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Abstract

Rocks that are mechanically heterogeneous due to the presence of stiff or rigid inclusions floating in a ductile matrix,
commonly show a variety of micro- to macro-scale structures developing under the influence of heterogeneous flow field in the
neighbourhood of the inclusions. It is of fundamental importance to apprehend the nature of strain heterogeneity around
inclusions to understand progressive development of structures associated with rigid inclusions such as strain shadow, foliation
drag, porphyroclast mantle, porphyroblast inclusion trails, intragranular fractures, etc. The development of these diverse types
of structures can be analyzed with the help of a suitable hydrodynamic theory. In this paper, we review different continuum
models that have been proposed to characterize the heterogeneous flow field around rigid inclusions, focusing on recent
developments. Recent studies reveal that Jeffery’s [Proc. . Soc. Lond. A 120 (1922} 161.] theory dealing with the motion of
ellipsoidal rigid bodies in an infinitely extended viscous medium is more general in nature, and applicable for modeling the
heterogeneous flow around both equant and inequant shapes of inclusions and ideal or non-ideal shear deformation of the
matrix. The application of this theory, therefore, has advantages over other models, based on Lamb’s [Lamb, H., 1932,
Hydrodynamics. Cambridge University Press, Cambridge.] theory dealing with spherical inclusions. The review finally
illustrates numerical sinulations based on hydrodynamic theories, highlighting the controls of physical and kinematic factors on
the progressive development of the structures mentioned above,
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1. Introduction

Deformation of a rock system chameterieed by suff
orrigid inclusions floating i a ductile matnx produces
a variety of micro- to macro-scale structures under the
influence of heterogeneous low field around the inclu-
sions. In rocks the rigid inclusions are usually repre-

sented by stff] large mineral grains (porphyroblasts or
porphyroclasts), xenoliths, pebbles ete., and the related
geological structures include foliation drag, strain
shadows, porphyroclast tails, porphyroblast melusion
trails and intragranular fractures (Fig. 1), All these
structures are common in deformed rocks and are
useful kinematic indicators. 1t is therefore essential to
understand the mechanics of formaton of the aforesaid
structures for their precise and proper application in the
kinemate analysis of deformed rocks.
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Fig. . Natuml examples of different types of structures associated with nigid inclusions: {a) strain shadow, (b) foliation drag, {¢) porphymclast
tails, (d) porphymoblast inclusion trmils, () intmgmnular fmctures, (a), (b), (d) and (<) are photomicrogrphs. {c) is a field photograph.

In structural geology the kmematies of sufT but
deformable, and ngid inclusions embedded within a
ductile matrix has been a subject of study over
several decades (Gay, 1968, Reed and Tryggvason,
1974; Ghosh and Ramberg, 1976; Ferguson, 1979;
Freeman, 1985; Fernandez, 1987; Passchier, 1987,
Masuda et al, 1995; Jezek ct al, 1996). These
analyses mostly concentrate on how the {loating
inclusions change their shape or rotate bodily
the course of progressive deformation, but do not
really focus on the consequences of the heteroge-
neous {low field in the matix induced by the sufl

inclusions. Understandably, the heterogeneous {Tow
ficld around suff inclusions is crucial to model
structures, such as foliaion drag, swrain shadow ete.
Using numercal and analog models some workers
have attempted analysis of heterogeneous deforma-
tion in the matrix (Ghosh and Sengupta, 1973;
Masuda and Ando, 1988; Mandal and Chakraborty,
1990; Hdefonse et al., 1992; lldefonse and Manckie-
low, 1993; Masuda and Mizuno, 1995, 1996a,b;
Kenkmann and Dresen, 1998; Pennacchiom et al.,
2000). The stdies using this approach led to a better
understanding of many kinematically important
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structures, such as foliation drag pattems, melusion
trail patterns of pomphyroblasts and mantle structures
around porphyroclasts.

The heterogeneous low field that rigid inclusions
induce in their neighborhood also influences the
nature of brttle deformation of inclusions that may
result in response o the raction exerted on them by
the fMlowmg matrix (Hobbs, 1967; Lloyd and Fergu-
son, 1981; Lloyd et al, 1982; Hancock, 1985; Ram-
say and Huber, 1987; Masuda and Kuriyama, 1988,
Hipperit, 1993; Michibayashi, 1996; I and Zhao,
1993 Ji et al, 1997). Considering the stress transfer
from the flowing matrix to the matrix-inclusion mter-
face (shear-lag model), several workers (Ramberg,
1955; Hobbs, 1967; Lloyd et al., 1982; Pollard and
Segall, 1987; Masuda and Kunyama, 1988; Mandal et
al, 1994; Ji et al., 1997) have analyzed the mecha-
nism of fracturing of brittle grains embedded in a
softer matrix under a bulk pure shear defommation.

In this review, we first present a detailed account of
different theoretical formulations that derive the
velocity functions n order to charactenze the hetero-
geneous flow of the matrix and rotation of the
inclusion. The next section describes different numer-
ical models that have been developed using the
velocity functions to understand: (1) the nature of
particle paths m the mamrix; (2) the development of
strain shadow zones and distortion patterns of passive
foliations around an inclusion; and (3) the mantle
structures around porphyroclasts and melusion trails
within porphyroblasts. Lastly, the paper describes
different theoretical and experimental studies that
have considered the effects of heterogencous {low
around inclusions on the development of intragranular
fractures.

2. Velocity field around rigid inclusions
2.1. Theoretical formulations

Different continuum models have been formulated
to analyze the deformation of a matrix-inclusion
system, based on elastic or viscous theology of the
matrix. Considering elastic theology and using plane
theory of elasticity (Muskhelishvilli, 1953), several
workers have analyzed the kinematics of stfl inclu-
sions {loating in a sofier matrix and the neighboring

siramn field (Eshelby, 1937, 1959; Ghosh and Sen-
gupta, 1973; Mandal and Chakraborty, 1990; Ji et al.,
1997). Experimental studies, however, reveal that
rocks can undergo a limited elastic strain and that
too at upper crustal levels only; consequently, the
elastic models appear unsuitable for charactenzing
deformations of rocks that might have undergone
large ductile strain at deeper crustal levels. Applica-
tion of the theories of hydrodynamics, on the other
hand, 1s more approprate for modeling deformation
behavior of rock systems containing stiff inclusions in
a viscous matrix. Using Lamb’s (1932) theory of
spherdeal hammonies, Gay (1968) has modeled the
deformation of {loating mclusions within a matrix
with respect to the bulk strain, for different viscosity
contrasts between the inclusion and the matnx, He
derived the velocity functions as follows:
Velocity components outside the inclusion:
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Velocity components mside the inclusion:
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where r = /x* +37; p=b/V] — eos’s, eis the
cecentricity of the elliptical inclusion (va? — #2), a
and b are the major and minor axial dimensions of the
inclusion, respectively; 4, 8 are constants, which need
to be determined by applying boundary conditions. &
is the principal rate of natural strain in the far field.
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Gay’s work revealed that the deformation within
the inclusion (Eq. (2)) s essentially homogeneous,
whereas the deformation outside the inclusion (Eg.
(1)) 15 heterogeneous, as also obtamed from elastic
models (Eshelby, 1957, 1959). However, in Gay's
mathematical formulation it is not explicit how rotat-
ing inclusions induce heterogeneity m the matrix flow,
although from Lamb’s theory one can also determine
the veloeity functions around a spherical rigid body in
terms of its rotation rate by solving the famous
MNavier—Stoke’s equation (Oertel, 1963). This has
been utilized to model different aspects of heteroge-
neous deformation around rigid inclusions, such as
particle paths, strain distribution, distortion pattems of
foliations (Masuda and Ando, 1988), porphyroclast
tails (Bjornerud and Zhang, 1995) and inclusion trail
pattems within synkinematic porphyroblasts (Masuda
and Mochizuki, 1989) assuming a Newtonan theol-
ogy for the matrix.

