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Fuzzy Decision Tree, Linguistic Rules
and Fuzzy Knowledge-Based Network:
Generation and Evaluation

Sushmita Mitra, Senior Member, IEEE, Kishort M. Konwar, and Sankar K. Pal, Fellow, IEEE

Abstraci—A Tzzy knowledge-based network is developed
hased on the linguistic rules extracted from a fuzzy decision tree.
A scheme for automatic linguistic discretization of continuous
attributes, hased on guantiles, is formulated. A novel concept for
measuring the goodness of a decision tree, in terms of its compact-
ness (size) and efficient performance, is introduced. Linguistic
rules are quantitatively evalnated using new indices. The rules are
mapped to a fuzzy knowledge-based network, incorporating the
frequency of samples and depth of the attributes in the decision
tree. New fuzziness measures, in terms of class memberships, are
used at the node level of the tree to take care of overlapping classes.
The effectiveness of the system, in terms of recognition scores,
structure of decision tree, performance of rules, and network size,
is extensively demonstrated on three sets of real-life data.

Index Terms—Classification, decision tree, fuzzy ID3, knowl-
edge-based network, rule evaluation, rule generation, soft
computing.

I. INTRODUCTION

HE concept of decision trees was populanzed by Quinlan
T with 1D3 [1], which stands for Interactive Dichotomizer
F. Systems based on this approach use an information theo-
retic measure of enwropy for assessing the discriminatory power
of each attribute. The most important feature of decision rees
15 their capability to break down a complex decision-making
process mmto a collection of simpler decisions and thereby, pro-
viding an easily interpretable solution [2]. 1D3 15 a popular and
efficient method of decision—making for classification of sym-
Bolic data and 15 generally not suitable in cases whene numer-
ical values are o be operated upon. Since most real life prob-
lems deal with nonsymbolic (numeric, continuous) data, they
must be discretized pror o attibute selection. Classification
and Regression Trees (CART) [3] and C4.5 [4], however, do not
require prior partiboning. Here the thresholds are dynamically
computed depending on the conditions along a path, and often
result in the multiple use of a particular atribute with different
thresholds, This can lead to an increased accuracy at the cost
ol reduced comprehensibility. Another problem with 1D3 15 that
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it cannot provide any information about the intersection region
where the pattern classes are overlappmg.

The fusion of fuzzy sets with decision trees enables one o
combing the uncertainty handling and approximate reasoning
capabilities of the former with the comprehensibility and ease of
application of the latter. This enhances the representative power
of decision trees naturally with the knowledge component in-
herent in fuzzy logic, leading to better robustness, noise im-
munity, and applicability m uncertam/imprecise contexts. Fuzzy
decision trees [5] assume that all domain attributes or inguistic
variables have pre-defined fuzey terms, determined in a data-
driven manner using fuzzy restrictions. The informaton gain
measure, used for splitting & node, is modified for fuzey repre-
sentation and a pattern can have nonzero match 1o one or more
leaves. Techniques for the design of fuzezy decision trees have
been reported in literature [5]-[12].

lechihashi et all [6] extract fuzzy reasoning rules viewed as
fuzey partiions. An algebraic method to facilitate incremental
learning 1% also employed. Xizhao and Hong [7] discretize con-
tinuous attrbules vsing furzy numbers and possibility theory.
Pedrycz and Sosnowski [8], on the other hand, employ con-
text-based fuzey clustering for this purpose. Yuan and Shaw [9]
induce a fuzey decision wee by reducing classification ambiguity
with fuzzy evidence. The input data is fuzzified using triangular
membership funcions around ¢luster centers obltained using Ko-
honen’s feature map [ 13]. Wang et al. [ 10] present oplimization
principles of fuzzy decision trees based on minimizing the total
number and average depth of leaves, proving that the algorithmic
complexity of constructing a minimum tree is NP-hard. Fuzzy
entropy and classification ambiguity are minimized at node
level, and fuzey clustering is used 1o merge branches.

Decision trees and neural networks are the most commonly
used nonparametric wols for pattern classification. While in de-
cision trees the number of tuples becomes smaller as the path
between the root node and a new node increases, the decision
boundaries of the neural net are formed by considering all the
available input tuples as a whole. Henee a neural net can be ex-
pected o generale fewer rules, but with larger number of an-
tecedent conditions [14]. In recent years enormous work has
been done in an attempt 0 combine the advantages of neural
networks and decision trees [13]1-[17].

Determination of the optimal size of an anificial neural net-
work {ANN) is a problem of considerable importance, as thishas
a significant impact on the effectiveness of its performance. In



general, itisdesimble w have small networks. This s because in-
creasing the number of hidden nodes/links may improve the ap-
proximation quality of an ANN at the expense of deteriorating its
generalization capability (due to the resulting redundancy ). One
way of improving the generalization behavior of an ANN is to
use knowledge-based networks [18], [19], which consider crude
domain knowledge to generate the mital network architecture
that is later refined in the presence of raining data. Fuzzy knowl-
edge-based networks [20], [ 21] typically incorporate fuzziness at
the network level, using fuzzy neural networks. This manner of
automatically generating the optimal network architecture helps
in reducing the search space and time while the network traces
the solution. Decision trees can be used for this purpose.

The present aricle describes the formulation of a fuzey
knowledge-based network using the principle of a fuzey de-
cision tree. Quantitative measures are defined 1o evaluate the
effectiveness of the fuzzy decision tree and the linguistic rules.
The novel concept of tree evaluation, in terms of ils compactness
and performance, enables extraction of only meaningful (less
ambiguous) rules. A smallerfcompact ree is more efficient both
in terms of storage and lime requirements, tends o generalize
better to unknown test cases, and leads to the generation of more
comprehensible linguistic rules. This results i the generation
of a compact (less redundant) fuzey knowledge-based network.
Quantitative evaluation of the linguistic rules notonly minimizes
human intervention, but also provides aids for knowledge dis-
covery. A measure “Coverage™ 15 also inroduced in this regand.

Discretization of continuous attnbutes, based on the distribu-
tion of pattern points in the feature space, is made in linguistic
terms using quantiles. Unlike other fuzzy decision trees [5], this
discretization o boolean form helps in reducing the computa-
tional complexity while preserving the linguistic nature of the
decision inrule form. New (uzziness measures, in terms of class
memberships, are used at the node level of the tree to take care of
overdapping classes. Pruning 15 used o minimize noise, resulling
in a smaller decision tree with more efficient classification. The
extracted rules are mapped onto a fuzey knowledge-based net-
work. Unlike [15-[17], the frequency of samples (representa-
tive of a rule) and the depth of the atiributes in the decision tree
are ncorporated during the mapping.

The effectiveness of the system is exhaustively demonstrated
on three sets of real-life data, viz, Vowel Wisconsin Breast
Cancer and Balance scale.

