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Similarity-Based Approximate Reasoning:
Methodology and Application

Swapan Raha, Nikhil Ranjan Pal, and Kumar Sankar Ray

Abstract—T his cormespondence elucidates the importance of similarity,
as modeled by a measure of similarity, in approximate reasoning. A set
of axioms is proposed to compute a ressonable messure of similarity be-
tween two imprecise concepts represented as fuzey sets. For approximate
ressoning, a similarity index between the fact and the antecedent of a rule
is computed and is used in the reasoning mechanism. Accordingly, the ex-
isting reasoning mechanism is modified. A new similan ty-based approx-
imate reasoning methodology is proposed. As an illustration of its effec-
tiveness, the proposed mechanism is used to develop a rule-based pattern
classifier

Index Terms—Approximate reasoning, fuzzy set, pattern classifier, sim-
ilarity index.

I INTRODUCTION

The similarity between two objects suggests the degree to which
properties of one may be inferred from those of the other. Distance
functions may be used to define similarity between sets. For our in-
vestigation, we generalize the concept of distance function defined for
crisp sets to the noncrisp sets. A similarity matching degree s may be
defined from the distance function 4 (with range set in [(h 1) according
to the following:

alr— L—di-h (1)
The concepts of similarity and proximity of fuzzy sets play a funda-
mental role in reasoning with vague knowledge [1]-3]. Turksen and
Zhong [4] commented and showed that the notion of a similarity mea-
sure between two fuzzy sets may be successfully applied in fuzzy rea-
soning. Recently, similarity-based approximate reasoning mechanisms
are being applied to pattern classification [5]. We assume that the uni-
verse of discourse is a finite set. Let A = 37 _ {pafu)fu} and
B =32 o pale)in) be two fuzzy sets defined over the universe
of discourse 7. A similarity index between the pair | 4, 11} is denoted
as S04 UL o simply 50AL I We propose two measures of simi-
larity between fuzzy sets and discuss their properties. Given a similarity
matching degree, there are different methods of inference based on the
same. In [4], the authors proposed a similarity-based method called ap-
proximate analogical reasoning schema. It was shown that the method
is applicable to both point-valued and interval-valued fuzzy sets. In 6],
Chen proposed two similar methods for medical diagnosis problems.
Several methods based on different modification procedures have been
proposed in 7] and [#].

In all these works, similarity-based fuzzy reasoning does not require
the construction of afuzzy relation. It is based onthe computation of the
degree of similarity between the fact and the antecedentof a rule. Then,
based on the similarity value, the membership value of each element of
the consequent fuzzy set of the rule is modified to obtain a conclusion.
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In this paper, we propose two similarity-based approximate rea-
soning methods. Our first method is a modification of the method
presented in [4]. The second method is an integration of simi-
larity-based reasoning and Zadeh’s compositional rule of inference.
With different results we show that the proposed similarity-based
approximate reasoning methods are reasonable.

Il. A BRIEF REVIEW

A substantial amount of work has already been done in defining
similarity degree between two fuzzy sets. Independent of these de-
velopments, researchers engaged in approximate reasoning used simi-
larity measures in reasoning methodology. Accordingly, different simi-
Larity -based reasoning technigues have been developed. For clarity, we
divide our discussion into two subsections: 1 }similarity indexes and 2)
similarity-based reasoning methods,

AL Similarity fndexes

A similarity  measure, besides  being  symmetric,  should
satisfy the following properties [9]: S(4.01  — L when
AVE = @y where pawrlal —  Dipaiwl,pntall and
D by = o wasio, Wil — a1 — B = e o1 —
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The following dissimilarity indexes are proposed in [9]:
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where ¥u £ U7, pion — max min{pa, 1 — pn),minfl — g, mml]
504, B} can also be defined as [6], [10]:
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where | A| is the length of the vector A and e} is the cosine of the
angle between the two vectors.

A family of measures of similarity of fuzzy sets having a strong log-
ical background may be given as follows:

) 1 5 :
Hd. M= 5[{_.—1 R LI I S

where {4 — I (A — B} Al — A A is a conjunction
operator and — is an implication operator. Different interpretations of
the operators will result in different measures of similarity between
fuzzy sets. More work on these measures may be found in [11] and
[12].

Pappis and Karacapilidis [ 13] proposed several measures of simi-
larity between fuzzy sets, such as
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Wang [14] modified the last measure to produce a new measure as
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Kwang er al. proposed another similarity measure, between two fi-
nite fuzzy sets as

SUACHY = mas (oo el naladl].
L

Properties like reflexivity, symmetry, normalization, boundedness,
and dissimilarity between fuzzy sets based on this measure have been
studied [15]. Once an index is defined, the following questions arise:
“How can we compare this with otherexisting indexes?” “How should
we jud ge the goodness of such an index T Questions of this nature carry
immense importance for all practical purposes.

