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Abstract

A concept of fuzzy discretization of feature space for a rough set theoretic classifier is explained. Fuzzy discretization
is characterised by membership value, group number and affinity corresponding to an attribute value, unlike crisp
discretization which is characterised only by the group number. The merit of this approach over both crisp discreti-
zation in terms of classification accuracy, is demonstrated experimentally when overlapping data sets are used as input
to a rough set classifier. The effectiveness of the proposed method has also been observed in a multi-layer perceptron in
which case raw (non-discretized) data is considered as input, in addition to discretized ones.
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1. Introduction

Data mining and knowledge discovery in dat-
abase 5 an intelligent method of discovering un-
known or unexplored relationship within a large
database. It uses the principles of pattern recog-
nition and machine learning to discover the
knowledge, and various statistical and visualisa-
tion techniques to present knowledge in a com-
prehensible form.

The theory of rough sets (Pawlak, 1991) offers
a theoretical basis for reasoning about data and
is found to be an effective tool for the decision
support system. This theory gives a set-theoretic
definition of knowledge, based on equivalence re-

lation and provides algorithms for reduction of
number of attributes, rule generation and classifi-
cation related to any information system. Rough
set theoretic classifiers perform better with the
discrete valued (symbolic) attributes or features.
These can be applied to continuous valued attri-
butes using a process called (crisp) discretization
{Lenarcik and Piasta, 1992; Nguyen and Skowron,
1995; Nguyen and Nguyen, 1998). The crisp dis-
cretization is a method of generating a set of values
or the ‘cuts’ of attributes within the dynamic
ranges of the corresponding attributes. The inter-
vals formed by the adjacent values of the cuts,
become the discrete groups for the continuous
valued attributes. The positions of cuts are very
sensitive to the subsets of the information system,
which are used to generate the cuts, as well as to
the methodology adopted. The position sensitivity
of cuts may make the classification accuracy ad-
versely affected. In order to avoid this problem the
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present article introduces the concept of fuzzy
discretization, which uses the cuts obtained from
crisp discretization and transforms a decision table
of continuous valued attributes to a fuzzy dis-
cretized decision table. This incorporates the po-
sitional information of the samples within an
interval. The superiority of the proposed scheme in
terms of both producer accuracy (PA) and user
accuracy (UA) is established on speech and hepa-
tobiliary disorder data. For this purpose we have
used both rough set theoretic classifier and multi-
layer perceptrons (MLP) which are capable of
handling symbolic input.

2. Rough seis

Let us consider a finite, non-empty set U/ of
objects called the universe. Any subset X C U of
the universe is called a concept and the family
of concepts is called the abstract knowledge. The
concept of class emerges if we deal with a certain
universe U, in which the families of subsets C =
{X1,X5,... X, } are disjoint partitions such that
LWY; = /. The partitions X; are the equivalence
class derived through a set of equivalence relations
R The concept of rough set was introduced to
approximate a set X' C [/ which is not a partition
directly but can be approximated by the set of
equivalence relations R which generate the family
of equivalence classes.

An information system (IS) is a pair, [S=
(U/,AuU{d}), where U is the universe, A is the set
of conditional attributes and o is the set of decision
attributes. If 4 and 4 are sets of n and m attributes
respectively then every n-tuple is a pattern vector
and the corresponding m-tuple is its identity. Thus
an information system can be viewed as a decision
table or a set of patterns with their identities.

Let B2 4 and X C U be in an information
system. The set X is approximated using infor-
mation contained in 8 by constructing B-lower
and B-upper approximations sets:

BY = {x|x], C X}
and

{B-lower approximation)

BY = {x|[x];,nX # 0} (B-upper approximation)

The elements in 84 can be classified as members of
X by the knowledge in B, however the elements in
BX can be classified as possible members of X by
the knowledge in B. The set BN(X) = BX — BX is
called the B-boundary region of X and it consists
of those objects that cannot be classified with
certainty as members of X with the knowledge in
B. The set X is called rough (or roughly definable)
with respect to the knowledge in 8 if the boundary
region is non-empty.

Rough set theoretic classifiers use the concept
of rough set usually in reducing the number of
attributes in a decision table {computation of
“reducts” (Pawlak, 1991)) and in handling incon-
sistent decision tables. It accepts discretized (sym-
bolic) input.

3. (Crisp) discretization

When the value set of any attribute in a decision
table is continuous valued or real numbers, then it
is likely that there will be very few objects that will
have the same value of the corresponding attrib-
ute. In such a situation the number of equivalence
classes based on that attribute will be large and
there will be very few elementis in each of such
equivalence class. This leads to the generation of a
large numbers of antecedents in the classification
rule, thereby making rough set theoretic classifiers
inefficient. Discretization is a process of grouping
the values of the attributes in intervals in such a
way that the knowledge content or the discern-
ibility is not lost.

