Estimation of two ordered mean residual life
functions

Xiaomi Hu?®, Subhash C. Kochar®-!, Hari Mukerjee* *,
Francisco J. Samaniego®

“epartment of Mathematics and Statistics, Wichita State University, 1845 Fairmount,
672600033 Wichita, K& USA
Pindian Statistical Institute, India
“University af California, Davis, USA

Abstract

If X is a life distribution with finite mean then its mean residual life function (MRLF) is
defined by M{x)=E[X —x|X = x]. It has been found to be a very intuitive way of describing the
aging process. Suppose that My and M2 are two MELFs, e.g., those corresponding to the control
and the experimental groups in a clinical trial. It may be reasonable to assume that the remaining
life expectancy for the experimental group is higher than that of the control group at all times
in the future, Le., Mi(x) = M:x) for all x. Randonmess of data will frequently show reversals
of this order restriction in the empirical obhservations. In this paper we propose estimators of
My oand Mz subject to this order restriction. They are shown to be strongly uniformly consistent
and asvmptotically unbiased. We have also developed the weak convergence theory for these
estimators. Simulations seem to indicate that, even when M) =M2z, both of the restricted estimators
improve on the empirical (unrestricted ) estimators in terms of mean squared ervor, uniformly at
all quantiles, and for a variety of distributions.

MEC: primary 62P10; 62G05; 62E10

Kevwords: Mean mesidual life; Omder mestricted inference; Asymptotic theory

1. Introdvection

The mean residual life (MRL ) of a unit or a subjeet at age x is the average remaining
life among those population members who have survived until time x. If lifelengths of
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the populatnon are described by a random variable X with survival function (s.£) 5(x)
and a finite mean, then the MRL function (MRLF) is defined by

: f" Sluydu
M(x) = B =5l >x] = 20t m IS > 0) (1.1)

An MRLF is right continuous with left hand limits, and has the same set of disconti-
nuities as the s.f, except that a MRLF s always continuous at the right endpoint of
the support of the s, if finite. A distribution is chamcterized by its MRLF by the
relation

M0)
P

— Aty dug[af(x) > 0]. 12
M(x) [M(x) = 0] (12)

Sx)=

In some cases, particularly in health sciences and actuarial sciences, the MRLF gives
a4 more mtuitive picture of survival or aging than the s.f or the hazard rate function
r{x)= f(x)/Six), where fix) is the density.

Let X and ¥ be random vanables with finite means representing the hfetimes of
two populations with sfs 5 and 5: and MRLFs M, and M., respectively. These
could be patients undergoing two different treatments or the times to recurrence of
cancer after the patients have been treated with different kinds of therapies. In the
industrial engineenng context, X and ¥ could represent the lifetimes of two different
brands of an appliance. Suppose that we are confronted with the problem of comparing
two populations to sce which one has longer life. A naive approach would be to just
compare the two means, 1., M (0) and M>(0). Rather than basing the decision on two
single pomts, one could compare X and ¥ under a stochastic ordening (S0) restriction,
Le, Spix) = (= )5(x) for all x. However, both of these measures compare the two
systems when they are new. They do not say anything about their survival as time
passes and the systems age. One way to do this would be to compare X and ¥ under
a uniformly stochastic ordering (USQO) restriction, e, under 50 of the conditional
distributions of X and ¥ given survival till time x. This is a very strong ordering
restriction. A more meaningful and intuitive way of comparing X and ¥ would be to
compare ther MRLFs. The review article by Guess and Proschan (1988) gives a nice
summary of the theory of MRLF,

There is a substannal literature on the nonparametrie maximum likelihood estimators
{ NPMLEs) on two distnibutions under SO (Brunk et al., 1966; Huang and Praestgaard,
1996} and USO (Dykstra et al, 1991; Rojo and Samaniego, 1991), and on a pro-
jection type estimator for 80 (Rojo and Ma, 1996; Rojo, 1993) and USO (Rojo and
Samaniego, 1993; Mukerjee, 1996; Arcones and Samaniego, 2000), the latter often
proving o be superior to the NPMLEs,

Yang (1978) studied the properties of an empirical estmator of the MRLF. Hall
and Wellner (1979) and Csirgd and Zinkis (1996) have extended some of her re-
sults. In this paper we propose estimators of My and M subjeet to the constraint
Myx) (2 Wsix) for all x when M2 1s known (1-sample problem) and unknown
{ Z-sample problem). The estimators could be extended to the case where the order
restriction holds only on an mterval [1,#2). These are simple ntuitive projection type
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estimators, paralleled after estimators that have proven o be excellent in the stochastic
and uniform stochastic ordering cases. Ebrahimmi (1993) has also considered these prob-
lems with the mestnction My = M on [#, 6] only, and provided an excellent real-life
example in his Figs. 1 and 2 (p. 414). His estimators are similar to ours, but have to be
shightly modified to assure that they are indeed MRLFs, and we show how this could
be done. We provide a rgorous proof of asymptotic unbiasedness, since Ebralimi’s
{1993) arguments regarding this property were largely heunstic. We also derive the
weak convergence of our estimators that provide confidence bands for our estimators.
We have conducted extensive simulations under a variety of conditions, and some of
these results are presented in Section 4. As is to be expected, for small sample sizes
the estimators are biased; however, the mean squared errors (MSEs) of both estima-
tors appear to be uniformly smaller than those of the empiricals. The same has been
observed for the 80 and USO cases. These outcomes are minguing and worthy of
further study. We should also mention that Berger et al. (1988) have considered the
problem of testmg A < M, but they do not consider the estimation problem.