Masuda and Ando (1988) have expressed the veloe-
ity functions outside a rigid, sphereal inclusion as:

(M Wa) = (Hal Vat Wal ) + (M2 Va2 W ) (3)

The first part of the right hand side of the equation
refers to the veloeity components considering a general
viscous flow around a fixed rigid spheneal body,
whereas the second pant represents the velocity com-
ponents arising due to the rotational motion of the ngid
body. The expressions of these velocity components
are as follows:
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where r= /x*+3* +2 and y,. ¢, and W, are
spherical solid harmonices of degree n.
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The form of the expressions of v, and w,, of Eq.

{33 will be similar as in Eq. (4). The expression of the
velocity component in the second part (Eg. (3)) is:
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The form of the expressions of the other two compo-
nents will be similar as above.

Similady, Bjornerud and Zhang (1995) have
defined the veloeity field by adding two velocity
components, one associated with displacement (w,,
Vg, W) of matenal points around the rgid inclusion
and the other (g, vi, wi) with shear-induced rotation
of the melusion. The expressions of these two types of
velocity components have been obtained as:

y = (3Ua/4)(1 — & fr* )P
+U(1 —3a/dr—a' j4)
va = (3Ua/4F)(1 — a* /P )y
we = (3Ua/ar)(1 —a® /¥ )xz (6)
and

1,1
for r = a: wy = ko [,
3
Vi, = —kongxa ..-’1‘3 W =10
for r < a:wp = kagy, v = —kagx, wy, =10 (7

where a is the inclusion’s radius, r is the rmadial
distance of the point from the inclusion centre, U is
the rate of displacement in the shear direction far
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away {rom the inclusion (Eq. (6)) and o, 15 the
rotation rate of the inclusion. The pammeter £ in Eq.
{7) 1s an mdex of coupling between the inclusion and
matrix, the value of which lie in the ange of 0 o L
k=1 implics a non-slip condition at the inclusion/
matrix interface.

Masuda and Mizuno (1996a) and Pennacchion et
al. (2000) have further extended the analysis for rigid
inclusions hosted in a non-Newtonian matrix. Bjor-
nerud (1989) formulated the heterogeneous strain
field surounding an equant ngid inclusion following
the equations of Turcotte and Schubert (1982) and
numerically modeled the development of passive
folds in the neighborhood of the inclusion similar to
the foliation dmgs obtained by Masuda and Ando
{1988). The equations obtained by Bjornerud (1989)
are as Tollows:

iy - U{ 1= f(2F) 3a,f2r}cnsﬂ

g = U{ =g f4r ) laf4r}sinff
ifor v = a) (8)

where a is the radius of the inclusion; rand (f are polar
co-ordinates centred on the sphere; w, and wy are madial
and tangential velocity components, respectively and
U s the far-field unidirectional flow veloeity m the
=0 direction. It may be noted that Eq. (8) is
applicable to fluid flow around a rigid sphere subject
to the following conditions. (1) The fluid approaches a
uniform veloeity far away from the sphere and (2) the
rigid sphere 5 stationary and non-rotating. Thus the
velocity functions have o be modified in order to
utilize them for describing the flow field around a
rigid body under shear defommation.

Recently, some workers (Jezek et al., 1999; Mandal
et al., 2000b, 2001a) have utilized Jeffery’s (1922)
theory o model the heterogencous flow field and
development of related peological structures in a rock
system containing rigid inclusions of either equant or
inequant shape, under pure shear, simple shear or
general type of bulk deformation. This theory is given
in three dimensions, describing the velocity field
around a rotating ellipsoidal melusion. The velocity
functions of Jeffery (1922) involve a number of
complex pamameters, the solutions of which can be

obtained with the help of numercal methods (Jezek et
al., 1999). These parameters can, however, be derived
analytically when the Jeffery’s theory is considered in
two dimensions {or circular or elliptical inclusions
{Mandal et al., 2001b). In two dimensions the velocity
functions of the flow around an elliptical inclusion are
somewhat simpler, and their expressions follow:
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where @ = vVal +i, b = VP + i and A=d ¥,
where a and b are the major and minor semi-axes of
the elliptical inclusion, and 4 is the elliptical co-
ordinates of a point under consideration. 8 is the
instantaneous bulk velocity gradient tensor with
respect to axial directions of the inclusion. =z, f§ and
7 are geometne parameters, whose expressions in two-
dimensions can be written as:
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The solutions of the above ntegrals are:
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The expressions of constants, 4, B, .. in Eg. (9)
(Mandal et al., 2000b, 2001a) are:
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At an instant, points lying outside the inclusion
{4 = 0) will move according to the veloeity compo-
nents shown above, while points either on the surface
or inside the inclusion (4 <0) will move with veloeity
components:

w= —wy and v = wx,

w15 the mstantaneous motation mate of the inclusion,
which is given by:

a*(Sin"p + 5Sin2p) + B (Cos’ ¢ — 5Sin2¢) _
- ih

(10)

where S, is the mtio of bulk pure shear and simple
shear rates. Eq. (10) reveals that inclusions of equant
shape (@=5h) rotate with a constant angular veloeity
of % in simple shear as well as in a combination of
simple shear and pure shear.

The different theoretical models discussed above
can be utilised to run numerical experiments to study
the flow pattem and related structures around ngid
inclusions as outlined in the following sections.

= -
&+

3. Particle paths around rigid inclusions

Two types of paths have been predicted—one with
eye-shaped separatrix and the other with bow-tie-
shaped separatrix, which have been presumed to
develop in Newtonian and non-Newtonian matrix,
respectively (Fig. 2; Passchier, 1994). Later studies,
however, have shown that the flow with double-
bulge-shaped (ie. eye-shaped) sepamrix (Masuda
and Mizuno, 1996a) and bow-tie-shaped separatrix
{Pennacchioni et al, 2000) may develop in both the
rtheological varieties. 1t appears that in addition o
matrix rheology there are other factors that could
control the geometry of particle paths, such as shape
of ngid inclusions (R=a/b) and the mtio of pure shear
and simple shear rates (S)) in the bulk deformation as
pointed out by Passchier (1994),

Forequant mclusions (#=1) in simple shear type of
deformation, the particle paths show a typical eye-
shaped separmatrix (Fig. 3). The separatrix has a finite
dimension across its longer direction, but becomes
asymptotic along the length (Fig. 3a, see also Masuda
and Mizuno, 1996a). The absence of stagnation points
{zero velocity) is a characteristic featre of the {low
pattern around the inclusion. With introduction of pure