II. Fuzzy ID3

First, we present the classical ID3 algorithm. This is followed
by incorporation of fuzziness at the input, output, and node
levels, to handle different forms of uncertainty. Finally, a new
metre, called T -measure, is developed o evaluate the decision
tree both in terms of performance and size.

A, ID3 Algorithm

ID3 wses an informaton-theoretic approach. The procedure
is that at any poinl, one examines the feawre that provides
the greatest gain in information or, equivalently, the greatest
decrease in entropy. Enropy is defined as  plog, p, where
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probability p is determined on the basis of frequency of
OCCUTTEnce.

The general case is that of & labeled pattems paditioned into
sets of patterns belonging to classes & ¢ = 1,248, .., 1. The
population inclass 7, is n, . Each pattern has » features and each
feature can take on two or more values. The ID3 prescription for
synthesizing an efficient decision tree can be stated as follows
[22]):

Step 1) Calewlate initial value of entropy

Entropy = Z — (“T‘) leng (%) = Z = loga g (1)
il o -

i

Step 20 Select that feature which results in the maximum de-
crease in entropy (gain in information), to serve ax
the root node of the decision tree.

Build the next level of the decision tree providing the
greatest decrease in entropy.

Repeat Steps 1 through 3. Continue the procedure
until all subpopulations are of a single class and the
Syslem entropy 15 zero.

Step 3)

Step 4)

Al this stage, one obtains a set of leal nodes (subpopulation)
of the decision tree, where the patterns are of a single class.
MNote that there can be some nodes which cannot be resolved
any further.

B. Incovporvation of Fuzziness

Input attobutes are automatically discretized in linguistic
terms, based on the distribution of pattern points in the feature
space. Different forms of fuzey entropy are computed at the
node level, in terms of class membership, to take care of over-
lapping classes. Pruning 15 used to minimiee noise, resulting in
a smaller decision tree with more efficient classification.

1) Input Representation: Any inpul feature value is de-
scribed in terms of some combination of overlapping member-
ship values in the linguistue property sets low (L), medinm (M)
and figh (H). An n-dimensional pattem F; = [, 60, ..., 00
is represented as a 3n-dimensional vector [23]

Fi = |itow |:f'5'_' i ':F!Zjl wibemedium L1t iF )

ptnieh G VI o e fua VT (2D

where the ;o values indicate the membership functions of the cor-
responding linguistic functions fow, medinm and high along each
feature axis. Each jo value is then discretized, using a threshold
i generally (0.5), toenable a convenient mapping in the ID3 frame-
work. This discretization to boolean form speeds up computation
by reducing the complexity of the search space. However the lin-
guistic flavorof the attribules is retained, thereby enabling the ex-
traction of more user-friendly natwraf rules that are then mapped
to the fuzzy knowledge-based network.

When the input feature is numerical, we divide it into three
partibons (with range [{), 1]} using only two parameters #; and
Iy as depicted in Fig. 1. Features in linguistic and set forms
can also be handled. Note that, unhike [23], we do not consider
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Fig. 1. Linguistic input membership functions.

the arithmetic mean but use guantiles or partition valwes' [24]
in order 1o minimize the influence of extreme values or noisy
pattems.

Conventional 1D3 algorithm, using (1).

Let £, ., and £ . denote the maximum and minimum
values encountered along feature £} considenng N lrining
pattems Iy, Fagooon I Let these patterns be sorted in the
ascending order of their values along the fth axis. The first
quantile (M) is the value of F; that exceeds one-third of
the measurements and 1s less than the remaming wo-thirds.
The second quantile (Fy.) is the value of F; that exceeds
two-thirds of the measurements and is less than the remaining
ong-third. In order to dewemming the two quantiles, we divide the
measurements into a number of small class intervals of equal
width & and count the corresponding class frequencies [;. The

position of the &th partition value (here quantile, as & = |, 2
for three partitions) is caleulated as
fy —ali o .
Fi =fl+'—i—Tf——:'ﬁ (3)

where (, is the lower limit of the ith class interval, 1), = % - 73
is the rank of the Lth panition value, and ¢ 5 is the cumula-
tive frequency of the immediately preceding class interval, such
that ef;_y < i) efi. Then, in Fig. 1, we have Auj
(9 L 20720 A = (P | P32 and Aigy = (£
i S

The membership values of a patiern along the jth axis, in
the corresponding three-dimensional linguistic space of (2), is
computed as

1, for I = Awp
5 A Fo—F., R :
Ly, |._r[_.|; i LF\-] J"_._Ll'-.z REG for "'L"-'__njl “:_: -j-"_:_.' = P_.._.l
M. otherwise

()
for Fi; « )

o A for H, <0 by A
Fonecdinem Ll ) -.F'-' 1

for dwgn = Fie <0 s
i i i

[1.: otherwise
(5)
M, for F,, < I}y
e L i by %-1_—_1}% for Py =0 Iy = Ay
1:: otherwise.
()

IQuantiles or partition val ves are the values of o variste which divide the total
frequency into a mimber of equal parts

2) Chaput Membership and Fuzzy Entropy: Consider an
{-class problem domain. The membership of the ith pattern in
class &, lying in the range [0, 1], is defined as [23]

pi P ———— ™)

where =, is the weighted distance of the tmining pattem IT;
from class £, and the positive constants fy and f, are the de-
nominational and exponential fuezy generators controlling the
amount of fuzziness in the class membership set.

Fuzziness is incorporated into the 1D3 algorithm at the node
level by modifying the conventional decision function, with
classical Shannon entropy, by the inclusion of different fuzey
measures. The fuzey entropy considers the membership of a
pattern to a class and helps enhance the discriminative power of
an attribute. In order 1o reduce the effect of noise or exceptions,
a node is pruned depending on the number of patterns reaching
it. For this purpose, a threshold ¢ s defined as a lower bound
on the fmeton of pattems allowed inan existing node.

Letus now provide the different fuzzy entropy/fuzziness mea-
sures, denoted as cases a, b, d respectively, investigated at the
node level of the decision tree. Note that ;. the membership
of the jth pattern to the ith class, is caleulated by (7) and py, is
the a priovi probability of the kth class. Comparison is provided
with cases ¢ [6], cases e [25] and cases f[22].

Case a:

!
Entropy = — Z_j fre logs 1

=1

Iow
1 - ; . G
% E E gl g — D — i loe, (L — g 0 0 (8)
* 191

i

The first term on the right is the classical entropy of (1), while
the second term corresponds to fuzzy entropy [23].

Case b Same as Case a, but withoul prunimg.

Case ¢ [6];

% I
gy S 3 i
=1

. e 4=1 i
Entropy = Z n low,, = )

=1

This is a normalized version of fuzzy entropy, with no classical
entropy component involved.

Case d:
W "
! E%f“i E%{“i
) 1 i
I:.nlmpy——g v loagz, N
l oW
T 20 [ lora s 1 i1 pi}logz {1 . (10)
R |

This is an amalgamation of the two forms of fuzzy entropy, the
first term on the right comresponding o (9) and the second wenm
relating Lo the fuzey entropy part of (8).