All similarity measures considered here satisfy the reflexivity, sym-
metry, and boundedness properties. These three properties are nec-
essary for any similarity measure. In this regard, all measures work
equally well. Besides these three properties, similarity measures should
alsosatisfy properties like computational simplicity, monotonicity, and
nondissimilarity.

Similarity measures based on the computation of overall sup-opera-
tion give more importance to a particular value and ignore the presence
of others. Thus, two widely different fuzzy sets would be measured
similar when they have the same supremum.

We should consider those indexes that can play important roles in
fuzzy reasoning. This demands similarity measures based on a com-
parison of membership degrees of elements of each fuzzy set. Thus,
the measure defined in |6] is vseful in practical situations. A major
drawback of the same is that 50 4. 141 does not, in general, satisfy any
monotonicity criterion. Moreover, this measure of similarity does not
indicate the measure of nondissimilarity.

It is almost impossible to single out one similarity measure that
works well for all purposes. This correspondence intends to provide the
user with certain measures of similarity, each of which satisfies certain
basic needs of being a measure of similarity.

B, Similaritv-Based Reasoning

Many fuzzy systems are based on Zadeh’s compositional rule of
inference [ 16]. Despite its success in various systems, researchers have
indicated certain drawbacks in the mechanism [4]. This motivated the
introduction of similarity-based reasoning mechanisms [4], [6]-[8],
[10], [17].

In such similarity-based reasoning schemes, from a given fact, the
desired conclusion is derived using only a measure of similarity be-
tween the fact and the antecedent, in a rule-based system. In some
cases, a threshold value 5 is associated with a rule. If the degree of
matching between the antecedent of the rule and the given fact exceeds
v, then only that rule is assumed to be fired. The conclusion is derived
using some modification procedure. As an illustration, let us consider
the two premises as in Table L. Here, A and 4" are fuzzy sets defined
overthe same universe of discourse £ — {w, 0 o0, ey and 1, £V
are defined over the universe of discourse V7 — {iry, v, ... 0, ] Let
501" denote some messure of similarity between two fuzzy sets
A AT S0 A A o7 only then the rule is fired and the consequent
of the rule is modified using » — 4504, 4"}, 71 1o produce the de-
sired conclusion. Different authors used different functions &' 4], [6].
[101].

Two types of modification procedures are proposed in [4]

Expansion form: giqgele;) = min|l, periv: s 2)
Reduction form: pgeiv; ] = lpaie ] =1 (3)

Chen [6]. [10] uses a threshold value and the reduction form of infer-
ence with » as a measure of similarity. He does not provide any argu-
ment regarding the choice of the modification procedure.

Yeung and Tsang | 7] use a certainty factor associated with each rule
in the modification procedure. The inference is based on the number of
propositions in the antecedent of the rule(s) as well as the operator(s)
connecting them. In each case, the inference is of expansion type. In
[&], Yeung and Tsang presented two more modification procedures and
claimed two new fuzzy reasoning methods. One modification is based
on Zadeh’s inclusion and card inality measure and the other one is based
on equality and cardinality measure. Other operations remain almost
identical.

LI, PROPOSED SIMILARITY MEASURE—DEFINITION AND PROPERTIES

In order to provide a definition for similarity index, a number of fac-
tors must be considered. A primary consideration is that, whatever way
we choose todefine such an index, it must satisfy the properties already
mentioned. We ex pect that asimilarity measure 50 L. B should satisfy
the following properties.

For all fuzzy sets 4, £

Pl 5004y = N4 i,

P2 5747 B -S4, 11, A being some negation of A,

P3 0= 500y < 1.

P4 A=FBifandonly if 501 8y =1.

P5 If 504, 1) = Githen either A1 8 = <k (null) or 470 H° =

dror fF— 1 — A

For® < ¢ <0 L if 14, B > ¢, we say that the two fuzzy sets
Aand B are c-similar. Thus, « = 1 corresponds to equality of fuzzy
sets. There may be many functions satisfying properties P1-PS. One
such measure of similarity satisfying properties P1-P'S is given in
Definition 1.

Definition 1: Let A and I be two fuzzy sets defined over the uni-
verse of discourse I7. The similarity index of the pair | .1, B] is defined
a8

S04, B — mindnld, Bl oai A%, BT
where

sl A, B:: - { Eu :_'J'r{_l'"-.-‘. Pl Ifir':"'lf"l} }i_

Foon lmasipa il paieii]?

and pas fad =1 — painl,
Inthecaseof ¥, -, {max{peadwl, pwalu))} — 0, we find that 4 and
B are null fuzzy sets, and we set (2L 2 — 1 — S 0.