() Stagnation point

Fig. 2. Possible flow pattems (particle paths) around spherical ngid
inclusions under simple shear. (a) Particle paths with eye-shaped
separatrix and (b)) particle paths with bow-tie-shaped separatrix
{Passchier, 1994,
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Fig. 3. Numencally simulated particle paths around equant rigid inclusions. {a) Simple shear, (b, (¢) and {(d) Combination of pure shear and
simple shear, stmight lines parallel and inclined to the shear direction are the extensional and contractional apophyses of the bulk deformation,
respectively. S: stagnation points in the flow around the ngid inclusions. 8 =rmatio of pure shear and simple shear mtes in the bulk deformation.
Mote that with increase in &, the shape of the sepamtrix changes from eye shape to bow-tie shape.

shear component m the bulk deformation (8, = 0) the
separatix becomes {mite both along and across its
length and two diametrically opposite stagnation
points appear (Fig. 3b). With further nerease in the
pure shear component, particle paths in the immediate
neighborhood of the melusion become elliptical and
those away from the inclusion are hyperbolie. The se-
paratrix of the two types of paths now assumes a bow-
tic-shaped geomety (Fig. 3c¢). The line joining the
stagnation points bisects the extensional and contrac-

tional apophyses of bulk deformation (Fig. 3c¢). The
distance between the stagnation points defines the
longer dimension of the separatrix. When the pure
shear component 15 very large (5, =0.5), the separatnx
shrinks in size and becomes more equant, as the stag-
nation pomts moves close to the melusion (Fig. 3d).
To summanze, the {low pattem around an equant
rigid melusion i simple shear is charactenzed by a
semi-infinite eye-shaped separatrix, which in bulk
deformations by a combmation of simple shear and

Fig. 4. Diagram showing contrasting flow patterns around {a) equant and {b) inequant ngid inclusions, as obtained from numencal simulation. In
{b) the long axis of the inclusion was initially parallel to the shear direction. &: aspect ratio of the inclusion.
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pure shear assumes a bow-tie-shaped geometry with
finite dimensions {Mandal et al., 2001h).

The flow pattems around inequant inclusions are
much more complex, and are charactenized by mutu-
ally disharmonic, and intersecting particle paths,
implying an unsteady nature of the flow (Mandal et
al, 2001b, Fig. 4). In contrast to paths around equant

tion several umes while moving along close paths
{Fig. 4b). The reversal points are generally located
away {rom the central shear plane.

4. Strain shadow zones around inclusions
In this review we deal mamly with strain shadows

developing in the matnx that remain attached o the
melusion. Recent studies (Mandal et al., 2001b) reveal

that the development of such strain shadows depends
on different geometrical and kinematic parameters,
such as shape and onentation of the inclusions, and
the ratio of pure and simple shear rates (5;) in the bulk
de formation.

In simple shear type of deformation (5,=0), strain
shadow domains develop against the wo extensional
faces of the equant inclusion describing a o-type
geometry (Fig. 3a). The zones of high strain occur
near the contraction face of the inclusion and along
long bands at an angle less than 45° with the shear
direction (Fig. 5a and b, see also Masuda and Ando,
1988). The low-strain zones tend to shrink as the pure
shear component in the bulk deformation increases
{Fig. 5b and ¢), and when the deformation is entirely
by pure shear, no strain shadow zone occurs (Fig. 5d).

In case of mequant inclusions the initial axial
orientation of the melusion with respect o the shear

<) L Sr= 0.5

G}

Fig. 5. Strain distributions armumnd equant rigid inclusions in numencal models. Finite bulk shear = 4.0, Strain shadow zones {(shaded) are shown

In insets.
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Fig. 6. Strain distributions around inequant inclusions of aspect ratio # =2 with different initial inclinations of their long axes to the shear
direction {g). Finite bulk shear=4.0. Strain shadow zones (shaded) are shown in insets,

direction (g) and the axial mtio of the inclusion (R)
are additional parameters in the localization of strain
shadow zones. Strain shadow zones form when the
long axis of the inclusion makes an angle between 60°
and 1357 with the shear direction (Fig. 6). When @ is
close to 60°, the strain shadow zone forms a narow
tail, emerging from the tip of the inclusion (Fig. 6a).
With increase m mitial inclination, the shadow zone
becomes wider and longer (Fig. 6b), and at @=120°,
they form bands giving rse to an overall pattern
similar to that of augen structures (Fig. 6¢). The

low-strain zones die out as the minal inchnation of

the nclusion is further mereased (Fig. 6d) and instead
a narrow zone of strong strain concentration appears
sub-parallel to the long axis of inclusion (Fig. 6d).

For a given @, with increase in axial mtio of the
rigid inclusion strain shadow zones progressively
merease o length as well as change therr pattern
{Fig. 7). When the axial mtio is low (R=1.5), the
strain shadow zones resemble o-type wils emerging
from the nodes of the inclusion (Fig. 7a). With
increase in axial mtio, R, the zone forms wings, which
fmally becomes like a band surrounding the melusion
(Fig. The).

5. Distortion patterns of passive foliations

The heterogeneous flow field around rigid inclu-
sions 1s commonly manifested i the distortion of
passive markers (bedding or foliation) in the matnx
(Fig. 1b). The distortion patterns of passive markers in
the neighbourhood of rigid melusions are useful in the
analysis of progressive deformation as well as kine-
matic conditions.

Ghosh (1973) and Ghosh and Ramberg (1976)
have analyzed different drag pattems by considering
the relative rates of rotation of the melusion and the
passive markers in the course of progressive deforma-
tion. However, there are distortion patterns that cannot
be explained by these analyses. Masuda and Ando
{1988) wok inw account the heterogencous strain
field around equant inclusions and explained diverse
types of distortion pattems for different initial orien-
tation of passive markers under simple shear type of
bulk deformation. However, the distortion patierns
would also depend on the shape and orentation of
the inclusion if it 15 inequant and the mtio of pure
shear and simple shear rates in the bulk deformation,
as shown m Figs. 8 and 9. The different drag patterns
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Fig. 7. Geometrical variation of strin shadow zones near inequant inclusions with increase in axial ratio 8. The long axis of the inclusions was

initially at an angle ¢ = 1207 with the shear direction.

that may form around rigid inclusions under varying
combinations of the above pammeters can be classi-
fied into four major types (Fig. 10, Mandal et al,
2001b). Type 1: Markers fonm bi-convex curvatures
around the inclusion (Fig. 10a). Type 2: Markers are
distorted m the fornm of typical folds on either side of

the inclusion (Fig. 10b). Dependng upon the degree
of relative curvature, the drag folds can again be
classified into three sub types: Type 2a, 2b and 2e.
The first two types are charaeterized by larger curva-
res of folds with inward convexity, and they differ
from each other by the opposite sense of arrangement
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Fig. 8. Mumerical simulations of the distortion patterns of passive marker lines amund equant rigid inclusions. f is the initial inclination of
murker with the shear direction. {a) Simple shear (h) Combination of pure shear and simple shear. & is the mtio of pun: shear and simple shear

Tates.

of folds with inward and outward curvatures. Type 2e
has drag folds with outward convex curvatures much
greater than inward convex curvatures. Type 3:
Markers are distorted with inward convex curvatures.
They have smooth, rounded (single-hinged) (Type 3a)
or {lat (double-hinged) (Type 3b) crests (el millipede
structures, Bell and Rubenach, 1986) (Fig. 10¢). Type

4: The drag effect of inclusion is such that the markers
are distorted in the form of overtumed folds on either
faces of the mmclusion (Fig. 10d). This ype of dmg
pattems has been produced m analog model experi-
ments (Van Der Dressche and Brun, 1987). Types Ze,
3b and 4 develop around inequant inclusions under
specific conditions, whereas the rest of the types are
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Fig. 9. Drag patterns of marker lines around inequant inclusions. {a) & was vared, keeping §f = 0 and o = (. (b} i was varied, keeping # =3 and
=10, {c) 1 was varied, keeping &= 1.5 and ¢ = 0. In all the cases 5, =0, & axial mtio of inclusion; ¢ initial inclination of the long axis of
nelusion with the shear direction: & initial inclination of marker with the shear dinection.

common to both equant and mequant inclusions. The
nature of dmg pattem of marker foliation may be
useful to understand their iminal orlentations as well as
the shear sense. For example, in case of Type 2 dmg
patterns the initial orientation of the foliation is
required to be parallel to the shear direction or at
angles more than 90°. Again, Types 2b and 4 dmg
pattems can be wsed as shear sense indicators (Fig.
11). Table 1 summarizes the conditions at which
different types of drag patterns develop.