Case e [25]:

1 T
X 1 s
Entropy = — E it lives 1, — & E E i e, = )

P i1 0
(11}
Here the first term on the right is the classical entropy of (1),
while the second term comresponds 1o a fuzzy measure of the
ambiguily present.
Case - Conventional 1D3 algorithm, usmg( 1),

C. Performance Measure for Decision Tiee
Decision trees generated by different fuzzy entropy measures
may vary in size and structure, and this influences the perfor-
mance of both the tree and the rules extracted from it In order 1o
evaluate the efficiency of a decision tree we propose the T-mea-
sure, keeping in view the following issues.
* The less the depths of the leal nodes of the tree, the better
IL1s since 1t takes less tme o reach a decision.
* The existence of unresolved terminal nodes s undesirable.
+ The distribution of labeled leaf nodes at different depths
affects the performance of the tree; a tree whose frequently
accessed leal nodes are at lower depths is more efficient
in terms of bme.
Definition [I.1: The T-measure, T', for a decision tree is de-
fined as

AT

i

Y — F: 3 Wil
r — 12
I (12)
where
’—:_'.L . Tor aresolved keaf node
W, = & A ; (13)
= Otherwise

1t isthe number of binary attributes of a pattern, «; is the depth of
aleal node, &y, q0-- 18 the number of terminal {leal/unresolved)
nodes, Y is the total number of pattern in the training setand &,
is the total number of raining set pattems that percolate down
o the 4 th leal node. The value of °f lies in the interval [0, 1)
A value 0 for T is undesirable and a value close to 1 signifies a
good decision tree.

Now we demonstrate the evaluation of the F -measure with an
example. Consider a two-class problem, with two-dimensional
patterns. Let Fig. 2 depict two decision trees generated by two
different algorithms. For the decision tree in Fig. 2(a),

2H2-03x 1 —04d=x2-02x2

= =77
2xd-1
while for the decision tree in Fig. 2(b) one obtains
22 -0AGW 204w | =02x2
T= ' = 0173,

2x2-1

Henece, we observe that the first decision tree 18 better than the
second, since the fraction of pattems in the node at depth one is
more inthe first case.

Thearem: The value of T -measure lies within 0 and 1, i.e,
0= T« 1.
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Fig. 2. Example demonstrating '} —measure computation.

Proaf: Let us first establish the upper limit. By (13), we
have

N . -
= TR i 1. 2_1 ‘- ?'fl.r.'.':.lrfr:.-c (14)
and
IR A CUYR. - S (15)
Hence
Ao R
el —.
Sl 5 A
L1 i |
Since z‘::'l""‘m N, = X, one obtains
Ninandza
Z wpel; = L
=1
S0
Nimandza
i — Z el <ldne — 1
=1
L T
2n— % wd,
Rl el Eh 16
e In (16)
MNow we check the lower bound for T, We have
N
S = L2 N (17)
amnd
dymn il e Wi (18}
Hence
L P BT L
i ke teate Az
Z whels < Z ;"k"w = M
= i—1
I"‘I""l '\.'vl'\. "l
i, Ut — Z el
=1
Moo
2i— 3w
..... i =l i 19
ik = o (19)
Thus one obtains
B S (200
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Fig. 3. Sample decision tree for mule genemtion.

III. RULE GENERATION AND EVALUATION

Here we explain the algorithm for extracting domain knowl-
edge, in the form of rules, using the decision tree generated by
the fuzzy 1ID3. Let us consider the leal nodes only. The path
from the root to a leaf can be traversed to generate the rule
corresponding to a pattern from that class. In this manner, one
obtains a set of rules for all the pattern classes, in the form
of inersection of the feares/atiributes encountered along the
traversal paths. The ¢th atiribute is marked as 4; or 4; de-
pending on whether the traversal is made along the rght or left
branch. Each rule is marked by its frequency, that is the number
of pattem points reaching this leal node. Note that each leaf
node that has pattem points corresponding o only one class 15
termed resolved.

A. Example

The scheme of extrmcting the rules from the decision ree s
demonstrated with an example. Suppose the raming selconsists
of 21 pattems, from three pattern classes, with three features &,
Fooand £y After splitting each feature into the three linguistic
vardables low, medium, and high by (2), one obtains the nine-
dimensional symbolic features L), M), H;, La, Ma, Ha Ly,
Ay, Hy Let the sample decision tree be shown in Fig. 3, and
the extracted rules be

].::l I] M ﬁ:{ = {,:1 ! '2,

2} |r.'| M ?I-E;{ Eis -'ﬁ'| el {,:y;ﬁ,

3} |r.'| A E?H i ."l-'.ir'| — {,:1: l’a‘-r:, 3,

4) b A My ATy — O30,

5) L A A A L

s €5,

B. Quantitative Measuwres for Rule Evaluation

Now we provide a set of indices for guantitatively evalu-
ating the extracted rules. New measures o esumale the ambi-
zuityfconfusion and coverage of these rules are designed in the
contextof decision trees. Let 2% be an £ = f matrix whose (4, )th
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Fig. 6. Weight encoding using Model Il

element r,, indicates the number of patterns actually belonging
to class 7 but classified as class §.

Definition HEL I Accuracy: 1t is the comect classific ation per-
centage, provided by the rules on a test set delined as 'i"-i;,__,.".‘i‘i'.{,
where n; 1s equal to the number of points in class ¢ and n,. of
these points are correctly classified.

Definition IL.2: User’s Accwracy: If %! points are found to
be classified into class 4, then user’s accuracy (/) is defined
as {1 = ng/nt. This gives a measure of the confidence that a
classifier attributes to a region as belonging o a class. In other
words, it denotes the level of purity associated with a region.

Definition I1L3: Kappa {26]: The coefficient of agreement
called “kappa” measures the relationship of beyond chance



TABLE

333

I

PERFORMANCE OF Fuzzy 103 0N VOWEL DiaTa

Train Recopwton seorea (1. T

Clase sat Training Testing T
(55} 8 a i u & ) Met i i i n £ o Mot

10 792 | 699 | B9 | B35 [ ML [ TRZ | B11 (| 654 | 505 [ B34 [ B2 | TOS | 6RH.Y | TER | .70

) BA7 | 664 | 897 | 8Y6 | VO3 | 656 | TT.6 || 694 | 59.3 | BB | TO.5 | 67.8 [ 620 | V1.9 | .69

a a0 TR.7 | 617 | B1.4 | BY.3 | 69.7 | 635 [ To.B || TR0 | 55.0 | 87.9 { B4.7 | 63.2 | 654 | TRE | 6B

40 760 | 562 |90 | 860 | 604 | 63.2 | 747 || 748 | 492 | 918 | 89.0 | 59.3 | 58.8 | TLO | .67

a0 TOY | 5T.3 | 942 | 9L | 6L.B | 643 | A8 | ¥3.1 | GO0 ; 91.3 | 8%4 | 582 | 665 | T3 | 6T

10 £9.5 | B4.5 | BOLA | BV | TRE § BOT | TTLR g 686 | 500G | 8RB | B4B | 683 | 60T | TOY | .83

20 90,3 | B34 | 92.0 | BT.0 | 635 | 52% | TAA || V1.5 | BA9 [ RE2 [ B3 | 627 | 513 | 688 | 43

b K1) GRG G258 ¢ T | B96 | 330 | 454 | 6989 || V42 | 542 [ BB | 851 | ShI | 304 | 645 | 5D

4L 1.2 | 836 | 055 | 92.6 | 46.6 [ 3L.5 | 65.6 || Bl.G | 504 | 924 | BRY | 469 | 253 | G2.E | .53

ail 901 | s2.6 | 949 | 516 | 418 [ 259 | 63.0 || 52.4 | 553 | 3.7 § 920 | 403 | 255 | L6 | 53