It is easy to see that properties PL-PS are satisfied by Definition {.

Example 1: Let L = [#ip iz mg, wyowe ] md A =
{.1..5,.5, .75, L0} & = {00, .00, 25, 5625, L0} O -
1.3L6..35,.707, 566, L0}, Then, by Definition 1, {4, I = (L7435
and 501 €7 = LG50,

Although the last property P5 is a plausible and an intuitively ap-
pealing one, it is possible to argue in favor of a stricter condition for
which 514, 23] should be zero. Two crispsets 4 and £1 are completely
dissimilar only when A 2 — & If A0 D F &, then they have
some similarity as A and B have some elements in common. The sim-
ilarity between the two increases as the number of elements by which
the two sets differ decreases. The similarity becomes maximum (the
maximum value may be thought of as 1) when the two sets are iden-
tical, e, |47 B| = |.A| = | B|. Here, we consider a direct extension
of this concept in defining the similarity between fuzzy sets. For two
fuzzy sets, it is reasonable to assume that the similarity should be zero
if and only if 4 7 £ — & Property PS may now be reformulated as
P5. Forall fuzzy sets A, B ST B, —DiffLln D — 4.

Thus, the need arises to find measures of similarity satisfying prop-
erties P1-P4 and PS°. There could be several such measures. A family
of such simple measures is given in Definition 2.
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Definition 20 Let A and ¥ be two fuzzy sets defined over the same
universe of discourse (7. The similarity index 50 A. fi} of the pair
1.4, I} is defined by

140

SIABI=1— i1y paiul— prfel]”

where 1 isthe cardinality of the universe of discourse and ¢ 2= | isthe
family parameter.

Similarity indexes given by Definition 2 satisty properties P1-P4
and P§°.

Example 20 Let {:, A, 1.0 be as in Example I With 3 = 2 it is
found that 514, £2) — 0,922 and 574, ) — 319

S D) = o500 will imply that 5 is at least as close to 2L
as ' is close w0 1" 500, B, as given in Definition 2. is quite sensi-
tive—everychange in A or /1 will be reflected in 5¢ A. /7). Next, some
more properties of 5 are discussed.

Theorem 12 WS4, D) = Land S(8,C) = 1 then S{4, 01 = 1.

Proof is straightforward.

Of course, in general, for all fuzzy sets L, #. and (7 the numbers
SrAC) and 50407 cannot always determine 574, 00, If some
structural arrangement between the sets is prescribed then, we may
find an estimate for 57 4. ') as in Theorem 2.

Theorem 2@ For all fuzzy sets A B ifeither A 2 B Z (T or
A DM D then STAL T iin ] S04 BT

Theorem 2 motivates us to consider a monotonicity property of simi-
larity measures between fuzzy sets. Therefore, we are now in a position
to state the axioms for similarity measure. For all fuzzy sets A, B

Al 5B A =508

A2 KPAT R = 500 B 1F being some negation of L.

A 0 SiACM L

A A — DNifandonly if $(A. 00 — 1

AS SA L —Difandonlyif AN D — &

Ab IfAZ B2 then 504 By > 5{41.00
Throughout the paper, we used Fadeh’s complement for A7, On the
basis of the above axioms, itiseasy to see that the family of similarity
measures defined in Definition 2 is a valid choice. A general charac-
terization of similarity index satisfying the set of axioms is not in the
scope of the present paper.

IV, PROPOSED SIMILARITY-BASED APPROXIMATE REASONING

In the previous section, we developed the concept of similarity index
for measuring the likeness of fuzzy sets over a given universe of dis-
course and proposed two measures for the same. Here, we restrict our-
selves to the similarity measure in Definition 2.

Let XY be two linguistic variables and let £, V', respectively, de-
note the universes of discourse. Two typical propositions p and § are
given and we derive a conclusion according to similarity-based infer-
ence. The scheme is described in Table 1. Let fuzzy sets A. 1" E. and
##' in Table I be defined as

;
4= Z[r”-l'ﬁ-':,'-.."'u;-};_
1=

Lr— Z{.ll.-sit:r]fz-'s};
=1

o= Y fpatu)

W

- Z{.Lrl.;-:'_t:.-]..-’ﬁ':}.