6. Mantle structures around porphyroclasts

Passchier (1994) has comprehensively classified
mantled porphyroclasts (Fig. 1c¢) mto four ypes (-,

=, = and o-type, Fig. 12} f-type porphyroclasts are
characterized by little or undeformed mantles without
any discernible tils. g- and d-type porphyroclasts
have mantles with promment tails showing mono-
clinic arrangement. The tils on either side of the
porphyroclasts lie at relatively different levels, defin-
ing siair-stepping (Fig. 12). o-type pormphyroclasts
have ils bounded by straight lines on one side and
curved lnes on the other side that define an mternal
asymmetricity. The tils in o-type porphyroclasts do
not cross the shear plane passing through the center of
the porphyroclast. In contrast, d-type porphyroclasts
have tails with both boundaries curved in the same
sense, and m addition, the tails cross the central shear
plane. gi-type porphyroclasts, on the other hand, have
tails symmetrically disposed astride the rigid core
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Type 1 (a)
Type3 (c)
[3a]
[3b]

Type 2 (b)

iy S
—
[2b]

O

2¢] ﬁm
s -
Type 4 (d)

Fig. 10, Types of drag pattems obtained from numerical simulations {see text for details).

showing an orthorhombic symmetry. o- and d-type
porphyroclasts can be used as shear sense indicators
by analyzing the sense of stair-stepping as shown in
Fig. 12. We will see later that there may be more
complex mantle structures showing combinations of
the above types.

The mantle structures of porphyroclasts have been
successfully simulated in experiments with Newto-
man as well as non-Newtonian matnx  (Passchier
and Simpson, 1986; ten Brank and Passchier, 1995;
Passchier and Sokoutis, 1993). The experimental
results apparently conform to the theoretical gene-
tic models, formulated on the basis of the geometry
of flow perdurbations around rigid porphyroclasts
{Passchier, 1994) barnng some deviations (Masuda
and Mizuno, 1996b).

Mumernical simulation (ten Brink et al., 1993;
Bjomerud and Zhang, 1995; Masuda and Mizuno,
1996b) 15 another useful approach w study the evo-
lution of manted porphyroclasts. These numerical

models show the probable modes of development of
mantle structure around equant porphyroclasts in a
simple shear type of progressive bulk deformation.
However, in natural mylonites porphyroclasts are
often inequant in shape (Passchier and Simpson,
1986). In addition, the bulk deformation can have a
shortening component across the shear zone. In detail,
the shape of natural mantled porphyroclasts are thus
likely to be more complex and to deviate from those
so far predicted by simulations with inclusions of
equant shape under simple shear type of progressive
deformation (Passchier and Trouw, 1996). Again, the
physical model expenments of Passchier and Simpson
(1986) explicitly reveal that the mte of size reduction
of the porphyroclast is a crucial parameter controlling
the geometry of mantle structures. Mandal et al
{2000b) have presented a more generalized theoretical
model in two-dimension, and shown probable patterns
of mantle structure around nequant porphyroclasts in
a MNewtonian matnx. Their numerical simulations
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(b)

(c)

Fig. 1. Drag patterns as shear sense indicators, (a) Side-stepping of
mull points {N] separating nomal and meverse dmgs. (b)) Side-
stepping of axial traces (dashed line) of inwardly comvex drags. (c)
Wergence of overturned drag folds on the long faces of inclusions
with a large axial ratio,

attempt o investigate the control of the following
factors on the development of il structures over a
large finite strain: (1) the rate of size reduction of
porphyroclast; (2) the mtio between pure shear and
simple shear rates in the bulk deformation; and (3) the
initial shape and odentation of porphyroclasts (repre-
sented by the aspeet mtio aff). This model, when
applied for an equant clast and simple shear type of
progressive deformation, yields results similar o
those of earlier models.

In order to describe porphyroclast mantles, we
need to define the following terms. Porphyvrociast
mantle — recrystallized, ductile rim of the porphyro-
clast. Mantle structure—deformed geometry of the
mantle around the ngid core of a porphyroclast.
Tails—the porions of deformed mantle on either
side of the ngid core. Wing—narrow offshoots of a
tail (Fig. 13a). Branch point— the pomnt from which a
wing offshoots from the tail Wing migration — the
bodily migration of a wing along with the branch
point (Fig. 13b). Wing lengthening —the ncrease in
length of a wing, which occurs m two modes— (1)
shifting of the branch point without wing stretching,
{2) wing stretching without branch point shifiing (Fig.
13¢). Contractional face and extensional face — por-
tions of the inclusion, at any instant, facing the
contractional and extensional fields, respectively
(Fig. 13a). Side-stepping — refers to the lateral offset
of the tails on either side of a porphyroclast (Fig. 13d).

Numencal models of Mandal et al. (2000b) mdi-
cate that d-, ¢»- and finally e-type mantle structures
{Passchier, 199%4) develop as the mte of clast-size
reduction increases (Fig. 14). These results qualita-

Table 1
Fields of different types of dmg patterns around inequamt rigid
objects {R=2) in the ¢ —{ space
Inclination of long axis of object (vt
[+ 43 a4 135 1800

Twpe b Tvped Twvpe d  Twvpe 2¢ Type 3b

45 | Typel  Tvpel

Type 4 Type 1l Tvpe ]

[ Typel Type 1 lype 1 Tepe 1 Iype 1

135 | I'vpe 2o Iype 2h Uvpe 32 Tepe 3B lype 2o

Inclimalion ol marker (i}

180 | Type 3b Type 4 Twpe 4 Tepe 2¢ Type b
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Dextral shear

Sinistral shear

Fig. 1 2. Types of porphymclast systems (Passchier, 1994, Belations between the sense of stair-stepping of #- and d-type pomphymclast tails and

the sense of bulk shear are shown by double headed armows,

tively conform to the model of Bjomerud and Zhang
{1995) that shows the development of a-type inclu-
sions at a high rate of recrystallization. Similar results
were also obtained from analog model expenments
{Passchier and Simpson, 1986). For a gmven rate of
clast-size reduction, the mantle geometry changes
with increasing finite shear strain during progressive
deformation (Fig. 14). The stability fields of the
principal mantle types have been delimited in the
space of finite strain versus reerystallization mte from
physical and numerical model experiments (Passchier
and Simpson, 1986; Bjomemd and Zhang, 19935).
These smdies are, however, restricted © moderate
fnite strams (7 = 10). The simulations of Mandal et
al. (2000b) and Masuda and Mizuno {1996b) show
development of complex but definite pattems over
larger finite strains as shown in a broader field
diagram (Fig. 15).