In Section 2 we describe our estimators. In Section 3 we prove strong uniform
consistency and asymptotic unbiasedness of our estimators. In Section 4 we provide
some of our simulation results. In Section 5 we consider the asymptotic distributions
and the weak convergence of our estimators, and provide formulas for simultancous
confidence intervals and confidence bands, and provide an example. In Section 6 we
make some concluding remarks.

2. The estimators

Suppose that X and ¥ are nonnegative random variables (r.v.s) representing life-
times with sfs 8, and 5, MRLFs M and Ms, and nght endpomts of their supports,
if finite, by and bs, respectively. Assume that we have independent random samples of
sizes ny and na from 5 and S, respectively, Let §, and S denote the usual empir-
ical estimators of the s.fs, and define the empinecal estimators of A, and M5 ( Yang,
1978) by

j';'x" Sdu)du

MAx)="* 5 I(S{x)>0) i=12, (2.1)

where the dependence on sample sizes has been suppressed to simplify the notation.
Mote that M; is a nght-continuous function with upward jumps only and a denvative
equal o —1 wherever it exists.

2.1 The l-sample case

Suppose that My s known and M(x) < Ma(x) ¥y, Then our estimator of M is
given by

M(x)= M (x) A Ma(x). (22)
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Fig. 1. llustration of M7, M and Ms.

MNow suppose that the order restriction is My(x) < Ma(x) on [f.62) only. Smce an
MRLF cannot have a jump down, in fact, M'(x) = — | where it exists for any MRLF,
M, we have to be careful in defining M"(x) for x = . We propose the estimator
given by

((Ati(x), x <t and My(1) < Mat)),
M(x), x < cand M () > Mt ),
Mix)=<{ M) +(t —x), c<x <t and M(1)) > Ma(n). (23)

M(x)AM(x), H<Ex<h,

My(x), X =

.

where ¢ —max{X H.{X V= Malt )+ (6 — A7)} and O if no such @ exists. By this
definition, if M,(f) > My(1y) then M7 is extended to the left by a straight line with a
slope of —1 from Ma(r) until this line is above M.{X ) for the first tme for some
i, or all the way to O if no such 7 exists (see Fig 1)

For the reverse order restriction, the estimators are the obvious parallels o those in
{2.2) and (2.3) with the reverse ordenng, noting that, if M (t2) < Ma(t2), then

M) —(x—8), h=x<r,
Mix)=1+ .
Malx), x=c,

where ¢ =min{ X J"I;f.{X,-} = Maifa) —(X;— 1)}, and o=t + Ma( ) if no such § exists.
Note that ¢ = 1 + Ma( &) implies M (c) = 0.

To check if the various estimators are indeed MRLFs, we use the fact that (Hall and
Wellner, 1981) a function M is a MRLF of a nondegencrate life diswribution if and
only if (1) M [0, 20)—[0,00], (ii) M(0) = 0, (iii) if for some xp < oo, Mix, ) =10,
then Mix) = 0 %x = xp. and j"ﬂ I/mix)dx = oo if such an xg does not exist, (iv)
Mix)+ x is nondecreasing in x, and {(v) M is nght continuous. The first three con-
ditions are casily venfied in all cases. Condition (1v) follows from the fact that for
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any two nondecreasing functons, f and g, A g and £ g are also nondecreasing,
and from the way M| was defined on [f = 1) when M, = M, and on [t = ;) when
My = Ms. Condition (v) 1s clearly satisfied on [f1.62) by the right-continuity of M, and
M. When My = As, this condition is also satisfied on [0, ¢) and on [f2,00) by nght
continuity of M, and on [c.f;) by continuity of M. A similar argument applies when
Ay = M.

2.2 The 2-sample case

The motivation for this estimation stems from the NPMLEs for two stochastically
ordered unknown sfs where one first estimates the common s by pooling both
samples, and then estimates each .4 under the proper ordermg restriction as a 1-sample
problem, using the respective empirical s and this common s.f We give formulas
only for the case where M = My everywhere; extension to the case of order restiction
on an mterval only can be done exactly as in the l-sample case since our estimation
procedure reduces to two separate 1-sample cases.

For any fixed but arbitrary m and na, define §=(m8 +ms Viny + na) to be the
estimator of the common s.£. 5= (8 +n25 )/ (n) +n2) by pooling both samples. The
MRLF of § is given by

ll':x' [ 51 (0e) + naSa(n)] du

M(x) = 18X )+ naSa(x)

I[x < bs]

B S WM x) + S ()M x)
= mSi(x) +n2S(x)

I[x < ba]

=wi(x0M(x) 4+ walx Whaix ), (2.4

where by = b are the right endpoints of the supports of &) and S, respectively, and

moxle)  Heiisdl fwil

wix) = m81(x) + na8a(x)

Mote that for each fixed x, M(x) 15 a convex combination of M (x) and Ma(x). Thus,
M, £ My = M, = M = M, Substituting the empirical estimates m (2.4) using an ob-
vious notation, we estimate M and Mh as two separate 1-sample problems as above,
with the restrictions M, < M and Ms = M as if M is known These estimators are
given by

M(x)=M(x) A M(x)
=W (x )M (x) + Wa(x)[M 1(x) A Ma(x)]

= M1 (x) — via(xX)[M (x) — Mo x)P[M(x) > Ma(x)] (25)
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and
My (x) = Ma(x) v M(x)

= WX WM (x )+ Wy (x)[M ((x) v Ms(x)]

= Ma(x) 4wy (x)[M (x) — Ma(x)J[ M (x) > Maix)]. (2.6)
When the order restriction holds only on [f. ). the estimators are exactly as in (2.3)
and the material following, with Af replacing Ms. MNote that when M (x) = Maix),
the weights used to average them are proportional o the number of items alive after
time x. The l-sample estimator in (2.2) can be seen as the limit of (2.5) as na—oo.
Ebrahimi (1993) mennons the estimator i (2.6), and uses 1t for the example mm s
Figs. 1 and 2. However, for his problem of estimating Mh only, he defines a differ-
ent estimator that minimizes the MSE if certain functionals of the distributions are
known. He uses the asymptotic distnbutions to compute and then estimate these func-
tionals. It is not clear how large the sample sizes must be before reliable estimates
could be obtained, especially in the nght @il where the variance of M(x) is very
large.