Let the information system be IS =(LU,
Au{d}), where ¥, = [1,, w,) is an interval of reals
which is to be partitioned by a set P, of ¥, for any
a £ A. The process of discretization finds a parti-
tion of ¥, defined by a sequence of the so-called
cuts vy < v1--- < vy from F, satisfying some nat-
ural condition such as preserving the discernibility
of the information system.

The process of discretization can be local
(univariate) or global (muld-variate). In local
discretization each attribute is discretized inde-
pendently satisfying the constraints locally for
that attribute. The constraints however may not
be satisfied on the final discretized decision table.
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Therefore the process may result in loss of dis-
cernibility. In the case of global discretization, all
the attributes are considered together and dis-
cretization process does not result in loss of dis-
cernibility. In glohal discretization the decision
table however may not result in the formation of
grouping and there may be a one-to-one corre-
spondence with the non-discretized decision table.
The problem of finding the optimal set of cuts in
global discretization is NP-hard Most of the
discretization algorithms are heuristic and the
obtained partitions are sub-optimal (Komorowski
et al, 1999).

4. Fuzzy discretization

Any realistic multi-dimensional data of a
physical process is primarily continuous valued
and is overlapped in feature space relative to some
classes. In other words, in rough set terminology
we get an inconsistent decision table of continuous
valued attributes. As mentioned in the previous
section, since the crisp discretization algorithms do
not usually find the optimal set of cuts, the posi-
tions of cuts tend to be sensitive to the subsets
considered of any information system. We con-
jecture, this sensitiveness would be more pro-
nounced in the case of an inconsistent decision
table. This means any attribute value that is close
to any cut can fall either way if some different set
of data is considered, or some different heuristic is
applied in the process of discretization. Therefore
it may not be appropriate to consider crisp dis-
cretization always.

In this article we propose a method of fuzzy
discretization that works on the available set of
cuts found from crisp discretization. We consider
that the positions of cuts are fuzzy, or in other
words, the degree of belonging of the value of
any attribute to any interval, defined by consec-
utive cuts, is not crisp and is defined by a mem-
bership value. Let ¢; and ¢;; be two consecutive
cuts. Let the attribute value v be designated not
only by the group number, g, but also by a
membership value, m < [0,1] depending on the
position of v in the interval [c;, c;1]. We have also
added a third component called the “affinity”, a,

which discriminates the data having the same
membership value in the given interval but closer
to a particular cut. Thus a point s converted,
after fuzzy discretization, to a triplet {m, g a}l,
instead of a singlet as in the case of crisp dis-
cretization.

4.1 Algorithm

In order to explain the process and the algo-
rithm of the fuzzy discretization, we have shown in
Fig. 1, as an example, the distribution of a set of »
(in this example, n = 5) data points {P, P,..., 5}
{as marked by solid dots) of a continuous valued
attribute. The members of the set C = {ey, 01, ...,
c,—1} are the cuts on the atiribute. We have con-
sidered a trapezoidal membership function be-
tween the cuts as shown in the figure. In this
function, membership value varies between ‘base’
(in this example, base =0.2) and 1. The fractions
of the slanted and flat portions of the trapezoidal
function with respect to the width of the base are
marked as s and [ respectively. In the open inter-
vals {—oo, ¢y} and {¢s, oo} the membership value is
considered to be constant (=1) instead of trape-
zoidal. The affinity of the points having member-
ship value of 1 is considered to be the same as the
eroup number. For other points, the affinity value
is the same as the adjacent group number close to
it. The five values A to £ have therefore been
transformed as follows:
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Fig. | An example.
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P — {1,0,0}, P, —{0.2,1,2},
P, — {08,3,2}, P — {1,4,4}, Ps— {1,55}

The algorithm for converting an attribute value
v to a triplet {m, g, a} is described below:
For each attribute value v do the following:

iff <= ) {
m = 1.0
g=1
ﬂ=g:
H
ekeif v = oy 1
m = 1.0
g=n
a =g,
H
else |
done = false;
i=10;
do {
f=s#(ci —oil;
left = c; 4+ £
right = ¢ — £
if v < epq d
if v < left {
m=base+ (1 — base) * (v—e;)/f;
g=i+1;
a=g—1;
H
else if v < right {
m=1;
g=i+1;
a =g
H
else |
m = base +
(1 —base) * (c;+1 —v)/t;
g=i+1;
a=g+1;
H
done = true;
H
i=i+1
} while(i <= n — 1 and done == false);