It has also been revealed that typical d-type tails
that cross the reference plane and show stair-stepping
generally develop for moderate rates of clast-size
reduction (0.25-0.5). When the rate of clast-size
reduction is lower, the mantle structure looks hike

incipient d-type tails that do not cross the reference
plane, which at lower values of kinematical vorticity
number {i.e. higher S;) appear as 4§ objects without
stair-stepping but showing side-stepping as defined in
Fig. 13 (Fig. 16, sece also Passchier et al., 1993).

For the same kinematic and physical conditions,
porphyroclasts of different mitial shapes develop
different patterns in their mantles (Fig. 17). At a low
fmite strain, elongate inclusions with larger aspect
ratio have more complex muli-winged tail pattems in
comparison to those of equant inclusions, except at
higher values of clast-size reduction mate. In natural
mylonites the former may be mistaken to represent
high finite shear. Such a qualitative assessment of
finite strain {rom mantle structures may thus be
erroneous unless other factors are taken ino account.
At higher values of 5, inequant inclusions also show
development of d-like tails that do not cross the
central reference plane and appear as non-stair stepped
d-lails of Passchier et al. {1993). However, the mantle
structure shows side-stepping (Fig. 18).

Mandal et al. (2000b) pedonmed several numerical
experiments in order to study the effects of odentation
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Fig. 13, Diagrammatic representation of the terminology used in the text. (a) Geometncal terms (see text for details); () wing migration by
shifting of branch points (X): () wing lengthening by tao modes: (i) shifting of branch points (X without wing stretching, (i) stretching of
wings without branch point (X} shifting; (d) side-stepping in tail structune.

of mequant porphyroclasts on the mantle geometry. In
simple shear type of progressive deformation (5.=0)
porphyroclasts of aspect ratio 1.5 develop o-type
mantle geometry when their long axis is initially
parallel to the shear direction (Fig. 19). With increase
in the initial inclinaton (@ = 207) the mantle tends o
have a composite structure showing d-type wings,
which becomes dominant, giving rse to a d-lype
overall geometry of the mantle at = 80", A similar
transformation from o-type to d-type mantle geometry
with change in porphyroclast orientation has been
demonstrated  from kinematic models (Simpson and
De Paor, 1993). With further increase in the melina-
ton (g=110%) the mantle becomes symmetrncal,
forming a ¢-type geometry.

For a given finite bulk shear, the variation of
mantle geometry versus initial onentation of porphyr-
oclast, as noticed in the above numencal examples, is
different when the porphyroclast has a different initial
aspect ratio. Experiments with initial aspect rano 3
yield a contrasting result (Fig. 20). Porphyroclasts
with initial onentation parallel o the shear plane
develop d-type mantle geometry and those with initial
orientation perpendicular o the shear plane form o-
type mantle geometry.

Different sets of expenments were mun by Mandal
et al (2000b) by varying the initial orentation of
porphyroclast under different values of the mtio of
pure shear and simple shear rates (85;) or kinematical
vorticily number (W) with constant initial aspect ratio
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Fig. 14. Mumerical simulations of mantle stuctures around equant porphymoclasts at different size reduction rates. (a) £, = 0,125, (b) £.= 0.5,

(c) /,=2.

{a'h=2). The expenmental results are shown synop-
tically in Fig. 21. The mantle pattem, imespective of
initial orientation of porphyroclast, tends to assume a
simpler d-like geometry without stair-stepping at a
large value of S, or a low value of Wy, However, the
Sevalue at which porphyroclasts show such a simple
pattem depends on the mitial orientation () of the
porphyroclast. When =10, the pattern develops at
8 =050, which forms at §,=025, when the initial
orentation ¢ s 907,

6.1 Kinematics of mantle deformation

Numereal expenments, described in the earlier
sections, reveal that the development of mantle strue-
tures mvolves some specific kinematies of their tails
or wings, which in wrn govern the final geometry of
the mantle structure. This section presents a genetic
basis for different mantled porphyroclast systems by
considering the following three modes of mantle
deformation. Mode [I: The mantle development
involves dominantly wing migration (Fig. 13); the
wings move bodily with the rotating ngid pormphyr-
oclast without any shortening or lengthening dunng
migration. Mode 2: The mantle development is asso-
ciated with wing lengthening (Fig. 13), that mkes
place either by branch point shifting (Mode 2a) or
by wing sirefching (Fig. 13) without branch point
shifting (Mode 2b). Mode 3: The tail structures

lengthen in the instantaneous extension quadrant
along with the branch pomnts.

Each mode of mantle development gives nse to a
particular type of mantle structure. In Mode 1 the
wings show as ineipient d-like geometry, which bod-
ily migrate and coalesce with ¢-type tails in the
instantaneous extension quadrant, forming a hooked
d—db geometry at a large finite strain (Fig. 15). In
Mode 2a, the wings grow in length, but never cross
the central reference plane. The mantle therefore does
not assume a typical d-type geometry, as defined by
Passchier and Simpson (1986), but forms atypical d-
type structures, which ransform into a rolled d—¢
composite geometry at a large finite strain (Fig. 15).
Mode 2b mantle development is chamctenzed by
wing stretching, maintaining the branch points at
fixed positions. The wings therelore can cross the
central reference line, forming a typical d-type geom-
etry (Fig. 15). Mode 3 involves stretching of the il
structure as a whole, where the offshoots also expe-
ricnee stretching along with their branch points in the
bulk extension direction. This mode of mantle devel-
opment results in the formation of ¢-type overall
geometry.

Numerical model experiments run at different
clast-size reduction rates indicate that the mode of
mantle development s controlled by the siee reduc-
tion rate of the porphyroclast. Low rates of size
reduction favour Mode 1 mantle development. As
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Fig. 15, Fields of different types of mantled porphyroclasts in the space of size-reduction rte (nomalized to the bulk shear rate) versus finite
bulk shear. d—g: ob tail with incipient § wing: ¢—d: combination of ¢ and d-type geometry; H-b: hooked o, B-0—ob: molled d—gb; B-gs
branched o; B-7: branched =

the mantle grows in thickness slowly, it expenences a rate, Mode 1 s replaced by Mode 2a. In Mode 2a, the
strong drag effect induced by the rotating ngid core. mantle boundary is folded by branch point shifting,
The wings in them therefore migrate bodily, similar o forming wings. As the porphyroclast shranks at a
material paricles describing close paths around rigid faster rate, the drag influence of the rotating Agid

inclusions (Fig. 2). With inerease in size-reduction core onto the wings decreases and thereby does not
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Fig. 16, Influence of the mtio of pure and simple shear mtes (8] on
the pattern of mantle structures around equant porphyroclasts.

result in overall movement of the wing. The wing
migration in concert with the rotating rigid core is
countered by wing stretching in the bulk extension
direction. At a cntical balance of these two tendencies
the wings do not move bodily either in the shear or
extension directions. With further increase in suee-
reduction rate, the drag of the rigid core onto the
mantle boundary becomes weak and the processes of

=12

Aspect Ratin=1

Fig. 17. Contral of the shape of porphyroclasts on their mantle
structunes.
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Fig. 18, Control of the mtio of pure shear and simple shear rates on
the mantle structires amund inequant porphyroclasts of aspect ratio
1.5. Finite bulk shear=7.5.