1=

Existing methods use the similarity measure for a direct computation
of inference without considering the induced relation. In the proposed
method, we translate the conditional statement into a fuzzy relation.
Then, the similarity between the fact and the antecedent of the rule is
used to modify the said relation. With this, every change in the con-
ditional premise and in the fact, may be incorporated into the induced

TABLE 1
ORDINARY APPROXIMATE BEASONING

p: i X4 rhen Y O
q: A A
T Vs 5°.

fuzzy relation. Then, a conclusion can be drawn using the sup-opera-
tion. Thus, the conclusion is influenced by the change in the fact and
the antecedent of the rule fired. Our proposed inference scheme is such
that a significant difference between .1 and A’ makes the conclusion
11" less specific. This is done by choosing an expansion type of infer-
ence scheme. Here, the "UNKNOWN" case, i.e., the fuzzy inference
B — ¥, is taken as the limit of nonspecificity. Explicitly, with de-
crease in similarity value, which occurs when .1 and " differ signif-
icantly, the inferred fuzzy set should be close to V. For 1A' = ., we
expect M = 1# and for all other A°, the relation f1* 2 17 should hold.
This, in turn, implies that nothing better than what the rule says should
be allowed as a valid conclusion.

A Schema

In view of the above observations, we propose the following algo-

rithm for reasoning.

Algorithm SAR {similarity-based approximate reasoning):

Step 1) Translate premise p and compute the relation F{1, T
using some suitable translating rule (possibly, a T-norm
operator).

Step 2) Compute » = 574, 4°1 using Definition 2.

Step 3) Modify B{A. I with 5 to obtain the modified conditional
relation 51, B | A" using some Scheme C.

Step4) Use sup-projection operation on R F|.4"] to obtain
i1 as

fla ] = Spd sl 0 ] (4}
[

For a given fact gi.X is A" and from the condition p: if ¥ is A then
17 is B, we propose Scheme C1 and Scheme C2 for computation of
RiA B | A" needed in Step 3.

Scfrerme C1: The first Scheme C1 is based on a concept similar (but
NOT identical) to the method proposed in [4]. We may recall here that
the authors computed the conclusion B = minl 1, Itfs}, where = is
the measure of similarity between fuzzy sets .1 and A" without con-
sidering the information suggested by the conditional rule. Here, we
propose to modify the conditional relation according to (5)

if & 0
otherwise |

'n"l.-,l._- =anin L,y F 51
=il

The difference between the proposed scheme and the one presented in
[4] may be easily noted. The proposed scheme, unlike the scheme in
[4] and [17], does not produce the same conclusion when .1 and A are
interchanged. It is not difficult to see that in (5), if =7 v, .. for some
vV thenv', , becomes equal toone. Thus, making the membership
of that 2 in the resultant fuzzy set equal to one.

Example 3: Letus consider a problem as posed in Table I Let I7 =
Potr e v va BV = e e e}

[l'"r:'.'-.']l'/:-:« = (3)

A= L0 4075 e 4 050 v 4+ 0025 540
AT = L0 w + 0E0 e 4 000 a4 0,10y
e e AT L | T R G E Vi

Using muacei (), v 4+&— 11 for the translation of the conditional statement
and (4), the consequence becomes

' — 03025 /0 4 DLB05G oz + A0 0y 4+ 1y,
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In this case, the method in [4] will produce the conclusion

B = 2B ey 4 NLE24A fes  LTRGE e b Sy

Remark:  Inour scheme, if we use Mamdani’s min rule for the com-
putation of £, then our scheme will also produce the same 11 a5 the
conclusion.

This scheme, although a heuristic one, is intuitively a plausible one,
Our next scheme for the computation of modified relation 1L, B | A7)
is based on a set of axioms.

Scheme C2: We believe that, in a similarity-based reasoning
methodology, a scheme for computation of the induced relation,
when a fact and a conditional statement are given, should satisfy the
following axioms:

ACL  IE S AT = 1oies if A" = A then prpgq g anin.el =
s miu el (Wil € 1 % .

AC2 I 5A AT — diie, if A" A — othen pryga s —
I9im, 1 = 17w 17,

AC3  As 504, A" increase from O to 1. jeg; e anta. el de-

creases uniformly from 1o gy o myfw e Fla, el C ek
The first axiom asserts that we should not modify the conditional
relation when A* and A remain equal. The second axiom asserts that
when 4' is completely dissimilar to 4, ie. 4" and 4 have disjoint
support, we should not conclude specifically. In such a situation, any-
thing is possible. The third axiom says that as the fact 1" changes from
the most dissimilar case (similarity value zero) to the most similar one
{similarity value one), the inferred conclusion should change from the
most nonspecific case ie., the UNKNOWN case {1 — 1} to the most
specific case, ie., B’ — I smoothly. This, in turn, means that what-
ever 4" is, {4 B |1 2 FiA B ie., the induced relation should
not be more specific than what is given as a condition. For notational
simplicity, let us denote 50 4. 4" by = and 874, 7 471 by . Now,
the third axiom wniguely suggests a function of the form

i’

il
These two constants can be determined from the conditions prescribed
in the first and the second axioms. More explicitly, when = = 1 we
know that r' = ¢ and when & = 1 we know that v* = |, Thus »* =
1 —7{L—7}-2isournew scheme for the modification of the conditional
relational. Therefore, the axioms wrigiely suggest Scheme C2 as