}

4.2, Effect of fuzzification

To illustrate how the proposed fuzzification
scheme can alter the feature space, we consider
two overlapping classes in a single attribute (fea-
ture). In Fig. 2 we have shown the distribution of
such attribute values. The members of the set
C = {21.5,33.5,49.5,67.4, 100.5,126.5,224} repre-
senting the cuts obtained by the global discretiza-
tion process, are shown by vertical lines. The
overlap nature of the values for the two classes is
evident from the distribution. Fig. 3 shows the
distribution of values of the same patterns after
crisp discretization. In Figs. 4 and 5 we have
shown the projections of the distribution of the
same patterns in m—g plane and m—a plane afier
fuzzification. Figs. 4 and 5, together demonstrates
the enhanced discernibility of patterns, as com-
pared to the original (Fig. 2) and crisp discretized
version (Fig. 3).
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5. Experimental resulis

To demonstrate the effectiveness of fuzzy dis-
cretization, we have considered here the problem
of pattern recognition using a rough set classifier
{R5C). We have also used one of the widely used
pattern recognition tools, MLP, to check the

consistency of the effectiveness. Two overlapping
data sets, namely, vowel (Pal and Dutta Majum-
der, 1977) and hepatobiliary disorder (Hyashi,
1994: Mitra, 1994) are used. Both the data sets
have continuous valued attributes.

Vowel data consists of 871 patterns. There are
siv. overlapping classes (), a, e,i,0,u) and three
input features (formant frequencies £, £ and F).
All entries are integers. Hepatobiliary disorders
data consists of 536 patterns. There are four he-
patobiliary disorders (classes) and nine features
{symptoms). Out of these we have considered four
best features (Pal et al, 1999) for our experiment.
These are glutamic oxalacetic transaminate (GOT,
Karmen unit), glutamic pyruvic transaminase
(GPT, Karmen unit), lactate dehydrase (LDH, i/
1), and mean corpuscular volume of red blood cell
{MCV, fl). The four classes represent hepatobiliary
disorders namely, alcoholic liver damage (ALD),
primary hepatoma (PH), liver cirrhosis (LC) and
cholelithiasis (C). The overlapping nature of the
data sets is evident from their projections on a
subset of the feature space as seen in Figs. 6 and 7.

While using RSC and MLP we used both the
original and crisp discretized data sets as input for
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Fig. 6. Projection of vowel data in FI—F2 plane.



00 A. Rov, 5.K. Pal ] Pawern Recognition Letters 24 § 2003 | 205002

T.oan
O
| =4 LR
Y
1 7 ar
e
= - H
3
= B
o
= %
- |
1
5
n
B0
1a0u 208
LCH in o'

Fig. 7. Projection hepatobiliary disorder data in MCV-LDH
plane

comparing the results with that of fuzzy discretized
data. In the case of MLP, we have also added the
comparison with the raw (non-discretized) data as
MLP has no restriction on the type of inputs. The
performance is compared in terms of PA and UA,
described in Appendix A Resulis shown here are
the average values computed over five different
runs.

3.4 Resudts with vowel data

Tables 1 and 2 show the performance for vowel
data using RSC. Here a rough set explorer RO-
SE2Lite (Predki et al, 1998; Predki and Wilk,
1999} was used for both crisp discretization and
classification. It splits a data set into n different
folds, uses n — 1 folds as the training set and the
rest as the test set, and it repeats the same n times
rotating across the folds. We have kept the number
of folds as 2. It means the training and test sets are
both 5004 (ROSE2Lite has a limitation of han-
dling maximum of 500 samples and 20 attributes.)

In Table 1 we have shown the variation of
overall PA with the number of patterns in the data
set as 330, 440 and 500. Table 2 demonsirates the
class-wise performance in terms of both PA and
UA for 300 patterns corresponding to Table 1.
From Table 1 it is seen that fuzzy discretization
performs better than the crisp discretization in all
the cases. This is also true for class-wise perfor-
mance in terms of PA and UA, except for class 0
{Table 2).

Tables 3 and 4 correspond to the resulis using
MLP for vowel data. Since MLP can work, unlike
the rough classifier, on raw data as the input, we
have included the results using raw data also in
Tables 3 and 4. In Table 3 we have shown the
variation of overall PA with training set for vowel

Tahble 3
MLP: overall PA in percentage

Table 1 - P
Dhiscreliz Trn. s Trn. s Trn. s Trn.
RSC: overall PA in percen L pe m:;.-l:c;ljlmlmn .,1.;:1 st 31.;:1 . 41;:1 st Hj,l,:l, st
Dhscretizlion Mumber of  MNumber of  Mumber of
Raw dat: BL73 B262 B2B4 B 44
method patterns 330 patterns 440 patterns 500 Cri:(p e §119 g7 57 8206 R117
Crisp 71.57 71.54 437 Fuzey 8217 B4.83 B5.72 BA 48
Fuzzey 7331 7491 7806 Texl sol: 520,
Table 2
RSC class-wise PA vs. UA
Dhscretizlion Class o Class a Class ¢ Class I Class o Class u
methid PA LA PA LA PA LA PA LA PA A PA LA
Crisp 04 a9 4 731 £7.3 B2 B6.7 BlS T6.4 720 7R3 759 4.2
Fuezey 46.2 632 Bo.1 BRE 863 aq.1 B33 B52 758 BOLO T6.1 8.6