i gr.2 | 71.1 | 913 | 843 | V3.9 | O | THE G1.7 | 31.7 | 870 § B24 | 672 | 616§ 704 | TN

0 K24 | AT.E | 881 | 873 [ FE7 | 622 ¢ V61 || 651 | 580 | 804 § B1S § 635 | oT.6 | VOO | 69

- 30 9.0 | 624 | 914 | 56,4 | OG0 | 628 | TA8 (| 698 | B4G | B00 ) 800 [ DR.3 | 609 | TO4 | .TO

A0 THS 1 505 [ 919 ) BOS | 655 | &1 | V41 T2.00 481 | w1.B | HU.4 [ B9A | 574 | TiLE | 6%

i) TRY § 513 | w31 | BV | 612 § 620 | TRZ || V01 | 548 [ 900 | 546 | 645 | 63 | TIL | &7

m #3.4 | GB.T | B7.8 | B6O [ TET f TR | VOO0 | €52 [ 473 [ BT | BB | B6I § 40 | TOE | 71

| B23 | fi24 | BES | BOF [ TLY [ 687 | 763 | 1.5 [ 515 | BGO | B45 | 662 | 621 1 YLA | T2

o 30 TH.8 | 877 | BES | BT | 622 [ 040 | T4.2 f T1.0 [ HGT [ BOB | BAT | LT.2 | 609§ T3 | 6B

44 0.8 | BAB | 94,2 | 902 | 60T | 656 | TA5H || TS [ 5TH [ 897 | 818 | 605 | G0 | T11 | GY

ag To.0 | G5O | 94.5 | 893 | 509 [ 661 | T41 || 729 { 506 | 01T [ REE | SEH | 611 | TR § B9

10 35| 129 | T3 [ TLO D 687 | TTA § GO0 || 292 | 275.[ 7] | TA0 | G4.3 | VR0 | 636G | 01

0 434 [ 154 | 808 { GR.3 [ B4.3 | T3.1 | 6.3 || 4.7 | 430 | BT | FL1 | BO1 | HEZ | G645 [ .61

£ ki) S50 1 91 | BDG § 651 | 448 | THO | 5851 || 41,5 | 204 | B2.5 | T2E | 443 | B51 | 623 | &0

40 3.1 | 16.3 | 827 § VO | 394 | TRI | DA || 309 | 227 [ RB1.G | TEG | 385 | BGY § G0A4 | 60

1) 27108 147 | IO | VOB [ 41,5 F B | 58 § 3140 | 185 [ 811 | TR1 | 3% | BE2 ) 60T | 60

_-“-“ijﬂu- 284 | 165 | 793 | GAR | T4.3 | T45 | 633 132 | 245 | 6.7 | 617 | 61.0 | 458 § 527 | .64

i) 17.0 §f 165 § vO.4 | 84,2 | 615 | 73.3 | 5T.7 || 18.7 | 23.5 | 68.2 | 654 3 31.0 | 514 1 5l4 | .61

F an 13.5 § 6.1 | B2.B | 6O.7 | 523 | 77.7 | 571 || 108 | 19.8 [ 764 | 721 § 47.1 | 32.2 | 481 | .60

40 14.4 7.7 T84 | 1.3 | B6.T | THG | 372 9.7 219 ) TEE [ TEE | 448 | 315 | 484 | 6D

1] 144 | 79 | 7946 | B8040 | 527 | 765 | 565 || 5.3 | 181 { 745 | TRE | 308 | 255 | 445 | 59

agrecment o expected disagreement. It uses all the cells in the
confusion matrix, not just the diagonal elements. The estimate
of kappa () is the proportion of agreement afier chance
agrecment 15 removed from consideration. The kappa value for
class [ A is defined as

iy it

v
e (213
LR MR PR

PP

A=

The mumerator and denominator of overall kappa are obtaimed
by summing the respective numerators and denominators of I3
separately over all classes.

Definition HL4: Confusion { 27]: This measure quantifies the
goal that the “confusion should be restricted within minimum
number of classes.” This propenty is helpful in higher level de-

cision making. Let rig; be the mean of all ny; for 4 # 3. Then

we define

Card{re,, toy; ™ fayy.d £ 51
i

for an { class problem. The lower the value of onf, less is the

number of classes between which confusion occurs.

Definition HILS: Coverage: We dehing it as the ratio between
the totl number of patterns associated with the rules corme-
sponding o resolved keal nodes, and the woal number of pat-
terns 1o all the rules and hence the terminal (resolved andfor

Conf = (22

unresolved) nodes.

When the rules can perfectly classify all the patterns, cov-
erage 15 1, and when they cannot classify any pattem then it is
0. For example, from Fig. 3 we have

2+6G4+0+5 %

Coverage = — - —
24+04+04+5-5 Il
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IV, MaPPING OF RULES TO NEURAL NETWOREK ARCHITECTURE

In this section we describe a new way of mapping the
extracled rules to generate an optimal fuzey knowledge-based
neural network. Unlike other approaches [15]-[17], the fre-
quency of samples (representative of a rule) and the depth of
the attributes in the corresponding decision tree are taken into
consideration during the mapping.

Before going into the details of knowledge encoding, let
us first introduce the different parameters of a mullilayer
perceptron {MLP). The output of a neuron in any layer (k)
of an MLP, other than the iput layer (% 03, 18 ],r_':;
L1+ exp{ =7, y;!t—1 1
ith neuron i the preceding (4 1)th layer and '.:.-,'_:“JL s the
weight of the connection from the ith neuron in layer (& 1)
to the jth neuron i layer (f). For nodes in the input layer, .r;_'j:
corresponds 1o the jth component of the input vector. Note that
.?:__':,-* =3k yf' 1?”;*{ '. The 3n-dimensional input vector of (2) is
clamped at the nput layer to the input nodes [p{. %, ... 15, |-
Here :.',ni'._ S _?,rh'r} refer to the activation values of the 3n neurons
in the input layer. The I-dimensional outpul vector, in lerms
of class membership values (1) of pattems by (7), is clamped
al the { nodes in the output layer of the MLP. During training,
the weights are updated by backpropagating errors with respect
to these membership values such that the contdbution of
uncertain/ambiguous pattern vectors 1s automatically reduced.