4 i
= Llaconstant}. = v' = ks | = ¢ 084 constant.

e A A0 [a,a]—1—11- fi i) T 1> SiA, .'!.'I__:. (6)

From {5) and (6} it is easy 1o see that when 574, 1) — (1, we have
B' = T In other words, it is impossible to conclude anything when
A and A' are completely dissimilar. It is also easy to see that when
S04, 4" is close to unity, then f20A. 78| A% is close to £7 4, 31 and
hence the inferred fuzzy set ' will be close to B, e, S(0, 1) is
close to unity. The third axiom also ensures that a small change in the
input produces a small change in the output and hence, in this sense
the above mechanism of inference is stable. As in the previous case, in
(6) if either 5(A4..2" — Dor g a il 2] — Lthen+',. .. becomes
equal to one.

Example 4: Let us consider the same problem as in Example 3.
Using Mamdani’s min rule and Definitien 2, we find the consequence
as 1 = 02851 fey + 05204 fug — OTR1T /g + 1 v,

Instead of using similarity-based approximate reasoning method-
ology in deriving a consequence, if we consider the existing max-min
compositional rule of inference then, the result would be

Bl =080 10 e | ILTR ey 1 1 0y

There is no change in the output {ie, B, = B) although the in-
puts differ significantly. Also, it may be shown that the same happens
for a large class of fuzzy sets each different from the other. This is

a drawback in executing max-min compositional rule of inference in
its present form. If Mamdani’s min-rule is used for the translation of
the implication statement and only normal fuzzy sets are considered
then, 21" = .1 will imply that B = E. This is because, in this case,
S A" =1 and hence 177, B 1% will be equal to fry1, B

Let 4 be a normal fuzzy set. If we assume that the translating rule
used in generating the conditional relation is one of 2 -norm ty pe then
a basic and desirable property of the inferred proposition is: nething
better than whar the rule savs can be conclided. We present this in
Theorem 3. Consider the model shown in Table L

Theorem 3: Forall 4, 4% 1 = 1,
Proof is straight forward.

B Application o Different Models

A rule base hardly contains rules with only one clause in the condi-
tional statement. For rule-bases with multiple clauses in the conditional
statement, we can apply the proposed scheme in the following manner.

Let X). 5=, ... Ae b o be k| 1-linguistic variables defined, re-
spectively, over the universes of discourse L' L 0 L voand let
Uy —fwlhg— L2, V= feshs — L2, ] Let

mif XA X s b B X sdrthenY s .
e N is AL e Xeis A0 &% oL & Nais A

r—Tis B

The consequence » may be derived according to the following basic
steps. Let furey sets A, A, and B be given as

e — ;#.- (ufja.f'ru'l!'
AL = i__\;lf.'-.lf_: I::|.l.;')f,|".l ""::.:::-
B= 3 painife.
=1

Here, the conditional proposition » is first translated into a fuzzy rela-
tion £2 on the product space £ = U7 = --- U 2 V. Now £? may be
computed using any suitable translating rule, possibly a T-norm op-
erator. Then we compute i, A% fori = 1.% . & and set » =
i [ Sl A S A AL 0 A Ay ). The conditional rela-
tion is modified using either Scheme C1 or Scheme C2. [f Scheme C1
is used, then we have B — /4, A, ... 4. D A7 AL 4L
according to

B it Bl 0 min{l‘ Spa e Ny |}
EY
If, instead, Scheme C2 is used, then we find g8 o, .02 0y 0] =
1= sl —prlarvoma, oo w0l

In both cases, the conclusion 2 will be given as

paelel = =ap {-”-h'-'a.. s ar anit Tte-f-i}.
; : ,,

Hy il EEs
If » = 1 then, ot least one pair ¢ 4., -7 will be complementary (dis-
joint support) and it would become impossible to conclude anything in
particular. This is represented by the fact that anything follows as con-
clusion. In this case, Scheme C2 produces I = 77 (UNKNOWN),
whereas for Scheme C1 we set B' — 17 The algorithm is schematized
as follows,
Adgoritthm Al
Step 1) Compute 504, 4%% for ¢ = 1,2..... % and set
A —ing S04, AT, ST, Ak L ] T P
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Step 2) Translate premise ;o and compute A, As, oL Ay I
using any suitable translating rule possibly, a F-norm op-
erator.

Step 3) Modify T4, B} with & to obtain the modified conditional
relation " = By, e, oo g BAL AL AL

Step 4) Use sup-projection operation on 7' to obtain /1"
So far, we have considered only one rule, but ina real life application
we would encounter multiple rules as follows:
if Xyis A b a0 & Xy is gy then ¥ois Iy
elseif X8 Adw & L. & X)L 08 Aue then 1 is A

else if X is Ane &0 ... 3 X is Aarp then is Doy
.-&-'. i.S .'|.1 |l:|. &y ..I\ }:k i_'i .-'111\.