branch point shifting due to the drag effect is therefore
suppressed, whereas the wing stretching m the exten-
sion direction gets dominance. Under this condition
Mode 2b becomes the more dominant mode in the
mantle development, forming typical d-type struc-
tures. At higher size-reduction rates the mantle grows
in size suffering relatively less drag by the rotating
porphyroclast. Consequently, Mode 2 is replaced by
Mode 3, in which wing stretching s much more
important than branch point shifting, giving rise to a
h-type overall geometry of the mantle. In Mode 3, o-
type mantle structures form when the drag effect onto
the mantle boundary is very little or absent

7. Inclusion trails within porphyroblasts
Inclusion trails are a typical feature of many natural

synkinematic porphyroblasts (Fig. 1d), which com-
monly record minute details of the deformation his-
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Fig. 19, Vanation in the mantle geometry of inequant porphymoclasts {aspect mtio 1.5 with their initial onentation {¢). Finite bulk shear= 7.5,

tory. Consequently, the study of porphyroblast systems
has been n vogue over several decades (Rast, 1958,
Zwart, 1960; Spry, 1969; Rosenfeld, 1970; Schone-
veld, 1977; Powell and Vernon, 1979; Bell and Rube-
nach, 1986; Bell, 1985; Bell and Johnson, 1989,
Passchier et al., 1992; Johnson and Bell, 1996; John-
son and Moore, 1996). All the studies on the develop-
ment of inclusion trails in porphyroblasts are based on
two distinctly different models: rotating porphyroblast
model and non-rotating porphyroblast model. In the
following sections we shall review them separately.

71 Developmeni of inclusion irails in rotating
porphyroblasts

With the advent of advanced PC software, numer-
ical simulation of trail patterns within rotating por-

phyroblasts commenced as an area of major interest
{(Masuda and Mochizuki, 1989; Bjomerud and Zhang,
1994; Beam, 1996). Earlier studies along this line
have revealed that relative rates of rotation and growth
of porphyroblast are the prncipal parameters control-
ling the tail pattem (Mandal and Banerjee, 1987).
Beam (1996) has further shown that porphyroblasts
can grow by increments of constant radius, constant
surface area and constant volume, each producing
different trail patterns. Additional complexities in
the wail pattern may also arise due to the deflection
of foliation in consequence o heterogeneous strain
induced by the porphyroblast in its vieinity. Based on
the velocity field around a ngid sphere hosted i a
viscous matrix with a coherent interface, different
patterns of inclusion trails have been simulated
numerically by varying the inital odentation of folia-
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Fig. 2. Variation in the mantle geometry of very elongate porphyroclasts {aspect mtio 3) with their initial onentation (). Finite bulk

shear=7.5.

ton markers (Masuda and Ando, 1988; Masuda and
Mochizuki, 1989). It has been shown analytically that
the degree of coupling between the porphyroblast and
matrix influences the velocity field, and thereby con-
trols the tmil patterns (Bjornerud, 1989; Bjornerud
and Zhang, 1994). All these models are two-dimen-
sional and Gray and Busa (1994) advanced them to
three dimensions.

The numerical models so far discussed deal wath
pomphyroblasts of equant shape, which rotate with a
constant angular velocity. The kinematic analysis
reveals that non-spherical porphyroblasts rotate with
changing angular velocity during progressive defor-
mation. Beam ( 1996) has presented a kinematic model
for the development of trail structures within non-

spherical porphyroblasts under simple shear and a
combination of simple shear and pure shear His
model, however, does not consider the effect of
heterogencous stram around the porphyroblast.
Jeffery's velocity functions, given in the earlier
section, can be applied to investigate the develop-
ment of inclusion trails within synkinematic, rotating
porphyroblasts of both equant and inequant shapes
considering the heterogencous flow of matrix around
the porphyroblast (ef. Jezek et al., 1999; Samanta et
al, 2001). The following factors appear to be
effective in controlling the geometry of melusion
tranls: (1) the mbal onentation of foliation markers;
{2) the ratio of pure shear and simple shear rates in
the bulk deformation; (3) the rabo of the mtes of
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Fig. 21. Distribution of mantle patterns of inequant porphyroclasts (# =2) in ¢ versus 5, space, wher @ is the initial inclination of
pomhymclast with the shear plane and 8, is the mtio of pure and simple shear rates in the bulk deformation.

rotation and growth of porphyroblast, as illustrated
m Figs. 22-25,

In case of mequant porphyroblasts, the initial
orientations of the long axis of porphyroblast and
the foliation marker, and the rano of growth rmates
along the axial directions of porphyroblast are addi-
tional factor goveming the trail pattems. The diverse
traill pattems obtamed from these simulations can be
classified mto a number of types (Fig. 26). Type 1:
The central trail is sinuous and confined by oubward-
convex peripheral trails. Type 20 The trils over the
entire porphyroblast are sigmoidal in geometry. Type
3: The central wail is sigmoidal and is confined by
imward-convex peripheral trails. Type 3 trails can
again be classified into four sub-types. Type 3a: The
peripheral trails show a side stepping of their axial
traces and the curvature of the tmils progressively
increases outward. Type 3b: The peripheral trails do
not show side-stepping and ther curvature progres-
sively decreases outward. Type 3e: The perpheral

trails do not show side stepping and their curvature
first decreases followed by an increase away from the
center similar to those m “millipede’ structure. Type
3d: The central trail 1s much less curved than the other
types and the curvature of the tmils progressively
mncreases outward. Type 4: In this pattern peripheral
trails are convex outward. The pattem can be further
subdivided into two types. Type d4a: the cenwral rail is
more or less stright and confined by trails with
mcreasing outward convexity. Type 4b: the central
trail has two smuous segments. Type 5: The periph-
eral trails are convex inward. Depending upon the
pattern of the central tril, the type can again be
subdivided mto three sub-types. Type 5a: The central
trail has two sinuous segments. Type Sh: The central
trail with a step-like geometry. Type 5c: a combina-
ton of Types 5a and 5b. The kinematic and geo-
metrical conditions for the development of these
different types of tmil structures are summarized
Table 2.
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& = Ratio of pure shear and simple shear in bulk deformation.
& = Initial inclination of foliation with the shear direction .

Fig. 22, Inclusion tril patterns in synkinematic porphyroblasts with less than 907, where i is the initial orientation of marker. 8, is the mtio of
pure shear and simple shear rates. Note that the central trails show reversal in curvatures for large valves of & . Finite bulk shear in models was 5.