The details of the different knowledge encoding schemes,
mapping the rules extracted from the decision tree, are deseribed
here. Let iy be the ith mle for class Oy, with frequency ¥,
Each rule 15 mapped vsing a single lidden node, modeling the
conjunct, that connects the attributes comesponding o the ap-
propriate pattern class. Therefore, one generates at least { hidden
nodes in a single hidden layer for an I-class problem. For sim-
plicity, rules involving only one class (pertainmg o leaves) are
selected and those corresponding 1o unresolved nodes of the
decision tree are discarded. If there are two rules for a single
class ¢y, then that rule with the highest frequency s considered.
Henee we use only { hidden nodes w model § classes. This con-
straint can of course be relaxed o incorporate other rules, albeit
at the cost of imcreasing the size and computational complexity
of the resultant network. The sample mles generated from Fig. 3

h—1. Rtiag ;
e ! 1], where ],rt{ is the state of the

thus reduce 1o

1} .|r.'| B H:{ i H] =+ (-..-2: i,

2) £ A My A Ly — O,

3} .|r.'| B 11?5 i .Ir.-.!_ — {,.-'1.1;-5.

These rubes are used o mmually encode an MLF, that then
learns in the presence of taming data. 1is w0 be noted that these
rubes just serve as representatives, describing the major charac-
teristics of the pattern classes, and as the starting point of the
MLP, for further learning. The representative rlebase, there-
fore, need not be oo detailed/accurate; rather, a crude knowl-
edge is sufficient to initiate the training procedure. This is the
reason for sacrificing accuracy at the expense of simplicity at the
decision tree level, by pruning the nodes and himiting the siee of
the extracted rulebase. The generalization aspect and other in-
trncacies of the decision boundary are handled after the network
mapping phase, dunng neural learning.

TABLE 1
Ql.:.w'rl'r.lirl".-'l: MEASURES FOR EVALUATING RULES 1IN VOWEL [DATA
Cazc | Train | Accuracy Tser's Kappis | Confusion | Coverage
set [Tk [ Accuracy (%)
W | a0 v2.67 nGy | 28 0.0
20 LT Tals 6T 2.7 078
o 30 59,74 75,47 0,70 237 0,72
40 5447 7714 0.7 #0 0,73
50 006 7540 0,7 #a4 10,78
1 f0.23 1.5 65 2.5 0. 76
2 fill.14 T35 0T 2.24 7Y
b 1 L5 T .72 2.6 073
4 046 o 3 0.75 2,15 050
Bl BOLE Bl6s 0 0FT 206 0.7z
10| sl A7 .55 175 0.7s
Lo 35600 8100 n&L 304 .
e .54 FL05 281 27 ot
a0 f1.42 8120 0.8l 252 072
5 f0.02 R0 020 2.14 7
i T1.33 66,43 i 184 077
= G3.90 EPE 0.2 507 0.74
i 30 204 al.32 0.7e BT 0,72
40 GazR 2,82 050 226 0.7l
50 50,52 §122 ¢ 0D 220 58
wo | ones 77.22 otz | 21 | om
u 5070 180 e 120 0G0
e a0 RG] Ta.04 .50 1.3 1154
41 s Then 0. 1.4 052
TR T TS et oAz | 182 .52
[ 10 0, 52,00 .37 2138 .73
20 5715 £65,00 0360 2 N
i 30 570 E65.00 061 211 .34
40 5372 &T.00 061 197 .50
S0 BEET 67.00 ILEE | 216 047

A. Model 1

The weight ) . between output node & (class €7:) and
hidden node ¢ (rule ryg), is setat fp; | 2 where ¢ is a small
random number; and J*;;, = 1. The weight W}, between
attribute A, (L; or A, or ;) and hidden node is clamped
to (i), /Card(yy; 17 . Here Card{ry,) indicates the number
of featuresfattributes encountered along the traversal path
from the root to the leaf containing the pattem corresponding

to rule ry; a of class . In other words, Card{w;) is the

number of operands in the conjunct of rle rg; for class O
An example illustrating this scheme 1s provided in Fig. 4 for
class 0. The supersenpt ndicates the layer of the neural net
under consideration, the values 1 and 0 corresponding 1o the
hidden-output and input-hidden layers respectuvely.

B. Model IT

Here a factor W = fi, /0% £ 1 is used to indicate the im-
portance of arule for a particular class £y, among all rules de-
termining the whole network. The scheme for mapping weight
wh’, is the same as in Model 1. An example illustrating this
scheme is provided in Fig. 5.
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: TABLE M1
COMPARATIVE PERFORMANCE OF KNOWLEDGE-ENCODED MLPS FOR VOWEL DiaTa
Train Teeopnition scores (5 No. | Mo
s, Trainitg Tusling of of
{7 8 ] § B é ] Met # & i K e o Met | link | eycie
Id TRZ | 982 | BO) | B9 g 984 | 2RL | 533 || 3549 | ET.0 | Bl | BRY | Bl4 p ¥AE | TRA | 605 [ 242
M 20 6.6 | 914 § 7BZ | B4.1 | 95 | 930 ] 270 || 31.5 | #0.5 | T44 [ TO4 | BHE [ U327 | TEE | w12 | 203
L at a6 [ 808 [ 062 | TH.T [ 7.7 | 3.8 | BA.0 (| 28.4 | 253 | G622 | VA0 | 543 | 941 § TH4 | DE4 | 106
lig 4 238 | B9.2 [ 02,0 | 603 | 965 ] VT | YO8 (| 228 | BYOQ § BL.1 | 66T | 25,0 | D04 | TG | BLE ar
M 11l BTA] | WA.G6 | 853 | 910 [ 976 | 47.9 | B9.4 || 277 | 4.4 | 804 { BOG ] BG.I | BT.0 | TYO0 | G586 | 137
o 0 42,7 | 8.0 [ V90 | 81,2 | 963 | 878 | 656 [ 252 | BdG | TY.O ] VB2 | 002 | 1.8 | TOF | €5.6 ) 102
d Kl 2449 | Bb [ TE2 | TEL | 955 | 973 | B3O ff 188 | B30 | O3 | YRE | 830 | 953 | A0 | 652 40
1 4 148 | B7.d | 710 | 0.8 [ 903 | 96.9 [ 1.5 i W1 | 824 | 738 | F3.3 | 834 | 7.9 | 7RO [ G7.7 k]
M 1 112 | 806 | T4.5 | VL4 | 2.2 | 863 | T3 || 276 | B4l | BO4 | BOG | B4.8 | BE.2 | TR.Y | 6635 a5
20 492 | 9046 | B4.T | 04 [ BYG | 9.0 | BEG (| 209 | 815 [ TV | TEZ | P00 S1.9 | TO.Y | 65.2 26
d a0 166 | 892 | T7.1 THE.Y | D84 | BT | BRT 18.0 | 83.2 | 783 | T | @0 ] 962 | 794 | 6L 197
II 40 34 [ 832 | TLG [ 7RO | 807 | D85 | TO.G 2.4 181G { T3.T | 733 | 532 | 082 [ VBT | 661 102
%] 1101 BT | 920 [ 859 | BE6 | 073 | B4 | BEY || 280 3 BEX | VES § HIG6 | B4l | BA | THE | G316 | 102
a ot 47T | w16 | HOE | 847 | 057 | B8.G | BEO || 260 | BG.0 | Yr2 | FR.4 [ 006 | WE3 ) BOE [ B3 a
d i 255 P A6 [ TRE | 775 | 963 | B85 | B2 ! 1684 [ B45 | T4 | VAT | 020 | w64 | BOZ | 865 i3
II 41 2248 | B30 [ V5.3 | TR | 949 b BY.E | BOB | AV.Y | B4F | T3S [ TRE | 925 | 556 | TR0 | 842 43

