furthermore, it is known that in an QAN n,my = --- xomy, 3),

Nz 14 (m—1)+(m" - 1){2{"!,- —1)—(m* — 1)}, (3.1)
=1 i=l

where m* = max m;. Arrays for which N attains the lower bound (3.1) are

known as tight. Tight orthogonal arrays of strength 3 are available in the liter-
ature; see e.g Dey and Mukerjee (1999, Chapters 3 and 4). If ;) = max my;,

and the OA(N n,m x --- % my, 3) is tight, then the plan represented by the
tight array QAN nomy » - xmy. 3) 15 a universally optimal saturated plan
in the sense that the number of experimental units in the plan equals the
number of parameters in the model. We thus have the following result.

Theorem 3.1. Under a factorial model that ineludes the mean, all main effecis
and all two-factor interactions among a specified factor, say Fy, and all the
other factors, a fractional factorial plan represented by an orthogonal array of
strength three s universally optimal. Furthermore, i the orthogonal array i
tight and Fy hay the largest number of levels, then the plan is also saturated.

Remark. Theorem 3.1 shows that fractional factorial plans, represented by
orthogonal arrays are universally optimal under two different models. Also,
since the choice of the chosen factor Fy of Theorem 3.1 is arbitrary, the same
plan remains universally optimal no matter which of the » factors is con-
sidered as the specified factor. Thus, fractional factorial plans represented by
orthogonal arrays of strength three are superior to the ones reported by Dey
and Mukerjee (1999b) in their Example 4.

4. Blocking of plans represented by orthogonal arrays

When the number of runs N in a fractional factorial plan is large, the sensi-
tivity of the experiment can be increased by grouping the experimental units
into blocks, so that the units within each block are homogeneous, though
there may be variation from one block to another. Suppose there exists an
N-run fractional factorial plan for an sy x --- x my, factorial, where N = bk
for some positive integers b = 2 and & = 2. Further, suppose the plan ensures
the estimability of all factorial effects involving [ factors or less under the
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assumption that all effects involving ¢ 4 | factors or more are absent, where
St are integers, 1 < f < < n— 1; that is, such a plan is a Resolution { f, 1)
plan (¢f Dey and Mukerjee (1999a)). It is desired to obtain a block design,
involving b blocks of size & each, such that the resultant block design is uni-
versally optimal.

Suppose an N-run fractional factorial plan 4 is represented by an orthog-
onal array QAN n,m % --- xmy,.g), where 2 < g = n. Such a plan is uni-
versally optimal in the class of all A-run Resolution (. ) plans for every
choice of integers [ ¢suchthat /' +¢t=gand |l < ' =< n— 1. Assume that
the runs of the plan are grouped into blocks. Let .#%* denote the informa-
tion matrix (for factorial effects) of the Resolution (f, ¢) plan  under a model
that includes the block parameters along with the factorial effects and, .5, the
information matrix of 4 under a model without the block effects. It can be
seen that .#"* < j; where for two nonnegative definite matrices 4 and B,
A = B means that # — 4 is nonnegative definite. Under certain conditions (see
Theorem 4.1 below), it is possible to have .7]""* = ;.

Let % b k) be the class of all plans for an »y x --- x m, factorial involv-
ing N (=hk) experimental units grouped into b {=2) blocks each containing
k {=2) units. The following result gives a necessary and sufficient condition
for .7 10 be equal to .#% (see Dey and Mukerjee (1999a), p. 159).

Theorem 4.1, Let dy € 20( b k) be a fractional factorial plan represented by an
orthogonal array QAN nomy s - xomy, [+ 1.

(a) Then f,:i"" =9, If and only if for every iy,... i and ji,..., [
(l<ihh<---<ip=m0<f <m —1,....0<f <m —1), the level
combination j; .. _f; of the iyth, .. ith factors appears equally often in the

b Blocks wnder the plan oy,
(b} If the condition stated in (a) above holds, then dy is a universally optimal

Resolution { 0] plan in Z0(b k).