3. Comsistency and asympiotic unbiasedness

Lt ||,|":|i’ denote sup, ., | f(x)]. Yang (1978) has shown that, under the first mo-
ment assumption only,

|Af; — M;|5—0 as forany b <b, i=12.

MNow consider the last expression m (2.5) for M and let 0 < b < by be arbitrary. 1f
ny—oo and na is finite then ||vs i|f{—>'[] a.s. If ny na—oo, then

[M(x)— Ma(x)|—0 as uniformly on {x € [0.b): Mi(x) = Ma(x)}
and
I[M(x) > Ma(x)}—0 as. uniformly on {x € [0,b): M(x) < Ma(x)}.
Thus ||M} — M, |[j—0 a.s. The strong uniform consistency of M3 can be derived sim-
ilarly.
31 Avymprotic unbigsedness

Under the firsst moment assumption only, Yang (1978) has shown that

EM{(x) =M{x)P[S{x) =0} i=1.2.
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This shows that the unrestricted estimators are asymptotically unbiased. For the re-
sticted estimators we need a stronger moment assumption in our proof.

Theorem 3.1. Asstone that X and Y have finite varianees. Then M and My are
asympiotically unbigsed as ny,na—oo.

Proof. We first note that

Mi(x)= W—'md“ 1[81(x) = 0]
H|S|{_.T::I

Z_."{-X-" - -T}f[f’[_’.f = x]
- Z_."I[X.-" = x]

SOOI 5] S L}]
)
with a similar expression for Ma(x). Using the last expression in (2.5) for M (x), its
asymptotic unbiasedness will be proven if we can show that the expected value of

A = a(x )M (x) — Ma(x)J[M(x) > Ma(x)]
converges to 0 as n,m—oo. Fix x. To simplify the notation we write L; = n,-L‘h:,{.t}
for i = 1.2, As pointed out by Yang (1978), given L; = {1, M has the distribution of
the average of i Lid. random variables, Uy, U, .. Uy, say, wath sf S5)(u)/5(x) for
u zx, EU; = M(x), and

Var(U;) = Var[¥ — x|X > x] = ai(x).

Similarly, given Ly = [2, My has the distribution of the average of /5 i.id. random
variables, ¥y, Fa, ... Fy,, say, with s.£ Sa(u)/Sa(x) for w 2 x, £F; = Ma(x), and

Var(F;)= Var[¥ — x|V = x] = a%{x}.
The expected value of A is given by

EA=E[E[A|L,L5]]

LITL + =0 _ -
_ZZ = [} +j2 ]E[.[f_,.'h_P,J}I{U,II—F,:J}{}}]
| -.

®P[Ly =1 JP[La = 12],

where U7, and ¥}, denote the averages. Note that

LIl + 1 = 0] .
EZ I Pl =10PlLy = b= Eva(x).
I

1a
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Now E[U),—Fp,]=Mi(x)—Ma(x) < 0 and Var[ll) — ¥}, ]=a2(x)/1, +o3(x)/lhi=a,,. say,
and g;,;,—0 if I}, ls—oc. Let Z= (U, — V},)a,;,. Then EZ = (M;(x) — Ms(x))/g),,,
and VarZ = 1. Thus

E[(T), — P )0y, — Py, > 0)) = oy, L, E[ZI(Z > 0)]=0 if I|,];—00.

Since 3 o Ppem FIL=11P[L: = 13] can be made arbitrarily small for any given
my and ma by choosmg ny and na large enough, we see that EA—0 as ny,na—oc. Ths
concludes the proof of the theorem. [

Remarks. The second moment assumption in the theorem could be relaxed to that of
a moment of order 1 + d by using truncation arguments. We do not know 1f the first
moment assumption is sufficient.

4. Simulations

We have camied out a quite extensive simulation wsing the following decreasmg,
constant, and increasing MRLFs:

M{x)=a(l —x/b;¥[x < k], b; = a;, with 5(x) = (1 — x /b, 1
which corresponds to the U(0,1) distribution when g; = 0.5 and & = 1;

Mi(x) =i, comesponding to the Exp{{};) distnbution; and

Mi(x) =ax + b, a;, b =0, with §:(x) = (/B W1 +ax/b)5=, x = 0.

We were particularly mterested in comparing the estimated bias and MSE of the various
estimators, especially when My = Ma. Typically the sample sizes chosen were small to
moderate, but we also chose some very large sample sizes o check on the asymptotic
unbiasedness. Some of these results are presented in Tables 1 oand 2.