7.2 Development of inclusion trails in non-rotating
porphyroblasts

In the models discussed above, the porphyroblast is
assumed to rotate with progressive deformation. How-
ever, there may be situations where porphyroblasts do
not rotate even when the bulk deformation 1s non-
coaxial. For example, Bell (1985) has shown that the
rotational component of the bulk deformation is
partitioned into zones around the porphyroblasts,
and thereby does not induce any rotational motion
to the porphyroblast. Similady, in a heterogencous
system the local rotation of porphyroblasts may be
counter balanced by flexural rotation of the unit in
which the porphyroblasts occur. As a resuly the

porphyroblast may overall remain in a stationary state
during the bulk deformation (Bell and Hickey, 1997;
Stewart, 1997; Hickey and Bell, 1999). In this section
we briefly review studies dealing with development of
inclusion trails within non-rotating porphyroblasts.
Bell et al. (Bell and Rubenach, 1986; Bell et al.,
1997, 1998) have shown that the curved shapes of
inclusion trails actually represent parts of crenulation
structures over which the porphyroblast grows and
preserves the foliaions, while those outside of 1t is
entirely overprinted by the later crenulation cleavage
(Fig. 27). In muluply deformed terrains porphyro-
blasts can preserve different generations of crenula-
tion structures in this fashion, giving rise to complex
mclusion rail structures (Bell and Johnson, 1989),
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Fig. 23, Sigmoidal to spiral tmnsition of tmil patterns with increase
in the ratio of rotation and growth rakes of pomphymblast. The ratios
of motation mte and growth mte of porphyroblast wens 2.5, 5 and 25
Units {1 Unit= 1/length unit) in {a), {(b) and {c), respectively.
Marker foliation was parallel to the shear direction.

which are often used for unraveling precisely the
deformation and metamorphism history of the terrain.
In a recent study (Bell et al., 1992), it has been
demonstrated that smoothly curving, spiral-shaped
inclusion trail structures, which is conventionally
believed to be a typical feare of rotated porphyro-
blasts, can also fonm in non-rotating porphyroblasts
during the overpnnting of near-orthogonal {oliations
in schistose rocks. The smoothening of the foliation
with respect to the porphyroblast boundary results
from the larger strain localization against faces of
porphyroblasts that grow mequantly in the heteroge-
neous matnx.

It thus appears that the inclusion trail pattems
predicted by the models of porphyroblast rotation
can also be simulated by these non-rotating porphyr-
oblast models. However, the latter is applicable
systems showing polyphase deformation and meta-
morphism, where the porphyroblasts grow over multi-
ple events of deformation.

& Development of fractures in brittle inclusions

Inclusions in rocks often yield in a botle manner
during the deformation, giving rise to diverse types of
structures, such as boudins, bookshelf and pull-apans
(Fig. le). Such stuetures are found to be useful
kinematic indicators (Miwa, 1978; Hippertt, 1993).
However, in order to apply them for structural anal-
yses we need to have a primary idea how a battle
inclusion can undergo faillure in response to the Tow
of the ductile matax. The concept of fibre-loading
theory (e.g. Cox, 1952) s fundamental to the under-
standing of fractunng mechanics of brittle nclusions
hosted in a ductile ock (I et al, 1997). Several
workers have developed mechanical models for ten-
sile mode of fracturing of inclusions (Hobbs, 1967,
Lloyd and Ferguson, 1981; Lloyd et al, 1982;
Masuda and Kuryama, 1988; Ji et al,, 1997). How-
ever, analog model experiments indicate that besides
tensile fractures (hereafier called Mode 1), two other
modes of fractures occur: shear fractures (hereafter
called Mode 2a) and extensional shear fractures
(hereafier called Mode 2b) (Mandal et al, 2001a;
Fig. 28). The experimental studies reveal thar (1)
brittle inclusions may not rupture until their aspect
ratio 15 larger than a ertical value and they attam
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Fig. 24. Inclusion tril patterns in porphyroblasts at different values of the ratio of pune shear and simple shear rates. The foliation was initially at

1357 with the shear direction.

orentations with respeet to the bulk extension and
shear directions within a specific range during defor-
mation; (2) the failure can occur in any of the three
modes; (3) the mode of fracturing is sensitive to the
aspect ratio and the odentation of the inclusions at the
moment of fracturing; and (4) in some simations the
tensile fractures may be oblique to the long axis of the
inclusion and the bulk extension direction.

&8 1. Theoretical formulations

Theoretical modelling of fracture development
within brittle inclusions depends fundamentally on
how the stress transfer from the ductile matnx o the
stff inclusions is descrbed. Shear-lag models, as
applied to geological systems (Ramberg, 1955;
Hobbs, 1967; Lloyd et al., 1982; Pollard and Segall,
1987, Masuda and Kurivama, 1988; Mandal et al.,
1994, 2000:; It and Saruwatan, 1998) consider trac-
tion exerted by the flowmg matrx onto the surface of
the inclusion and determine the prancipal tensile stress

within the inclusion by balancing the traction on either
side of the principal section that lies at right angles to
the long axis of the inclusion. When the principal
tensile stress on that section exceeds the tensile
strength, the inclusion develops ensile fracture along
the section. Ramberg (1935) has shown that for
rectangular inclusions expernencing axial tension, the
maximum principal tensile stress acts on the central
section of the nclusion and 8 orented normal o 1ts
length, producing tensile fractures passing through the
inclusion’s centre. The expression of maximum axial
tension derived by Ramberg (1955) is as {ollows:

by wﬂaz ;
— ) 11
Ry (1]

a Ry

where 2a and A are the length and thickness of
inclusion, f and 5 are the thickness and viscosity of
the embedding viscous layer, vy 18 the shortening
velocity at the boundary of the embedding layer.
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Fig. 26. Types of trail structures in elongate porphyroblasts, obtained from mumerical model experiments.

Jiet al. (1997) analyzed development of tensile
fractures within non-rectangular, ellipsoidal inclu-
sions. They caleulated the tensile stress within the
inclusion by considering the traction over the entire
surface of the inclusion as opposed to the Ramberg’s
model (Eq. (11)) that considers the traction only along
the long faces of a rectangular nclusion. To caleulate
the mternal tensile sress () on a section at right
angle to the long axis of the inclusion located at a
distance xfrom the center, J1oet al. (1997) have
considered the followmg equation of equilibrium over
an mfimtesimal element (Fig. 29):

dx
dry(x)
dx

J".;.{Jr]l2 + 2y (x)a|x)

de(x) ;
dx

+ 2rg x)glx) — 2eora(x)

=0 (12)

rpix) 15 the radios of the circular cross-section of the
mclusion at x, o(x) 15 the axial tensile stress on the

circular cross-section, o, 16 the far feld stress in the
matrix. typlx) 5 the shear stress on the inclusion
surface exerted by the matnx. The model of I et al.
{1997) shows that the initial fracture develops through
mid-point fracturning at nght angles to the long axis of
the inclusion, but the subsequent fractures developing
on the smaller, denvative fragments, do not necessa-
rily form at their mid pomts.

All the above models basically determme the
tensile stress withm the inclusion and explain only
the tensile mode of falure. However, to understand
the other modes of fallure a different mathematical
approach is necessary that analyzes both tensile and
compressive stresses within an inelusion. Mandal et
al. (2001b) used Griffith’s entenon o analyze differ-
ent modes of intmgranular fractunng by caleulatng
principal tensile and compressive stresses within an
mnclusion.