We may call the blocking arrangement satisfying Theorem 4.1(a) as
orthogonal blocking. A method to achieve orthogonal blocking is as follows.
With N = bk, suppose that an orthogonal array L) = OA{N n+ Loy x -+ =
my % bog) is available. One may identify each row of the subarray defined by
the first # columns with a treatment combination of an m| x --- x m, factorial
and each symbol in the last column with a block. If a typical row of L, is
J1 - futt, then a (block) design, say dy, is obtained by assigning the treatment
combination f) .. ., to the uth block. 1t can be verified that o, satisfies Theo-
rem 4.1(a} for every choice of integers f.¢ such that f+t=gand 1 = f <
¢ =n—1. Hence by Theorem 4.1(b), dy is a universally optimal Resolution
(f, 1) plan in 2 (b, k) for every choice of integers [, ¢ such that /' + ¢ = g and
l=f<t=n-1

We now discuss some alternatives for achieving orthogonal blocking of
plans based on orthogonal arrays. We first have the following result, whose
proof follows from Theorem 4.1,

Theorem 4.2. For given integers fy fp, 1 = fo = tg =n— 1, let there exist a
Sractional factorial plan represented by an orthogonal arvay L = OA(N n,
iy - M fo + fy). Suppose dy g S(b K ix a Mok design for this plan
where bk = N. Then,
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(a) f'“"'{ if and only i there exivts an orthogonal array L) =
GAI[;"I.- H+ 1 iy os-e s sy w0 by fo 4 1), obtained by augmenting L by a
column with b n’n!mr! symbols, and in such a case, i a typical row of L) i
T, then the block design dy & obtained by assigning the treatment
combination fy o, to the wih block u=1,_.._ b

(b} If the condition stated in (a) above holds, then dy is a universally optimal
Resolution (L6 plan in 2(b. k) for every choice of itegers |01 such that
FHt=fot+hpandl = [ < fi

Corollary 4.1. For a given integer g, 2 < g < n, let there exist a fractiona foc-
tovial plan represented by an orthogonal arvay L = OA(N nomy = - somy. g).
Suppose dy € (b, k) is a Mok design for this plan where ble = N . Then,

(a) ﬁ:IM'”""" =y if and only if there exists an orthogonal arvay L) =
G.»Iﬂil[f'l.- Nt iy - --xomy % by [gf2] + 1), obtained by augmenting L by
a column with b n’eﬁ!mr! symbaols, where [] is the greatest integer function
and in such a case il a tvpical row of Ly i fy oo e, then the block design dy
is obtained by avsigning the freatment combination fy . f, to the uth block,
w=1,....0h

(b)) If the condition stated in (a) above holds, then dy is a universally optimal
Resolution ( F 6 plan in @b k) for every choice of integers |1 such that
f+t=gandl = f=t=n—-1

We illustrate the above discussion via two examples.

Example 4.1. Consider the orthogonal array L, = 0A(8,5,2% x 4.2), dis-
played below.

00 0 0 07

1 1 1 1 0

o0 1 1 1

11 0 01

= OA( 24 N =
Ly=04(8,52" x4 2 0101 2l

1 01 0 2

o1 1 0 3
|1 0 0 1 3]

Here, wt) = --- = mig = 2, b= 4 and observe that the first four columns form

a (symmetric) 4(8,4,2,3) = L. By following Theorem 4.2 or Corollary 4.1,
we get the following design involving 4 blocks of size 2 each, which is a uni-
versally optimal Resolution (1,2) plan in (4, 2):

Block 1 Block 2 Block 3 Block 4

(000 0011 101G 0110
1111 1100 0101 1001

Example 4.2. Consider an orthogonal array L, = QA(16,6,2° x 4,2) given
below (in transposed form)
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I

(0101 0110 0110 0011
0011 0011 0011 0101
0011 0011 1100 LO10
0011 1100 0011 110
0110 1010 1010 0110
0000 1111 2323 3333 |

L

Here, N=16 and fy=1. The first five columns of [, form an
OA4(16,5.2.4) = L with f = 1, &, = 3. Blocking with respect to the sixth col-
umn, we get an universally optimal Resolution (1, 3) plan o € 2(4, 4) involv-
ing five factors each at two levels. Note that dy is not a universally optimal
Resolution (2,2) plan. In fact, it is not possible to obtain an orthogonally
blocked Resolution (2,2) plan in %(4,4) for a 2° factorial represented by an
orthogonal array.