In Table 2 we consider the exponential distribution only, Two of these simulations
use small, unequal sample sizes and different means. The other simulation uses equal
means but with very large sample sizes,

It s clear that in all cases the restdcted estimators have more bias, as s to be
expected, but the MSE 15 umformly smaller than the unrestnicted empirical. For the
exponential case, the bias 15 seen to be steadily decreasing with the sample swe ac-
cording to Theorem 3.1,

5. Asymptotic distributions and weak convergence

In this section we consider the jomt asymptotic distnbution of M7 —M, and My — M
at a point x, and also their weak convergence on [0L6)] for b < b A by = by, We also
construct simultaneous confidence intervals and confidence bands for Ay and Ms using
the asymptotic distributions,
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Table 1
Comparison of bias (#) and MSE of M, M, My, and M} at various g-quantiles

q BO(x))  BM{(x) Wy BURG)  BOME) )
My =Mx) =1, ny =10, m = W, #iterations = 10, 000

0.1 —0.0056 —0.09%0 1.5175 —0.0028 LR (6 1.1959
0.2 —0 0061 —0.1050 1.5200 —{L00a3 +0.080 26 12013
0.5 —0.0026 —0.1224 1.6261 —0.0120 +0.1073 1.1921
0.8 —0.0067 —0.1486 1. 7688 —0.0174 +10.1252 1.1751
0.9 —00135 —0.1589 1.7293 —0.0301 +i1312 11701
Milxi=Mrx) =1, ni =20, m =N, #irerations = 10, 000

0.1 —0.0010 —0.0673 1.4326 —.0M9 +00613 12583
0.2 —0.0030 —0.0728 1.4502 —0.0058 +0.063K 12546
0.5 —0.0040 —0.0862 1.4983 —0.0074 00746 12420
0.8 00072 —0.1015 1.5216 — 00060 +0L08EZ 12233
0.9 00071 —0.1061 1.5255 —0.0078 +0.0927 12123
Milx)=Mxx)=05x + 1, 1 = 10, mx = W, #iterations = 10, 000

[IN ] —00195 —.1571 1.7857 —.0152 +0.1224 10744
0.2 —00245 —0.1766 1.8031 —0.0169 +0 1304 10619
0.5 —00323 —0.2402 20108 —0.0134 01947 10362
0% —0.0471 —0.3157 22385 —(.04H12 +0.2370 10182
09 00616 —0.3469 23205 —.0516 +10.2547 10120
Mylx) = Myx) =05x + 1, ny =20, ny =N, #iterations = 10, 000

[IN ] —00151 —. 1185 1.6247 —.0233 +0.0797 1.1397
0.2 —0.0196 —0.1350 16448 —0.0223 +0.0863 1.1339
0.5 —0.0205 —0.1785 1.7388 —0.0367 01200 11059
0% —0.0210 —0.2303 1.8875 —L0447 +1612 10762
0.9 —0.0267 —0.2528 1.9287 —0.0508 +0.1727 10717
Mylx) = Myx) = ]1—* ny = W, ny = 10, #iterations = 10,000

0.1 —0.0008 —0.0251 1.319%9 —{L0003 0239 13358
0.2 —0.0014 —0.0244 1.3197 —L0004 +0.0225 13392
0.5 00016 —0.02(% 1.3555 —0.0005 +L01 86 13645
0.8 00112 —0.0210 1.1825 —0.010L +0.00491 1.7010
0.9 00179 —0.0208 1.0589 —0.0170 —0.0030 15827
My(x) = Max) = ’T*, ny = N, na = 20, #irerations = 10,000

0.1 — 0 0006 0077 1.3311 00001 +00173 13313
0.2 —0.0003 —0.0167 1.3388 —L000s 00160 131529
0.5 —(.0004 —0.01 36 13642 —{L00n +0.0131 13548
0.8 —0.0010 —0.00%9 1.3505 — (.00 +0.00491 14810
09 —00061 —0.0108 1. 1646 —{.0059 +0.0044 17665

Throughowt this section we aysume that X and Y hove finite varianees. We alvo
assume that 8y and 83, and hence M and My have common discontinuities on the
intersection of their supports. The latter assumption is automatically satisfied if the
s.fs are continuous, the appropnate model for life distnibutions. However, sampling
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Tahle 2

Comparison of the bias and MSE of M, M, M, and My for the exponential case at various g-quantiles,
£go of My —two with different means and {small) sample sizes, and one with equal means and sample sizes
equal to 5000

@MW) BME) Sy B0he) BB g
Myxi=1, Myx)= 1.1, ny =7, mx = W, #iterations = 111, (0

[IN ] —00129 —0.1076 1.5706 —0.0H6 00608 11676
02 —00162 —.1175 1.5881 — 00060 +0.0631 1.1673
0.5 —00145 —{1L 1466 1.7748 —0.0137 400712 1. 16hé
0.8 —0H3zs —{. 1850 18578 —{L0 166 L0840 IMERE
.49 00422 —{.2080 1.8781 =006 40087 1.1392
Muxi=1, Mxix)= 1.1, ry = W, nz =7, #iteratians = 10, 000

0.1 —00023 —(.06%0 1.3563 L0006 +0.0953 12540
0.2 00029 —.0752 1.3883 L0001 +0.1016 12447
0.5 —00010 —0.0922 14726 —{L0050 +0.1207 12302
0.8 —0 0058 —0. 1183 1.5437 —{L0 166 41408 12351
0.4 —00074 —.1276 1.5068 —.0257 +0. 1449 12266
Mylx)=Myx) =1, ny = 5000, p = 5000, #iterations = 5000

01 —00036 —0.0077 1.1285 —(.0034 400007 15613
0.2 —0.0050 —.004%4 10698 —.09 — 00006 16311
0.5 —0 06T —0.0117 10370 — L0066 —0.0015 16543
0.8 00072 —0.0131 10515 —0.0071 —0.0013 16252
09 00065 —0.0127 108349 —L006RS — {00004 IR

Here 8(.) = Bias(-).

schemes might render them discrete. The assumption 1s o assure that the continuous
mapping theorem (Billingsley, 1968) applies to some functions of the MRL processes
defined below.