The tensile and compressive stresses inside an
inclusion with its long axis parallel to the bulk
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Geometrical and kinematic conditions for development of different types of trail pattems in non-spherical porphyroblasts
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Fig. 27. Development of curved inclusion trails within a porphyroblast that did not motate during deformation, but entrapped suocessive stages of

crenulation cleavages (after Bell et al., 1998).

extension direction are functons of the axial ratio (8)
of mclusion:

o, = —pe + 291 + R),

: 1 ;
Te = —hy — 2!73(1 -+ E) (13)

Eq. (13) indicates that the stress mside an inclusion is
homogencous (cf. Eshelby, 1957), and dependent on
the aspect mtio (#) of the melusion at given p,,, i and
evalues. The shape of the inclusion therefore appears
to be a crucial parameter in controlling the fracturing
modes, as seen in the experiments. Intragranular

fracturing m different modes will occur when the
principal tensile and compressive stresses fulfil the
Griffith's eriterion (Fig. 30):

(=) 2+ 8T(oi 4 a) =0, if 3o,+a;<0,

gi=T if 3oy + @, =10,

(14)

{Jacger, 1969), where Tis the tensile srength of the
inclusion. There is a critical value of R (i.e. aspect
ratio of inclusion) above which the principal tensile
stress (o) satisfies the second condition m Eq. (14),
leading to tensile fracturing of the inclusion (Fig. 30).
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Fig. 28, Different modes of brittle failure of elongate inclusion in
physical experiment under pure shear. {a) Shear frmcturing (Mode
2a), (b) Extensional-shear fmeturing (Mode 2b) and (¢) Tensile
fracturing {Mode ). Scale bars: 2 cm.

For other values of £ less than the enteal value, brttle
fatlure will take place either by shear or extensional
shear fractunng as defined in the first condition of Eqg.
(14), and there is also another critical aspeet ratio that
marks the transition between Mode 23 and Mode 2b
satisfying the stress condition: o—a,. =577
Similady, the different eatical aspect matios delim-
iting the conditions for different modes of failure can
be determined for different onentations of the inclu-
sion with respeet to the bulk extension direction, and
the results so obtained can be utilized to show fields
of different failure modes in 8 B— b space (Fig. 31).

9, Concluding remarks

Presence of rigid or suff inclusions such as larpe
mineral grains (pomphyroblasts or porphyroclasts),
xenoliths, pebbles, ete. within a rock body imparts a
mechanical heterogeneity in the system. Durng defor-
mation, the inclusions perturb the flow of matrix
leading to a heterogeneous strain field around them,
which s manifested m the complex distortions of
passive folmtion around rigid melusions. The other
varieties of micro- to macro-scale structures that
develop under the influence of the heterogencous
strain field around the inclusions include strain
shadow, porphyroclast tails, porphyroblast inclusion
trails and intragranular fractures. The development of
these structures in relation to the heterogeneous Tow
around inclusions is currently being intensively
studied in structural geology for their precise and
proper application in the kinematic analysis of
deformed rocks.

In addition o matrix rheology (e.g. elastic or
Newtonian or non-Newtonian viscous) the other fac-
tors controlling the nature of strain heterogeneity
around an melusion include shape and orentation of
inclusion and the vorticity of bulk deformation. For
example, equant mclusions develop flow patterns
chameterized by hammonic closed particle paths with
eye-shaped or bow-tie-shaped separatnix. When the
inclusion is inequant in shape, the flow patterns
become much more complex, reflecting an unsteady
state of motion and showing a wide spectrum of
particle paths. Consequently, structures, such as stran
shadows and drag pattems of passive foliations etc.,
forming around inclusions of different shapes and
orientations, are of contrasting nature even if they
develop under the same bulk kinematic condition. It is
therefore essential to take into account the effect of
inclusion geometry while utilizing such structures for
the kinematic analysis of deformed rocks.

Under favourable conditions, inclusions may
undergo sze-reduction (e.g. porphyroclasts) forming
a deformable mantle around the rigid core. The mantle
subsequently experences deformation under the het-
erogeneous strain field induced by the rigid core, and
gives fse to different types of @il structures. The rate
of size-reduction is the pame physical parameter in
determining the mantle geometry of porphyroclasts, as
revealed from analog and numerical model expen-
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Fig. 29, Comsidemations of dynamic settings for the mechanical equilibrium analysis in shear-lag model (after Ji et al., 1997).

ments by Passchier and Simpson (1986) and several
workers later on. Under a constant size-reduction rate,
the variaion in mantle structures of porphyroclasts
may result due to several other factors, such as shape
and orientation of pomphyroclasts, coupling factor
between pomphyroclast and matrix, matrix theology
{MNewtonian or non-Newtonan) and kinematcal vor-
ticity number W, of the bulk deformation, which
govem the heterogeneous strain field around an inclu-
10T

Synkinematically rotating porphyroblasts growing
over a pre-existing, passive foliation during a single
phase of deformation and metamorphism are charac-

tenized by curved or spiral inclusion trails. Earlier
workers (e.g. Ghosh and Ramberg, 1978) attempted to
explain the inclusion trail pattems by considenng the
relative rotation rates of porphyroblast and the exter-
nal foliation. 1t 15 evident from different models
discussed in this review that this kind of analytical
approach is difficult to apply in explaining some
complex inclusion patterns that essentially reflect a
heterogencous strain field around the growing por-
phyroblasts. To summarize, the application of hydro-
dynamic theories describing the flow field around
rigid inclusions is essential for analyzing the minute
details of inclusion trail patterns m syntectonic por-
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Fig. 30. Fields of different failure modes in the (7%, %) space
where % and o.% are the principal stresses in the inclusions as
nomialized by the bulk flow stress (2n5). The failure curve obtained
from Ciriffith’s failure eriterion separates the stable (unshaded) and
unstable fields {shaded). The armowed line shows the variation of
principal tensile and compressive stresses within an inclusion with
increasing aspect mtio (&) ¢ =0 signifies that the long axis of the
inclusion is parallel to the bulk extension direction. The value of &
at the point of intersection of the armwed line with the filure curve
represents the eritical aspect ratio (&) for the commencement of
fracturing within the inclusion.

phyroblasts. In muliply deformed terrams the inter-
pretation of inclusion tmil structures is obviously
much more difficult, because the porphyroblast struc-
wres may not actually represent a single, non-coaxial
deformations, and curved inclusion trails may develop
even within porphyroblasts that did not rotate during
deformation. Use of curved melusion trails for the
analysis of rotationality of deformation should there-
fore be exercised with caution.

Different continuum models have been applied in
structural geology, as discussed in this review, in order
o investigate the structural development m relation o
the stram field around rigid or sufl’ nelusions within

deformed rocks. In spite of a significant advancement
there is still some lacuna i this field of smdy. Most of
the existing models are based on a system where the
inclusions are in dilute suspension and are mechan-
ically non-interacting. But rock systems ofien contain
inclusions in a high volume density. Expenmental
studies indicate that inclusions in such a situation
generally interact with one another mechanically,
developing heterogeneous strain fields different from
those around non-interacting inclusions (1defonse et
al., 1992). Understandably, new theoretical and
numerical models are required in this line of work
in order to investigate the progressive development of
structures in mechanically interacting inclusion sys-
tems. In addinon, the application of hydrodynamic
models on three-dimensions would be more effective.
The task is certamly difficult because the kinematics
of rigid inclusions (Passchier, 1987) as well as the
velocity functions defining the flow field in three-
dimension is somewhat complex. However, by apply-
g different computer sofiwares, which are now
emerging rapidly, such hurdles can be summounted
{e.g Jezek et al, 1999).

Barring a few, existing continuum models mostly
deal with Newtonian rheology of the matrix. To our

Aspect ratio of inclusion (&)

Stable Field

1

i 10" 20° 30" A
Orientation of inclusion with extension direction{ ¢)

Fig. 31. Fields for the three modes of failure (under pure shear) in
the &b space.
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knowledge, there is hardly any analytical solution of
the veloeity field around ngid inclusions (nequant
shape in particular) for a non-Newtonian matnx.
There 1s a scope to extend the study considenng
nonlinear theology of the matnx.
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