Some further methods of orthogonal blocking of plans represented by
orthogonal arrays are discussed next. Let N = bk where b = [ | b Suppose
that an orthogonal array L) = OA(N. n+s.my = - sy 5 by x--- 0 by,
Jo+ o), where l s = p=n—1,1=< fi <t is available. One may identify
each row of the subarray defined by the first # columns with a treatment com-
bination of an m x --- x m, factorial and each symbol combination in the
last s columns with a block. If a typical row of L) is jy... ju ... 0, then a
(block) design, say oy, is obtained by assigning the treatment combination
J1 oo fu to the () ..., )th block. It can be verified that o satisfies Theorem
4.2 and hence, for an m) = --- = m, factorial, dy is a universally optimal Res-
olution { f, ¢) plan in % (b, k) for every choice of [ ¢ satisfving f+t= + &
and 1 < f < fy. Thus we have

Theorem 4.3. Let L) = OA(N . n+ 8,0y x - xmy = by os--- s by fy+ i),
1= fo =t =n—1, be an orthogonal array with N = bk where b=[][_, b
and & iy an integer, 1 =5 < &y, Then, for a my x --- % my factorial, one can
obtain a universally optimal Resolution () plan in S0(b, &) for every choice of
St satisfving f+e=fa+pandl < < fo

Corollary 42, Let L) = OA(N n+s.m 5 -~ somy = by s -2 s by g) be an
orthogonal array with N = bk where b = [[_, by and 5 is an integer, 1 =5 =
g — |g/2]. Then, for a my x --- xm, factorial, one can obtain a universally
optimal Resolution ([ 1) plan in 200B K) for every choice of integers |1 such
that f +i=gand l = f <=t =n—- 1

Next, let N = bk where b = []_, b;. Suppose that an orthogonal array L,
OAN. n+p.my o ---xm, x by x---xby fy + &), is available, where fy, 4
are integers satisfying 1 < f < &y =n— 1 and p = . Suppose for [ = fi, L
has the additional property that for every i,..., ir and fu,..os fis fuis -
fplh << =m0<j <m; —1,....0<j <m —1;0< 1 <
My — 1,000 < iy < Mgy p — 1), the combination jj ... jijut - - - jiuip under
the iyth, ... ith, (n + 1)th, ..., (n + p)th columns appears equally often as a
row in L. One may identify each row of the subarray defined by the first »
columns with a treatment combination of an » x --- = m, factorial and each
symbol combination in the last p columns with a block. If a typical row of
Lyis jj .. jut .. .u,, then a (block) design, say 4, is obtained by assigning the
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treatment combination fy ... to the (e ... u, )th block. It can be verified that
dy satisfies Theorem 4.2 and hence, oy is a universally optimal Resolution
(f, 1) plan in Z(h. k) for every choice of [, satisfying /' + /= f3 + fy and
1 < f < fy Thus we have

Theorem 4.4, Let L) = OAN. n+p.myx--- x5 by os--- 5 by, foy + o)
he an orthogonal array, with N = bk where b = HLI by, po= oty and fiy by are
integers satisfving 1 < fo < &y = n— L. Suppose Ly has the additional properiy
that for every i,....ir and ji, ... i forty- i diip (1 S < --- < =m;
O=jismy —1,...,0=f=m; — 0= hismp—1,...,0= =
Muyp — 1), the combination i .. fijwe .. fuee under the ith,...icth,
i+ Vith, .. (n+plth columns appears equally often as a row in Ly, Then,
one can obtain g wniversally optimal Resolution ( 6 plan in 20(b k) for every
choice of [ satisfving + = fo + fyand 1 < | = [,

Example 4.3. Consider the orthogonal array L) = 0A4(16,7,2,3). This array
can be constructed as follows: Let 4 be an orthogonal array OA(8,7,2,2) and
let the symbols in 4 be 0 and 1. Then L, is given by L, = (,?,), where J is
matrix of all ones. The array L. in transposed form, is displayed below.

- -

1o 1010 0101 0101
1100 1100 0011 0011
1001 1001 0110 0110
L1100 0000 1111
1o 01l 0101 1010
L1000 0011 0011 1100
1001 0 0110 1001

Here, N = 16, fy = | and & = 2. Then for s = 1,2, using Theorem 4.3 we get
a plan for 27 factorial dy in 2* blocks of size 16/2* each by blocking with
respect to the last s columns. Furthermore, o is a universally optimal Reso-
lution (1,2) plan in %(2¢,24-).

Mow, observe that L, as given above has the additional property that
the combinations under the first three columns and each one of the remaining
four columns appears equally often asa rowin L. Thus, with p =3 = 2= #,
from Theorem 4.4 we get a universally optimal Resolution (1,2) plan in
(8. 2) involving four factors each at two levels:

Block 1 Block 2 Block 3 Block 4

0000 1001 1010 0011
1111 0110 0101 1100

Block 5 Block 6 Block 7 Block 8

1100 0101 0110 1111
0011 101 1001 0000

L
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