We first review the weak convergence of the unrestricted estimators. Let
Zoy = /i(M; —M;) on [0 ) fori=1,2

denote the two independent MRL processes. Yang (1978) showed that Z;,, , when com-
posed with §7' (the leftcontinuous inverse of §;) converges weakly to a Gaussian
process on [0, d] for any d = 1 under the assumption that 5; has a density. Hall and
Wellner (1979) pointed out that the density assumption is unnecessary i we consider
the convergence on the domain of §;, and that the convergence on all intervals of the
form [0,h], b < b implies convergence on [0, 6;). Thus

"ZJ'JI.-%- zﬂ' on [ﬂsbi}v {5.1 }

where Z; 1s a mean-zero Gaussian process with

3

7ily)
SJ'{_-T}

Cov[Zix).Zdv)] = for0=x=<vy<h (52)
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This weak convergence s in D{0, ;) endowed with the Skorohod wpology. By using
stronger, weighted metries Hall and Wellner (1979) and Csbrgd and Zitikis ( 1996)
have extended the above results using stronger assumptions on 5. Since the weights
do not apply universally to all s.fs, we have not considered these generalizations. Our
results for the restricted estimators are based on (5.1) and (5.2). Let

Zp = Jm(M(x) — M{x)), i=12.
In the proofs below we frequently use the continuous mapping theorem (Billmgsley,
1968 ), which we mention, and Slutsky’s theorem, which we do not mention.
3.1 The l-sample case
Consider the estimator M" in (2.2) when M3 15 known. By (5.1) and (5.2),
£l x) = WM () — Mi(x))
= (M y(x) A My(x) — Mi(x))
= I [M(x) — M (x)] A [ Ma(x) — M;(x)]

L Zx(x), (53)

where Z,"{.t]ld=2|{_t}, if My(x) < Maix), and zr{_r}d:[z.{_r ) A0, with a point mass of
1 at 0, if Mi(x) = Ma(x).
For the weak convergence of M" we have the following theorem.

Theorem 5.1, Let b= by be fived Consider the estimator M in (2.2) when My i
fenown.

(1) £ My = My on [0Lh], then
Z = Z) on [0.5)]. (54)
(1) 8F My(xg )= Maixg) for seme xpe (0,0) and My < M> on (xg.50] s¢ < b, or on
[sg.x0 ) s = 0, then Zrm does not converge wealkdy.
(1) £f My = Ma on [0,5], then
Zi, = Z A0 on [0.B]. (5.5)
Proof. (i) Since /(M — M )—oo uniformly on [0L5] by our assumption, the re-

sult follows from the third expression on the rhs of (5.3) for Z7 . (5.1), and the
continuous mapping theorem.
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{11) This proof is similar to that of Rojo (1993, Theorem 2.1). We assume that

M, = M, on (x3.54). 53 < b; the proof of the other case is similar. We first note that
under our assumptions,

a”lx{.fﬂ. } = a”|{_.Tﬂ.} = [;ﬁ.{.r“} = JH|{_.T“ }] A :FF{}FII {_5.3 }
Now, for any xp <t = 59 and & >0, we have
(1) My(t) = Ma(r) eventmally w.p.1, and
(2) on this event, M} (r) =J‘Iﬁi’|{f}. Thus,

Jim P{IZ5, (0 = Z, (o) = ¢}
=.|||Ii.—nt-:.x_- P{ 1.,-"(H_|| [ﬂ;fp[f}l = JH' {_f }I — [;‘I&.{.r“} —_ JM'{.T“}I N {]‘I = 4‘.'}

= lim P{ymM () — Mi(1)] — [M1(xe) — Mi(xe)] A0 = e}

> lim P VM () = M(1)] 2 &} =1 — d(ey/Si(1)/o1(1)

from (5.1), where & s the standard nommal c.d.f. This can be easily shown to violate
the necessary tighness condition for weak convergence in Theorem 152 in Billingsley
(1968).

(iii) When M, =M: on [0Lb], we have Z], = ,.,.-"n_|[{!|;f| — M) A0] on [0,b], and the

result follows from (5.1) and the continuous mapping theorem. [
3.2 The 2-sample case

First we consider the asymptotic distribution of the vector (Z] (x )25 (x)) for a
fixed 0 <x < by A by=05) with M and M) as defined in (2.5) and (2.6), noting that
{z.,.,q;_r},zz,u{_r}}'i}{z.{x},z;{_r}}' with independent components. We write

Zi, () = VA (M (x) — My (x)
= D () (x) — M (x)) + 2 (x)[(M 1 (x) — M (x)
A LM (x) — Ma(x)) + (Ma(x) — My (x))]]}

= Zy (X) 4+ 2 (2)[0 A (V1 12 Zas (%) — Zi ()

+ Vi (Ma(x) — M(x))] (5.6)
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and
Zy,. (%) = /ma (M5 (x) — Ma(x))
= ma [ x)(Mafx) — Ma(x)) + v (0)[(Ma(x) — Ma(x))
VM (x) — My(x)) — (Ma(x) — My ()]}
= Zay (X) + 01 ()0 V (y/R2/my Zi, (x) — Zaay(x)
— Vma(Ma(x) — Mi(x))]. )] (5.7)

If ny—o0 and mp < oo, then vig(x)—1 and mpita(x )—0 as., zﬁll{.t}i&{.ﬂ, and
Zy (x) has no limiting distribution. The same is true if the subsenpts 1 and 2 are
switched.