Conclusion: 17 is I3,

The problem is to find the linguistic value of the variable 17 as sug-
gested by the rules, when specific values of the [i-variables are given.
Under the conventional mechanism, for each rule, the consequent fuzzy
set is calculated according to existing method of inference and thenthe
union of all consequent fuzzy sets is taken as the conclusion which is
defuzzified, if necessary, using some defuzzification scheme.

In the present case of similarity-based reasoning we cannot do this,
as the membership values computed from the modified induced relation
becomes less and less specific, the similarity between the facts and an-
tecedent of a rule decreases. In Mamdani-type approximate reasoning,
with the reduction of the firing strength, the membership values of var-
ious elements become equal to the firing strength, making it an am-
biguous one (more alternatives with similar membership values), but
the membership values at which the ambiguity occurs becomes less
than one. For example, if the firing strength of a rule is, say 0.3, then
all alternatives which have membership values greater than or equal
to (0.3 take membership values equal to 0.3, On the other hand, in the
present case, if the similarity value is 0.3, then the membership values
of elements in the inferred fuzzy set will be at least (L3, Moreover,
the elements having membership value greater than or equal to 0.3 in
the consequent of the rule will be equal to 17 in the consequent fuzzy
set. This means that, with decrease insimilarity the computed member-
shipvalues increase and ultimately move close tothe least specific case
{with membership values of 1 for all alternatives). The above discus-
sion is illustrated with the help of adiagram. In Fig. 1, let us suppose,
the symmetric riangular fuzzy set represents the consequent of arule.
When the firing strength of the rule is 0.3, the derived conclusion from
the rule is given by the trapezoid with height (.3, Clearly, every value in
[re. b inFig. 1 has the same membership grade 0.3 Onthe other hand , if
the similarity between the fact and the antecedentof the rule is (.3, then
the conclusion derived using similarity-based mechanism is given by
the trapezoidal fuzzy set withheighto = 0.3 (shown with dotted line in
Fig. 1). In this case, every alternative in [c. ] in Fig. 1 could be a solu-
tion with membership value of .. Here, not only more alternatives have
been offered (since [re. d] C [r. o] ) with the same membership value
than the previous case but, also the conclusion becomes more close
to the least specific case. For this reason, we propose a new scheme,
for computing the final conclusion, based on a measure of similarity.
Our method is based on rule-selection and then rule-execution. In both
cases, we use the concept of similarity between fuzzy sets as a basis of
the task. First of all, we compute #.; — S(d; 4004 — 1,2, &
and § — L.2...., 04, Next, we compute the overall rule matching
index as

(7}

s =i s,
]

b d

Fig. 1.
scheme.

Comparison of firing strength based and similanty-hased reasoning

From among the M distinct rules, we choose those rules for which
W may be interpreted as a threshold in our case. Then, we apply
Algorithm Al to generate a conclusion from each rule conformal to
firing. The overall output may be generated using the intersection of
conclusion fuzzy sets resulted from different fired rules. It is important
to note that, the intersection operation is chosen in order to justify the
rule-selection procedure. Here, fewer rules are fired and the output of
each rule is significant. The algorithm is schematized as follows.
Algorithm A2:
Step 1) Compute s:; ford = 1.2, ... % f = L2, M and then
& according to (7).
Define ¢ and find the rules conformal to firing.
Translate the th rule, provided 5° > ¢ and compute the
relation ff: using any suitable translating rule possibly, a
T-norm operator.
Modify 5, with &' to obtain the modified conditional rela-
tion ¥ according to either (5) or (6).
Use sup-projection operation on /£ to obtain /7,

Step 2)
Step 3)

Step 4)

Step 5)

Par el —  sap gl owe vl (&)
X B s o, X
Step 6) Compute the output 1 = 7, 1#';.
Examples and relevant issues are considered in Section V.

V. PATTERN CLASSIFICATION

Designing a classifier is an easy task as long as, the objects con-
cerned are well-defined and the boundaries of the groups or classes are
nonoverlapping. In most practical instances, the classes are overlapped
making the classification difficult. In such cases, fuzzy set theory may
be used [18]-[21]. Here, we present a classification algorithm using
a similarity-based inference mechanism. Let there be o classes and
N o= |x.xe . xa ) 3 0 be the training data. Let us assume
that, for each point in the training data set, the actual class it has come
from, is known. The problem is to design a rule-based system, using
the proposed similarity-based reasoning, so that unknown points may
be classified. The classifier is designed, based on a set of rules of the
form If ) i A and Ko is A5 and .- Xy is A, then " is 8" where,
A = 1,2, poare p linguistic variables corresponding to the
feature values. 4% 7 — L2, ... p are the linguistic values of the re-
spective variables in the i-th rule and 7 is a fuzzy set defined on the
setof classes. Note that all /A’ are not distinct. Rules are generated ei-
therusing expert operator’s knowled ge or by exploratory data analysis.