Mumber of patterns: 500,
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Table 4

MLP: class-wise PA vs. UA
Dhiscretization Class 2 Class a Class ¢ Class I Class o Class
ruthod PA UA PA UA PA UA PA UA PA UA  PA UA
Raw dala 46.6 729 864 896 B34 ap.2 B39 a0 g g3 7.3 £7.2 817
Crisp 0.8 696 BL7 B4.6 B4.1 £9.3 8.0 g79 a1.5 6.9 Bl9 8.7
Fuzzy 64.1 T4.6 878 BR.2 869 a0.1 B6.7 al.0 BR.S E2.0 BE 4 E7.8

Training sel: 40045,

data using MLP with one hidden layer containing
ten nodes. This configuration of the network was
found earlier (Pal and Mitra, 1992) to produce the
best performance among many others. The same
test set consisting of 52% samples is used through-
out the experiment. In all the cases (except for 200
training set) fuzzy discretization is found to be the
best.

Table 4 shows the class-wise performance for
both PA and UA corresponding to the 40%%
training set of Table 3. The fuzzy discretization is
seen to be superior in most cases. The class
having maximum overlapping nature (Fig. 6)
shows significant improvement in PA without
sacrificing UA.

320 Results with hepatobiliary disorder data
Tables 5 and 6 show the results corresponding

to RSC, whereas Tables 7 and 8 refer to those
using the MLP. The overall recognition scores

(PA) in the case of fuzzy discretization are found
to be the best for both classifiers (Tables 5 and 7)
using different training sets. As in the case of vowel
data, the class-wise performance (using PA and
LIA) is also seen to be superior in most of the cases
in fuzzy discretization (Tables 6 and 8).

6. Conclusions

A concept of fuzzy discretization is introduced.
It has three components, namely, membership
value, group number and affinity value, unlike
crisp discretization which is characterised only by
the group number. This provides a better tool for
handling inconsistent decision tables arising from
overlapping pattern classes. It is evident experi-
mentally using a RSC (which accepts symbolic
input) that fuzzy discretization has an edge over

Table 7
MLP: overall PA in peraentage
E‘lqit 5 call PA i . ) Dhscretization  Trn.oset Trn.set T set T, sel
it T et method 20 W, 4 0%
D"Zﬁ‘:j‘““““ Hnies ;]r . Pt ;{ - Nt ;]r : Raw data 4715 5095 5288 5333
e e e P Crisp S6.46 6091 6153 6225
Crisp 4900 40 94 4974 Fuzzy 5878 63,60 6805 69,88
Fuzzy 40 &8 4005 5101 Test sel: 60,
Tahble 6
RSC: class-wise PA vs, UA
Dhscretization  Class ALD Class PH Class LC Class C
method PA UA PA UA PA UA PA UA
Crisp 27 64 47.04 SR.09 6403 26.80 44.17 £2.19 6,49
Fuezy 28 08 483 6163 65.12 24,79 44 51 £2.007 6.3

Mumber of patterns: 500,
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Table 8§

MLP: class-wise PA vs, UUA
Discretization  Class ALD Class PH Class LC Class C
method PA UA PA UA PA UA PA UA
Raw data 183 689 79.23 57.67 11.92 15.01 E7.53 57.14
Crisp 43,32 66,33 T4.85 6l.64 44.99 49,71 E4.35 T9.16
Fuzey 51.51 6282 737 67.98 57.22 59.02 E5.E9 E3.57

Traing set: #0%, test sel: 60045,

crisp discretization when overlapping vowel data References

and hepatobiliary disorder data are used as input.
Fuzzy discretization s also found to perform
consistently better over crisp discretization as
well as non-discretization (raw data) when MLP
is used as a classifier. Although we have trape-
zoidal membership function, one may consider
any n or triangular function depending on the
problem.
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Appendix A. Producer accuracy and user accuracy

Let / be the number of classes and N be an [ x /
matrix whose (i, j)th element »; indicates the
number of patters actually belonging to class i but
classified as class j.

Producer accuracy: The PA or some times re-
ferred to as accuracy or classification score is de-
fined as n;/(n; = 100), where n; is the number of
patterns in class {, and n; the number of these
points which are correctly classified as class .

User accuracy: The UA is defined as n;/
(r) = 100), where n) is the number of patterns
classified as class i. This gives a measure of the
confidence that a classifier attributes to a region as
belonging to a class. In other words, it denotes the
level of purity associated with a region.
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