If nj—oo.nx—oo, and nafm—0, then wi(x)—1 and e (x)—0 as. Apain

El’;l{.t}i>2|{.t‘.l. Mow .,v.-"n__:{!l:fd.t} — M.{.ﬂ}L{} and Yl Malx) — Miix)) =0 or
converges to oo depending on whether Ma(x) s equal to or more than M(x). Thus

a | Elx) if Mi(x) < Ma(x),
z;:“{_.f}—?
: L) VO, if Mi(x)=Mx)
and Zj, (x) and Z3, (x) are asymptotically independent. Similarly it can be seen that,

d
when m—o0,m—o, and na/ny—oo, £, —Za(x) and

d { Zilx), it Mi(x) < Ma(x),
FANE

Zix) A0, i Mi(x)= Ma(x)
and the two are asymptotically independent.

If ny—oo.ma—oo, and na/ny—a with 0 < 2 = oo, then wy(x)—wi{ = x) and wax)—
walz,x) as., where

. S . _ aSiix)
wilzx) = 5—|{-‘f} e and  walax) = ~—‘;|{-‘f} e {5.8)

Since fZ.,,I{.t}ﬁfz.,l{.t}}’&{a (x).Z(x )" and {wix)} converge o constants a.s., by the
continuous mapping theorem we have

(25, (). 25, () S (Wi (x), Walx))'

with the limiting distributions given as follows. 1f M(x) < Ma(x), then { Hix),
H‘g{.r}}'i{?,’.{.r},zg{x}}r with independent components. If My(x) = Ma(x), then the
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marginal distributions of { W(x), Waix))" are given by
Wix) < wil 2 0)Z3 () + walo X)Z1 () A (Ze(x)/V2)]
= Zi(x) + wal 2 X)[0 A (Za(x)/ V2 — Zi(x))]
and
Walx) L wal o x)Za(x) + wi(o x)[Zalx ) v (VaZi(x))]

=L(x) +wilaex)[0 1_.-";2| (x)— Zxn)

Since {Z{x)} are independent mean-zero normals with varances {o7(x)/Si(x)}, it is
casy to compute the means of {Wi{x)}. These are given by

walox) [od(x)  ei(x)

E[Wi(x)] = — o ‘II."S.{.r} +:Sz{-r}
and
E[Wa(x)] = P12 [2ai(x)  o3x)

7 | Six) | Sk

The covariances do not have closed form expressions, but they can be computed in
a straightforward manner numerically. For example, writing © for the variance of
Zix), so that {2.{_t},22{.t}}’i{r| UtV Y, where U and F oare 11.d. standard nommals,
E[Zx 00 (2Z1(x)— Z2(x)))] may be written as

D!T:f [ [u{u — (/T Ve i (u = (tafTiae) @lu) (o) du do,

where ¢ 15 the density of the standard normal. It may be noted that in the limit as
a—0 or oo, (Wi(x), Walx))" has the same distdbutions as dedved above.
We now consider the weak convergence of the bivanate process (7, .23, ), as

given by (5.6) and (5.7), on [(Lh] = [0, 5], with b < by,

Theorem 5.2, Asswne that ny—oo,na—oo, and ny/m—o with 0 =< 2 < oo,
(1) £ My = My on [0L6], then

(2} 23 V=21, 22)" with independent components on [0, b] = [0, b].

(1) I My(xg ) = Malxg) for some xge (000) and My < Ms on (xg. 53] s¢ < b, or on
[s0.x0 ) 50 = 0, then (Zy, .Z3,,) does not converge weakly.
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(1) ff My = Ms on [0,h], then
L7, 25

Loy * 2z

YL (W1, Wa) on [0.b] x [0.b]). where

S 2+ 2 [z A @V and

W
! 1+ o I+ =

of
14+ =

[[ e

1 ’
W L+ 1_+:c[z" v (VaZ].

Proof. We first note that, since S, and Sy are strongly uniformly convergent, the
bivariate weight process

O s (-0 —w (o - wsfae ) as., uniformly on [0.h] x [0, 5]

(1) Since £y, and Zs,, are mdependent, (5.1) implies that

(Zing Zan ) = (1, 22)" on [0,5] x [0,5], (59)
where the convergence 1s in D[0, b] = D[, b] in the product Skorohod topology. Using
this and the fact that /oMy — My ]—oco, uniformly on [(L 5], the conclusion follows
from the definitions in (5.6) and (5.7) and the continuous mapping theorem.

{11) We assume that My < My on (xg.5], 50 < b the proof of the other case 1s
stmilar. Note that

2y, (x0) = Zim (x0) + valxg O A (v 1y /2 Za (x0) — £y (x0))]

=Z),,(x9) + Ulxg),
where U(xg) has the limiting distribution of
0 A wal 2 x0)[Za(x0)/ /2 — Zi(xg )1 0 AV,
where I ~ N(0, 7)) with = wi(a, x9)[ a3 (xg )28 (xg ) + 71 (%9 )/ S1(xg)]. Also, note that
for any xy < ¢ < sy, and 5 = 0,

PIZ} (1) # Z1,,(1)] = n for all sufficiently large 7y and na. (5.10)

lm

Suppose that {£7, } is tight. Then, for cach & = 0 and n = 0, there exists xp < 1 < 5
such that

P[ sup |Z7 (x) — Z}, (xe)| = 3] = g for all sufficiently large ny and na

Xp X =)

(5.11)

and, since {2, } 15 tight, there easts xy < f2 = 5 such that

P[ sup  |Zy,, (x) — Z1a, (%) 2 3] = p for all sufficiently large ny and na.