At the learning stage, we impose a fuzzy partition on the feature
space using fuzzy sets defined over appropriate universes. Here, tri-
angular membership functions are used but other choices are possible
also, Next, we generate fuzzy if-then rules as precondition for classifi-
cation. These rules are tested against the classification of the training
data. If found satisfactory, we proceed further; otherwise, the rules may
be modified either by trial-and-error method or by some systematic
methods like Genetic Algorithms, gradient search [18], [19].

For classifying an unknown pattern, each feature is fuzzified using
triangle shaped fuzzy sets. For a particular feature, we compute the sim-
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ilarity between the fuzzified feature value and the different linguistic
values of that feature, as used in the rule-base. From them, we find the
maximum similarity value and the corresponding fuzzy set. Next, we
choose all rules with the said feature having the corresponding fuzzy
value. This process is continued for all features, and for all rules for
which the previous features have fuzzy values with the maximum sim-
ilarity. Ultimately, a single rule will be found satisfying the maximum
similarity value criterion. Otherwise, the system has rules with identical
rule-antecedent. Here lies the novelty of similarity-based approach to
pattern classification. The best rule has been chosen from a class of
rules for possible firing. Then the similarity-based approximate rea-
soning methodology is applied (with similarity value equal to the min-
imum of all the maximum similarity values computed earlier for each
feature) to obtain a fuzzy set representation of different classes, using
Algorithm Al. At the time of making a nonfuzzy decision, the class
with the maximum membership value is selected. Ties (for patterns
lying in the overlapped zone), if arises, may be broken arbitrarily or
we may use first-of-maxima or the last-of-maxima. Multiple classifi-
cation is a product of fuzzy algorithm. We summarize the preceding
discussion in the following al gorithm:
Adgorithm PC: Fanern Classification:

Step 1} Take an input vector X = {rr 5,00 o) & B

Step 2) Fuzzify each real walue r, using triangular mem-
bership  function. Let these fuzzified wvalues be
{474 .. 4L

Step 3) Compute  SiA" :lj1 where the index | ranges
over all fuzzy  sets  for the first feature Fy.
Set &y = Arpna, [S0:7, AT Find
Eeo— Argmas {5047, 4500 where § varies over those
rules for which F! is A* and F is ALY and ... and F;_,
is .lf" e T S I

Step 4) Apply  Algorithm Al with fuzrzy sets
140 40" . ALY for firing the rule as found in Step 3,

using the minimum of all the maximum similarity values
as obtained in Step 3 and obtain a consequence B’ on
the class of patterns.

The class with the maximum membership value in £ is
taken as the class of the input vector x. Ties, if they arise,
may be broken arbitrarily.

Step 5)

A An Application to Telugn Vowel! Classification

Telugu is one of the Indian languages spoken in the southern part of
the country. The data set consists of 710 discrete phonetically balanced
speech samples for the Telugu vowels in consonant-vowel nucleus-con-
sonant (CNC) form. Let X7 and X be two linguistic variables used to
represent the vague description about the two given formant frequen-
cies. Reported results [22] suggest that inclusion of feature 3 does not
add much discriminating power to the data set. So we use only the first
two formant features. The initial rule set is so designed that it covers
the entire input space. Each rule is of the form [f X, is Ay and X s
AL then € is 135

Here, A} are the linguistic values of the linguistic variable X ;7 —
1,2, that appear in the body of the ¢th rule. Since our intention is to
show the efficiency of the proposed similarity-based reasoning method -
ology, we use a rule set similar to the one used in [22]. The rule base
may also be assigned by experts or may be learnt. For X and Nz only
five and seven linguistic values are used resulting in 35 rules, as shown
in Tables I1 and 111 The definition of the fuzzy sets for the two features
used in the antecedent of the rules are presented in Tables IV and V.
For an unknown input we apply Algorithm PC and compute the class
represented by the input.
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TABLE 11
RULE BasE
~ ZE : Eeru B Ltlow Low
FIT : Felnw Znra RlndLia Aied Bfuabtiu
ZE : Tero 6/e+i3/ ST
LL : Belaw Lear Lied ot ki 50R Vet afid.alil
L0 : Low Gfad . llen Plut. lfuws W8 | it dfe—itot. lu+isd
ML Mediim LT AFLE R
HI : Hicl FEET Llatetard A
AH : Ahave High [ tla— 1/edliR Liu- ik
TABLE Il
RULE BASE { Continued.)
n [ LD 1ew [ 2ar - daedinm | HI- Hign
ur e e Y] Sged1fo— 15 | At 0
ZE 1l 1fu Al liue urdie | Lo~ Liud Sifus R
1LE. 11040108 Lpe—b i [ L S
1