C. Model 1T

Here, as in Model 11, a factor W = A5, Fi.bis used
o indicate the mmportance of a rle for a particular class
' among all rules determining the whole network. But the
scheme for mapping weight 1!,  depends on the impontance
of feature 4; in the L'um:spt;nding decision  tree. While
constructing  the e, the feature associated with a node 1s
chosen on the basis of maximum information gain. Henee the
attmbutes/Teatures ought to be given weightage in descending
order of ther appearance in the decision tree. Consider Fig. 3.
We note that the attributes are selected in the order Ly, M.,
{o for class €. So the weight o, is assigned a value

w1,
(P2[Card{ry;) & 1 1]} (Cardive d[Cardlrys 1 | 171H. I as
to be noted that

Cardiry.? 4 B .
e 2Card [#y,) — i+ 1] ) .
Y (W= (23
o Card (v, 0 |Card [ry 0+ 1

An example Mlustrating this scheme 15 provided in Fig. 6.

V. IMPLEMENTATION AND RESULTS

The system was implemented on three sets of real-life data,
viz., Vowel data (available o hup:fwwwasical. acan/-sush-
mita/patterns), and the Wisconsin breast cancer and Balance
seale data [28]. Different sizes of trmning sets are selected at
random and, in each case, the emaining data 1s kept asude as
the test set. All results are averaged over 40 runs. The threshold
L for pruning a node of the decision tree 1s set at 0.2 aller

several experiments. The stability of this choice of £ has been
verified for different datasets. The performance of the fuzzy
1D3, extracted rukes and the knowledge-encoded MLFP's are
provided in each case.

It is generally observed, from Tables L and IV, Table VI, that
the value of T decreases with an increase in size of the training
data. This 15 becavse an increase in training sel-size resulls in
a tree of greater depth, with an mereased possibility of larger
number of unresolved nodes, leading 1o a lower value of T by
(1230130 In general, cases a, o, d (Tueey entropy by (830100
are found to perform better than case e[ 25] and case ficlassical
entropy ).

The fuzey ID3 (Tables 1 and 1V, Table VII) s used o ex-
tract mules {Tables I and W, Table VI, which are then used
for generating fuzzy knowledge-based networks (Tables I and
VI, Table IX). The classification performance 15 provided for all
three stages. 10is observed that generally, the knowledge-based
networks result in the better performance i enms of network
siee and recognition scores. This 1s natural sinee the crude do-
main knowledge is encoded and further refined here, in the pres-
ence of training data.

A. Vowel Data

Here we present some results demonstrating the effective-
ness of the fuzzy 1ID3 algorithm on a set of 871 Indian Telugo
vowel sounds [29], collected by rained personnel. These were
uttered by three male speakers in the age group of 30 w 35
years, 4 Consonant-Vowel-Consonant context. The data set
has three features; Iy, Fe and Fy comesponding 1o the first,
second, and third vowel formal frequencies obtained through



EEL] [EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLIC ATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER X2

TABLE IV
PERFORMANCE OF Fuzzy 103 on CANCER DaTa

TABLE VW
QUANTITATIVE MEASURES FOR EVALUATING RULES 1N CANCER DaTA

‘Frain Berognilion scores (9]
Case | sed Tradraine Testing r
(%) I ] Met 13 20| Met
E 10 9.8 | TOM | RO 046 | G6.7 | B4.T | .93
a0 | 1000 | M8 | 914 || 996 | 680 | S5 | 4
a 40 ol | a6 | add || oD | 64,0 | 87.3 | A4
4p o g 735 | 910 || o0 | 670 | ER.T | 94
so | 100070 | ooz 000l Tie | o0a | m
1| 975 | 965 968 || 965 fo0.0 912 ) .51
20 100.0 | 938 [ BT8 BOd | 242 040 [ 51
o | 30 1000 | 6364076 [ 1000 | 85 | 945 | 51
10 11000 928 | 9vd | 1000 | 863 | 951 | 61
e s -.'.'-U__lli.l'i.l‘[.'l o) [ 922 BURD | Bh4 | 948 [ 50
10 | ow2 | vl |oes || oud | 833 | 018 | 06
20 | 998 loap | 975 | 004 | s39: 94n ;86
e | 30 | 992 j914 | 966 | 0o | 619 gro | 7
40 | 1000 | 426 | 974 | 1000 | 411 | v6.9 | o
hildy 10000 | 951 | Be3 || 1000 | 90.7 | 96.7 | 96
1d D74 | 90n | DEL ! ndn | &858 | 811, 96
20 ;080 | 025975 | 995 |28 |01 e
¢ | so 1000|982 9v6 | 1000 | 908 | vas | o
40 BOOLD | B9 [ 976 | LUDG ! BEd [ 973 | 06
i) w0ty 2a | 978 (| 10060 | 822 | 95.1 [ 95
10 984 j4i7.o | BT84 o 860 | 7™M.3 | 202 | A5
30 | 9o | 66.2 | &n.4 | 953 | 814|007 | 06
e | a0 | our 657 |srs | ons | TL7 | swa o
40l bDRE | 474 | 850 i. 0G.G | 863 ¢ D28 | .06
Al 024 | 66,2 { 2.2 ' ar.y | T35 | R4 | .06
10 Un.G | 055 | 86T T.5 1 BT | HE.E | Do
20 6.0 | TO.7 | BF.8 924 | B4l [ BU.D | DD
f an OG6.0 | GBR.T | BT 025 | 246 [ B9 [ NE
40 | 954 | 703 | 865 028 | 868 | 007 | .04
50 | 951 {voq | aca| sar [874 | 912 | ot

spectrum analysis of the speech data. Fig. 7 shows a 2D projec-
tion of the 3D feature space of the six vowel classes 3, a, i, u,
e, o in the I7)- I plane, for ease of depiction. The boundaries
of the classes in the given data set are ill-defined (fuzzy).