X X Bl

(5.12)
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Let tp =6 Afa and assume that the sample sizes are large enough that (5.10)—(3.12)
hold. Then, using |a — b <& = |a| 22 or |b| < 2,

Pl|Z}, (fa) — Zf;, (x0)| < &] < P[|Z1n(8) — Z7,, (x0)| < 2] +1
= P[|Z),(f0) — Zin(x0) — Ulxo) < 2]+ 1
Pl1Z1s(t0) — Z1y (x0)] 2 €] +P[|Uxe)] < 2e]+ 17
P|U(xo)| < 2e]+ 2n.

MNow P[|U{xy)] < 2] = P00 A V| < 2] = POV (—F) < 2e]—P(2e/7). Thus (5.11)
cannot hold for n sufficiently small, and {Z] } cannot be tight.
(i) If My = M2 on [0,5], then S = 53 on [0,5]. Thus

(g (i (00 —=( 101 + adaf/(1 + &) as. uniformly on [0.6] = [0.5].

The conclusion now follows from (5.6), (5.7), and (5.9) with an application of the
continuous mapping theorem. [

Remark. Following the same arguments it may be seen that, if M, = Ms on [1),12]
only, then Theorems 5.1 and 32 hold on [a b] with a = f; and b < £ for the estimators
desenbed i Section 2.

33 Avymprotic confidence intervals and confidence handy

In this section we consider construction of (1 —y)-coefficient (asymptotic) confidence
intervals for M (x) and Ma(x) and (1 —7)-coefficient {asymptotic) confidence bands for
My and Ms over intervals. Let Xy and Yy denote the largest order statistics from the
respective samples, and let r{t} = a2(x)/ 'Si{x) denote the "rﬂ.nﬂ.l:lLL of MA{x) i=1.2.
Denote the sample estimates by r‘{t} I'I “(x)/ .Sl{r} where - {r} is the f;ampIL VATIATCC
{ we recommend using (#; 5 Ax)—1)as thL denominator ) of the remaining n; 5 ilx) sample
after nme x. Let Ly(-) and Uy -), i=1,2, denote the lower and upper confidence intervals
{ bands ), respectively. For confidence intervals at a point, although we use the quantiles
of the standard normal distnibution in the formulas based on asymplotic distributions,
a more conservative approach, recommended by Berger et al. (1988) for their testing
problem, will be to use the same guantiles of a f-distnbuton with the degrees of
freedom chosen by Welchs approximation for unequal variances, if the remaining
sample size 15 small. For confidence bands over mtervals we use Corollary 3 of Hall
and Wellner (1979} which we state below as a theorem. Let B be a standard Brownian
motion, let &;(0) denote the sample standard deviation of the entire sample, i =1.2, and
for any ff €(0,1) let a=a(f#) be such that P(||B||}) < a)=f. Let di(-)=d4{0)/,/n; S
fori=1,2.
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Theorem 5.3 (Hall and Wellner, 1979). §f the sampling variables have momenis of
the order of v for some v = 2, then

lim P[|M{x)— Mi(x) < ad(x) ¥x 20] = f (5.13)
s
with equality for continuwous s 5.

The probability P(a) = P(||8||}) = a) has an infinite series expansion in the standard
normal c.d. £ (Billingsley, 1968). Hall and Wellner (1979) show that for a = 1.4, the
approximation Pla) = 4dya)— 3 gives a 3-place accuracy. They also provide a short
table of values that we reproduce below.

For the confidence bands below we assume that the moment conditions of Theorem
5.3 hold for X and Y.

Let 7(x) = o2 (x)/5:(x), and let ff{.‘f}l denote its sample estimate for i = 1.2, In the
l-sample case, for x < Xy and the restriction M (x) £ Ma(x), using (5.3) we define

Li(x) = 0V [M(x) — zat1(x)/v/m ] A Ma(x),

Uy(x) = [M1(x) + 22t (x)//m ] A Ma(x).

Note that there is a positive probability of getting the degenerate interval {Ma(x)}.
Usmg (5.4) and (5.13) we define the upper and lower bounds of a (1 — p)-coefficient
confidence band for My over an interval [0Lh] for a b = Xy by

L™(-) =0V [M() — ad\(-)] A Ma(-) and
UM™Yy = [M() + ady (-)] A Mal-),

where @ 15 found from Table 3 usmg Pla)=1 — 7 (the superscript stands for Hall and
Wellner). A similar interval or band could be defined for the reverse ordering.

In the 2-sample case our mterest 15 in constructing (1 — 7)-coeflicient simultancous
confidence intervals and bands for My and A5, Since there are only two of these,
we use the Bonferront procedure. We note that a simultaneous confidence region of
the form [Ly, U] = [La. U] could be possibly reduced by mtersecting it with the set
A= {{.ﬁ,.‘fg}E-ﬂ'PE: x; = x2}. For rectangular confidence regons we could use

[Li, Uy A Us] % [Ly V L, U], (5.14)

which s what we employ. Of course we need to be careful that we do not define
emply mtervals.