Lo | adetlietase—108 | Lre— 1l

1fe— mit ol

MME 1.'u|1_-'u+.1."w‘.|‘ L'ul.ljer.Bfutl/y 1t

ERXs e P
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TABLE IV

Fuzzy SETS OF THE LINGUISTIC VALUES FOR &)

BE O US040 0.1 0.0 0 0 0.0 040 1 04 2.0
T 0 00 03 0.5 1.0 65 01 0.0 0.0 0 il Al
L0 O 0.0 00 0.0 0.1 8.5 1005 0.1 041 4 A1 A
ME [ 000000 0000000.105 L1005 E1 30 00
HE | 0l A 0 0 00 OB U0 G 1005 k)

TABLE VW
Fuzzy SETS OF THE LINGUISTIC WALUES FOR by

n7 LA LA ISR 00000 00000000
fAe AL 25 151003025 0100000000000

RL FOgO 2B 1nRa D21 anedaaannn
L0y EA4a0001 03505 100802501 60000000

ME | BUU0000 0GR 0 GEl0LEgsE 0l u000
HI GOaoooooedgalaxhog l0ehG20100
AH | DOO0O0N0D 00000 R FEs s 1005 hes 0l

TABLE VI
RECOGNITION SCORE (%) FOR TELUGU VOWELS DATA

Tirut laat middle ul augmented
wl af of pandoiin ehaofee Livctude
maxima | mavima | masime | sslecticn rorrerct rinss
n 7,28 &7.47 75,29 45,40 HG.T5
. HE.On XTI & nn AE.50 A2
i THAD TEHS 28,40 73,18 EENT)
5 ER.G0 54.91 40,50 [T 26,65
" A4 Tt.4% 5714 T 54 AT 14
F] DD 711 Un.un 5EU3 5, BT
Diwerall TE.00 G366 T0.00 £4.37 0141

Table V1 summarizes the results. Cell
entries correspond to percentage of correct classification while the
column label states the tie breaking strategy used. While generating
colunn 2 of Table V1 ties were broken by choosing the first class
with maximum grade in the resultant fuzzy set. Table VI shows
that the average recognition score is 70%. If, instead, we choose
the last class with the maximum grade, to break a tie, the average
recognition score is 66.56% (column 3). Column 4 presents the result
when a middle class is chosen, in a tied situation and the average
recognition score is found to be 70.00%. The result of random choice
is provided in column 5. Here, the result of average recognition score

1) Results and Discussion:
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is found to be 64.37%. A scatterplot of the data [22] reveals significant
overlap between different pairs of classes and consequently the
performance of the classifier is quite satisfactory. Some improvement
in performance may be realized through tuning of the membership
functions as well as through change of the rule base. The scatterplot
in | 22] suggests that, for any classifier which uses only two features,
some misclassifications are bound to result. If the proposed scheme
is a consistent one, then any fuzzy logic-based classifier is likely to
suggest more than one choice with the highest membership value for
points lying in the overlapping regions. In order to establish that it is
indeed the case, let us assume that the system output is correct if the
alternatives suggested by the rule-based system include the correct
class. The last column in Table V1 is generated keeping this in mind.
If the rule base suggests only one class then the recognition score for
that class is increased or else, if the system suggests more than one
class containing the correct class then the recognition score for the
correct class is increased. This results in a significant improvement
in the recognition score (91.41%) as shown in Table ¥1. On scrutiny,
we find that, when more than one alternative satisfies our criterion for
selecting a single class, the corresponding input data point is found to
come from some overlapped region containing the correct class.

W1 CONCLUSION

W have discussed the concept of similarity measure between fuzzy
sets based on a pairwise comparison of elements and proposed a set
of axioms for the choice of such measures. A family of such measures
have been proposed based on these axioms and their properties were
discussed. The use of such measures in deriving a fuzzy consequence
from given condition(s) and fact(s) has been extensively discussed.
We also developed a powerful mechanism, similarity-based approx-
imate reasoning, through the integration of existing similarity-based
reasoning mechanism and Ladeh’s compositional rule of inference. We
applied the said mechanism in designing rule-based fuzzy systems. The
effectiveness of the scheme is demonstrated in pattern classification.
We have established that similarity-based reasoning and conventional
approximate reasoning can be integrated into a single framework for
reasoning with vague concepts. We have also established that the con-
cept of similarity between fuzzy sets is useful not only in deriving a
consequence but also in selecting rules from the rule base to be fired,
depending on a particular input specification.
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