Table I provides the recogniton scores (%) and M-values for
the different cases a—fof (8)—{11)and ( 1), over both the raining
and test sets. I is observed that fueey 1D3 with the entropy mea-
sure @ gives the best genembization performance, in terms of
score (%), over the test set. On the other hand, case d gives the
highest values for ! followed by cases c and a. This implies that
the entropy wom of (10) generates a tree of least overall depths,
followed by those of (9) and (8) respectively.

(_:;..'IE 'I;L'.ain A-.'.:.mu'ac_-.r TIzer's Happa {.‘ml-!l'u:iiurl Cuverage
sel () [k Aceuracy (7)
10 E81% 50,10 0.e2 145 Loy
=0 3623 86.25 0.7 L.60 1.00
o a0 afal £6.01 .70 150 100
40 2473 B4.73 0.0 LAR 1.00
50 ) 2053 (E.55 076 L&D 100
19 82.06 £2.06 034 | 140 100
H 5046 L 077 1.50 L
oA 00, TN 0.7 L.50 L
ETH B85 HELO3 07 150 Lae
s | wnss - U0 b7 150 L.
10 war 0022 076 | 155 1
20 puse | 03 fid 054 1.57 m
e ol 0,0 TR 274 1.52 L
4y IR, ). 0.7 1.2 1.00
Al B.7H K75 G fith 1.4% L.
RIS e PR (.83 157 o0
M . 9158 g1.58 0.7a L& 1.
E an a0.81 2L 0.77 1ED 1.
A0 9140 91.43 ' 0ED iE2 Ln
i 7.6 2763 0.73 L5 L
BT 735 RY.20 056 T T
20} ExAn EERL 067 1.44 140
a 40 A5 60K 076 180 B0
all A RILG5 016 Tl o1
& ANGR 50.65 .60 145 | 100
W #3903 .4 7 V5 100
H) 2633 588 n.74 1.50 1.08
f il &a.m Bh0 050 1.4% 1.00F
40 ¢ §T22 arag 076 160 1.06
s [ BT.O0 &7.00 0.72 150 L.

The vanous quantitative measures are computed in Table 11
for the rules generated in cases a—f. The User’s Accwracy and
Kappa of the rulesis approximately greater than 80% and 0.8 re-
spectively for cases cand d. Hence the Tueezy entropy of (99— 10)
result in better accuracy. The Coverage 15 poorer for cases e

Joowhile the Confusion 15 found 1o be lower in case e, Thus

the fuzzy measure of (11) leads o a smaller number of classes
between which confusion (rmisclassification) occurs, at the ex-
pense of poorer coverage of classification.

A comparative performance of the knowledge encoded
MLP’s, wsing mapping schemes of models =T with fuzzy
measures of case a at node level, and the conventional MLP
(no encoding) are provided in Table HL Six lndden nodes are
used in the network. It 1s observed that the knowledge-based
MLP encoded by model HT [(23)] provides higher recognition
scores over test set. All three knowledge-encoded models are
of smaller stee and require less number of trmming cycles. This
tmplies that consideration of the frequency of samples and the
attribute depths in the decision ree, durimg mapping., retains
more meaningful information for neural net design.
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TABLE VI
PERFORMANCE OF Fuzzy D3 on BALANCE Dara

Table I'V that entropy measures ¢ and & lead o the best overall
performance, both in terms of recogniton scores and f -value,
followed by cases e and £ In this aspect, it isanalogous to Table [
where the fuzzy entropy of (9)—(10) perdform better. Although
the classification performance of case & 15 higher than a (s
pruned version), the value of ¥ 15 poor in the former. This 1s
natural since a pruned tree (case a) has a lower depth and hence
higher T Asin Table 11, here Table V demonstrates that the rules
generated in caves © and d have higher overall Accuracy. It s
interesting 1o note that the Coverge for classification of the rles
15 perfect in all cases. It s seen from Table VI that, here, there
15 no significant gain m using knowledge-encoded ML s, This
15 perhaps because the 27 x 2« 2 network does not have much
scope for improvement with only two hidden nodes involved,
and there already exists reasonably good classification prior 1o
the MLP wning.

C. Balance Scale Data
The Balance scale data [28] consists of 625 mstances gener-
ated to model psychological experimental results. There are four

= : o S i S B ! Frain ! BEecopnitinn soraes [33)
Trait Becopnitian seoras (5 Mo, | MNu. T Traforine Teeting o
Uoset Training ! Teaning of af i 1 2 e 3 i Nf-.l_ 1 7 3 I"]n:.'i__ !
v o2 I Nesp 1) 20 Net | liuks | oyeles 10| 924 | 720 | 296 | 804 | 640 | 76T | vas | Tug |
0| 939 985 | 992 [ 970|500 | 963 | 20Y | 21 20 |87 6.0 |as7 | 560 || %6 KL 707 | anT | 93
MLE | 20 |9ss| 963 |9re | 955 |waa |en2: 325 | 6 e | wm |as1iss3|706 |ss2se1|s6d| res|ane | Fa
Bl 954 | 99t [ 956 | W67 . 051 | 6.5 | 334 % 40| @64 | &30 | RLE B4 | BRE | BRA | Tod [ 811 | T8
40 | 984 | 954 {984 | 970 [ 848 | 563 | 380 | 44 50 |83 | @49 | 7oa;sno | ens | ase | 7aT | 7as | 7o
i P Aas0 | 1000 981 || 967 | BG.E ) BET | 522 2d 10 9G.1 | 710 | BLG | 924 || 86K | G889 | 707 A0.2 b2
Madal |20 . MAN | umy e |99 | 935y | 35| 33 o fULE ) TOT [ E1E | 256 ) B6 | TLT | T TEY 52
1
1 an i n&.4 0% 08,7 o2 [ 931 | 055 | 245 i I A St | 206 TERR | TRT | A0S | AL . TR | MG .42
an | usri owes |ese il ues | 1o | wsr | ass | a 40| 833 | B12) TOG| 7T | TS 1 TEO | 63| TAT | 5
Do [was | ews |ous| ver [ese ona: sa0 | s GO i L R OGS S S R D (B
: abf i : T 3. :
Bodd | 20 | o83 | o904 | o5 | e toss | o0s | a6e | & W0 | enk i alacnt | AL LE0A | 9.8 | SR )| Tl ) oD
3 il G5, TR | TR | B4 A2 [ &5 ) gE1 G Y0 o
Uo| 30 |oese| sy |ose | we7iosg | 064 | 388 &7 ' e o e
. i 4 Ja dT.8 | B A4 BUE G kB Y| HLE | BEZY TR 52
A0 G| UET | WM [l 969 | Y44 Yag | 353 ] H
; e g — A0 219 | 834 | 643 YE1 | BEA | Thv | hadl ] 739 A3
110 GHL | LG OED ) REE | B URLH 1. 25 i
% ah B8 | s0 | 790 | ane | s | o | e | 564 lvza| 7| a2
Jonl gl 2 35 B 8a Sl .f A ; e
it i e i il Sl el I A E N ED BN R A
= "] el I L 1T I T B
O [ i30¢ , D6s) ON07 (RESHES] S0:6: | Bise) DARSE | 567 o | 915|770 76 | Ann || Rad . gaa | s | e | 2
I R SR B TG L | S ielie | OB g B0 22| Haa o TAR | 7RG (| H2d | TAl| 704 | 7ie | .52
A0 81| B | Fs | 66 I 519 | 738 | 665 | T4l | b2
- ) . {oen | 7e4|sne | 654 | 7o, tes | 245 | 638! vra | sz
B, Wisconsin Breast Cancer Data G B S T [ e SR Ry Kyt
-1 3 i o, : ; I B
The Breast Cancer data [28], [30] consists of 699 pattems s | 1050 26z | 5es leur | v | 35e | oes | evs |
with ning nput features, comesponding 0o cytological charac- . g | ron | ass | 734 o || oo | aet v | ser | o
H._T'Ihl_'lL'.‘: u!' Ihumfl_n hn_.*u.l_,l. Ij.‘,.‘,_ut.‘,, .1'5:',, (:F:urzp Thi{'f:{:m‘.ﬂ', Uni- ai || 2e1 | 726 | sss | ses | zia: 7oo | 67n | 62
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Newmal Nucleoli and Mitoses, having continuous values in the :