We note that My s positive on [0, Xy W ¥y ), while M 1s positive on [0, Xy ). For an
x < X, if My(x) = J"Ij’g{\.t}, we define the simultaneous confidence intervals for M(x)
and Ma(x) by (5.14) with

L= M{x)— zutdx)/vm and U;=Mix) 4 zat(x)/n  i=12. (515)

If ﬂﬂi’.{x} = .ﬁg{x}, we have Mf(x)= Mi(x)= J"I;I{.t} =W II;.T::Iﬂ:f fx) + Wl x Lﬁg{x ). In
this case we propose the following confidence procedure. Since our point estimates
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Table 3

Approximate values of P{a) for some values of a

a 2E07 2241 190 1534 1.149 1LET1
Fla) 099 0.95 .90 0.75 0.50 0.25

coincide, we use the distribution of the pooled estimator M(x) to construct a common
confidence interval. It is clear that, when My(x) = Ma(x) = M(x), say,

VITIM(x) — M) wi(2.0)Z1 (x) + wal 2 %) Z(x)/ V2
~ N0, wi (2,077 (x) + wi(2.x)T3(x )/2)
= N(0, p*(x)). (5.16)
We then use the common confidence mterval by
=0V [M(x)— zup(x)/Vm) and U = M(x) + zap(x)/ /55
i=12, (5.17)

where g(x) 5 the sample estimate of p(x), using wx) to estimate wi{z.x). For a
{ 1=y )=coeflicient simultaneous confidence band on [0,5] fora b < Xy, we first compute
a* defined by the a that corresponds to P(a) =1 — 3/2 in Table 3. If M; < M, on
[0.8], then we use (5.14) (extended to functions on [0,5]) to define the confidence
bands with

W) =0V [M()—a'd{)] and UHV()=M)+a%d{).

i=12 (5.18)

If M, = M> over some regions, we would have liked w have defined our confidence
bands as in (5.18) on {;‘Iﬁi’. = J‘I;I_:} and some generalization of (5.16) on {;‘Iﬁi’. = .‘I;f_:}.
Theorem 5.3, which is applicable for a single M;, 15 based on the distribution of
the random variable | B} which is well known., For a comparable result involving
M we need to know the distribution of the sup of the sum of two independent and
{ differently) scaled Brownian motions, and we have not been able to derive that result.
Lacking this distribution theory, we define the confidence bands by (5.18) and (5.14)
on {M| < M,} and a common confidence band, [L(-), U(-)]. by

Ly =2YvE™e) and UC)=UM™C)AUY() on M) = M),
(5.19)

which is based on the heunstic that both confidence bands are simultancously valid for
a common MELF, which is the way we make our point estimation. However, our point
estimate, M, may not be in the band always. 1f M, = M1 on all of [0.5], we could
provide a common confidence band, essentially with the assumption that M, = M>, and
using M as the estimator of a single sample problem. However, it will probably be
wiser o revise our opinion about the order resiriction.
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We end this section by venfying the asymptotic coverage probabilities. This s ob-
vious for the l-sample case from (5.1) for the confidence interval, and (5.13) for the
confidence band. For the simultineous confidence mtervals for M and M, we note
that (5.15) provides the correct (conservative) asymptotic coverage probability always,
since cach mdividual does with confidence coefficient | — /2 (the possible shorten-
ing of the intervals using (5.14) comes free of charge under the order restriction).
MNote that, if Mi(x) =< Ma(x), then eventally this s the only formula that will apply
wpl. If My{x)=Masix), then (5.17) also provides the comrect asymptotic coverage from
{5.16), thus providing a shorter confidence mterval in case of violation of the ordering.
Similarly, the confidence bands given by (5.18) and (5.14) always provide the comrect
{ conservative) asymptotic coverage probability by Theorem 3.3, again noting that this
is the only formula that will eventually apply wpl if My < Ah on [0,6] from the strong
uniform consistency. On the set My = Ma (5.19) also provides the correct asymptotic
coverage since both individual confidence bands given by the (5.13) in Theorem 2.3
provide a coverage probability = 1 — /2 for the same MRLF.

5.4 An example

Bjerkedal (1960, p. 140) meports on two studies of survival time (m days) of guinea
pigs infected with different dosages of tubercle bacilli. We compare the MRLFs for
Regmens 4.3 (Ma) and 5.5 (M), assuming that the higher dosage corresponds o a
smaller MRL. The data is complete, e, there was no censoning, with ny = m = 72,
Fig. 2 presents a graph of ¥ S v M, and a 90% confidence band for M| alone on

306 :
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5 1o .. _— 'ff : e
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.
o
0 T T T T ;
N FA [E4] 150 208

Survivad Tirne in Canys

Fig. 2. Restricted and inrestricted estimators of MRLF of My (regimen 5.5 and M2 {regimen 4.3) and 94
confidence band for M. Mlhat = M, M2hat = M2, MI* =M, M2* = M7, Ul = U8 and L1 = L5,
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[0,200] only since the lower bound of the confidence band becomes 0 at approximately
160 days.

6. Concluding remarks

In this paper we have provided esnmators for two MRLFs, M, and Ms, under the
order restriction that My < { = M5, on their entire ranges or on a closed interval, when
M3 s known or unknown, Ebrmhimi (1993) initated this study, and has provided an
excellent example (his Figs. 1 and 2) using a 2-sample problem with real data. We
have shown that they are stongly uniformly consistent and asymptotically unbiased.
We have also denved their (joint) asymptotic distributions, both at a point, and their
{joint) weak convergence on an interval. We have provided formulas for confidence
intervals and confidence bands in the 1-sample case and for simultaneous confidence
mtervals and bands for the 2Z-sample case. The confidence mtervals or bands are abways
of the same lengths or shorter than those in the unrestricted case (usmg the Bonferroni
procedure in the 2-sample case). However, these confidence procedures do not employ
the distribution theory developed under order restriction; these are useful in testing
for and agamst the order reswictions, a problem we propose to pursue m the future,
We have also carried out an extensive simulation, and have presented some of the
results. A surprising outcome of these simulations is that the restricted estimators appear
to be superior to the unrestricted empirical ones in terms of MSE, uniformly at all
quantiles of the diswributions we have mvestigated. We do not completely understand
this phenomenon, and it 1s worth further studies.
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