. i f a0 G | ART 808 | 03T | 608 | WG| TR GRO | R
range [ 1, 10], for two output classes Benign and Malignant (re- 2t cpeaary et | sre e | asor| mres praln
ferred to as 1 and 2 in the sequel). Two hidden nodes are used g ) ) . B s
; . AN GEE | 3RO [ TS | 69.0 | 602 | IRE | TR P G0 - W)
for network mapping. ! il ;

e il ) i
Tables IV=VI provide the different results. It isobserved from |50 9981502209 | 727 | 667 [ 3902 | 759|662 ] 10

numeric attributes corresponding w the left weight, left distance,
right weight and right distance, and three output classes, vie., tip
right, tip left and balanced (referred to as 1,2 and 3 in the se-
quely. We use three hidden nodes during network mapping.

Tables VH-IX provide the varioos results. [Lis observed from
Tablke VII that the entropy measure @ provides the best results
in terms of recognition scores over west sel, and 3 -valoe. Cases
e and fprovide moderate values for T (around 0.7), but have
poorer recognition scomes (less than 70% ). On the other hand,
cases b, d and ¢ have moderte classification performance
(around 75%) at the expense of very low values for 7. Hence
the fuzzy entropy of (8)-(10) provide better classification.
Table VI shows that the rules extracted in case a have better
overall pedormance in terms of Accwracy and Coverage,
while the Confusion in misclassification 15 maximum for the
unpruned case b 1015 seen from Table IX that, in general, the
knowledge-encoded MLPs [are better than the conventional
MLPF in terms of both size and training tme.
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TABLE VI
QUANTITATIVE MEASURES FOR EVALUATING RULES 1N BALANCE DaTa

Case [ Train | Accuracy Uzar’s ; Kappa | Coofusion | Coverage
- zan () 1A Accuracy {%)
10 84,78 91,72 0.87 1.71 : 042
o Ta.80 a8 0.EG 1.65 : .86
i ar 7348 2353 083 1.80 083
an TOEG 1 8215 0.54 L84 0.54
I rad4 | page .84 157 0.0
in Efi.13 a7.41 .56 235 0.85
20 TT.OH Q4T 097 PR n.¥v
M an .13 2975 1nn R 5] .70
B E8.0 Q460 099 292 (1LAG
L] §2.34 JLRR ] .00 3.0 (.62
1 alLTR 5037 053 1.72 .90
kL] TI.04 .34 QA5 1.6 [ER:
; A0 7396 2R.T0 053 1.7a .61
40 7414 ar.7l 0.8 1.ai 0.52
a0 73.A7 #4993 078 1068 .53
f 10 T304 2701 041 1562 0.52
20 i : 89.68 24 165 0.54
d an T4.52 #7938 L2l .60 .82
40 T4.10 BR.GS n.24 1.7 o
5l 7,594 B0t 081 1.5% .82
1 4751 TLTE 0.63 1,36 0.81
20 T892 B8 45 0.E2 1.7} .87
e 3 7 T75a9 EDox0 .54 1.73 083
40 74,68 ET.4 0,88 1.77 0558
E an T4.38 AT 0,52 1.80 0Ex
[ 10 7800 22,08 0,83 172 0.65
20 Tr4n HE, 34 0,53 170 1.6
F g 7o E6 : 22,42 0.8 170 1,E4
40 7317 Ha,18 083 I.52 1,80
all G751 71.73 a3 1.36 LR
TABLE X
COMPARATIVE PERFORMANCE OF KNOWLEDGE-ENCODED MLPS FOR
BALANCE DaTa
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V1. CONCLUSIONS AND DISCUSSION

Someissues related wo the design of a fuzey knowledge-based
network, based on linguistic rules extrmcted from a fuzey deci-
sion bree, have been dealt with in this aticle. Major contribu-
tions include

1y deseloping a new scheme for aotomate hinguste dis-
cretization of continuous attributes using quantiles;

2y imtmoducing the novel concept of a gquantitative measure

T 1o evaluate the goodness of the decision ree, in terms
of its compactness and performance;

3 evaluating quantitatively the extracted linguistic rules

with some new indices;

4y mapping the hnguistic rukes 1o a fuzey knowledge-based

network, incorporating frequency of samples and depth

of attributes in the decision ree;
51 wsing new luezness measures at node level of the e,

o handle overlapping classes.

Effectiveness of the system has been exhaustively demon-
strated on three sets of real-life data, viz., Vowel, Wisconsin
Breast Cancer and Balance scale. Knowledge encoding using
linguistic rules extracted from the fuezy decision tree gencrally
enhances the perdommance of the knowledge-based system in
terms of both network compactness and mecognilion Scores.
It 1s typically observed that the valoe of ' decreases with
an increase in size of the trainmg data. This 15 because an
merease m tramning set siee leads wo the consideration of a larger
number of both noisy and good samples during the decision
tree generation. The former influences the formation of a tree
of greater depth, with an inereased possibility of larger number
of unresolved nodes, leading to a lower value of 4. In general,
cases a, ¢, d [fuzey entropy at node level of tee, by (83-(10)]
performs betler than case ¢ [25] and case fclasswcal entropy).

The automatic fuzey partitioning of the feature space 1o over-
lapping linguistic terms has been made vsing quantiles. Onecan,
of course, introduce more partitions comresponding o each fea-
ture. It was observed that in addition o inereasing the computa-
tonal complexity, this doesnot always induce a higher accuracy.
Increasing the granulation/partinoning at certan selected inter-
esting regions of the feature space however, is an issue currently
being investgated.
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