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The periodic nature of blooms is the main characteristic in maring plankton ecology.
Release of toxic substances by phytoplankton species or toxic phytoplankton reduce the
growth of zooplankton by decreasing grazing pressure and have an important role in
planktonic blooms. A simple mathematical model of phytoplankton-zooplankton systems
with such characteristics is proposed and analysed. As the process of liberation of toxic
substances by phytoplankton species is still not clear, we try to describe a suitable
mechanism to explain the cyelic nature of bloom dynamics by using different forms of
toxin liberation process. To substantiate our analvtical findings numerical simulations are
performed and these adequately resemble the results obtained in our field study.
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L. Introduction

Plankton are the basis of all aquatic food chains and phytoplankton in particular occupy
the first trophic level. Phytoplankion do huge services for our earth: they provide food
for marine life, oxygen for human life and also absorb half of the carbon dioxide which
may be contributing o global warming (Duinker & Wefer, 1994). The dynamics of rapid
(massive) increase or almost equally decrease of phytoplankion populations is a commaon
feature in manne plankton ecology and known as bloom. This phenomenon can occur in a
matter of days and can disappear just as rapidly. In recent years there has been consderable
scientific attention towards harmful algal blooms (HABs) (e.g. Blaxter & Southward, 1997
Stoermer & Smaol, 1999, Several authors have argued that there has been a global increase
in harmiul phytoplankton blooms in recent decades (e.g. Anderson et all, 199); Smayda,
1990; Hallegraeff, 1993). In a broad sense plankionic blooms may be categoneed into
two types, “spring blooms™ and ‘red tides’. Spring blooms occur seasonally as a result of
changes in temperature or nutrient availability which are connected with seasonal changes
in thermocline depth and strength, and consequent mixing. Red tdes are the result of
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localized outhreaks associated with water temperature (see Truscott & Brindley, 1994,
They are also associated with greater stability of the water column and higher growth rates.

Blooms of blue-green algae have been linked o health problems ranging from skin
mritation o liver damage depending on time and duration of exposure. The livelihood
of many fish and shellfish have also been endangered due to toxin, Blooms of red tde
produce chemical toxins, a type of paralytic poison which can be harmiul to zooplankton,
finfish, shellfish, fish, birds, marine mammals and humans also. Only a few dozen of the
many thousands of species of microscopic or macroscopic algae are repeatedly associated
with toxic or harmful blooms. Some species, such as the dinoflagellate Alexandinm
tamarense and the dintom Psewdo-nitzschia australis (Work et all, 1993) produce potent
toxins which are liberated into the water before they are eaten and they may well affect
zooplankton when they are in water. It is now well established that a significant number of
phytoplankton species produce toxin, such as Psendo-nitzschia sp, Gambiediscus toxicus,
FProvocentrum sp, Ostrepsis sp, Coolia monotis, Thecadinium sp, Amphidinium canterae,
Dinophysis sp, Gymnodinium breve, Alecandrinm sp, Gymodinium catenatum, Pyrodinium
bahamense, Pfiesteria piscicida, Chrysochromuling polylepis, Pryvmnesinm patelliferum,
E parvim (see Steidinger et all, 1996; Nielsen e al., 1990 Aure & Rey, 1992; HallegraefT,
1993).

Reduction of grazing pressure of zooplankton due to release of toxic substances by
phytoplankton 15 one of the most vital parameters in this context (see Kealing, 1976;
Lefevre et al., 1952; Kirk & Gilbert, 1992; Fay, 1983). There is also some evidence that
herbivore (zooplankton, see Odum, 1971) grmzing plays a crucial role in the initial stages
of ared tde outbreak (Wyatt & Horwood, 1973; Levin & Segel, 1976; Uye, 1986). Areas
rich in some phytoplankion orgamsms, e.g. Phaeocystis, Coscinodiscus, Rhizosolenia, are
unaccepled/avoided by eooplankton due to dense concentmtion of phytoplankton or the
production of toxic as well as unpleasant factors by them and this phenomena can be
will explained by the ‘exclusion” pnnciple (see Odum, 1971; Boney, 1976). Buskey &
Stockwell (1993) have demonstrated i their field studies that micro and meso zooplankton
populations are reduced dunng the blooms of a chrysophytle Awreococcus anophagefferens
off the southem Texas coast. Toxicity may be a strong mediator of zooplankion feeding
rate, as shown in both field studies (Estep er al., 1990; Niclsen et al., 1990; Hansen, 1995)
and laboratory studies (Huntbey et al., 1986; Ives, 1987; Buskey & Hyatt, 1995; Nejstgaard
& Solberg, 1996). These observations indicate that the toxic substance as well as toxic
phytoplankton plays an important mole in the growth of the zooplankton population and has
a great impact on phytoplanklon-zooplankton interactions.

The process of producton of wxic substances by phywplankton species is stll not
clear Modelling on plankton communities in HABs 15 very rare in the literature. Franks
(1997 reviewed different models which desenibe the phenomenon of red tide outbreak. To
our knowledge, in desernibing bloom phenomena HAB models do not take into account the
effect of wxin which causes the grazing pressure of zooplankton to decrease. The release
of xic substances by phytoplankton may terminate the plankionic blooms—something
which 15 not yet well recognized but cannot be ignored; naturally, interdisciplinary
mvolvement of experimental ecologists and mathematcal ecologists 15 necessary, This
study 1s devoled to establishing the mle of wxin in the reduction of grazing pressure of
zooplankton with the help of both field study and mathematical modelling. We believe
that it is the first model in this direction. Monitoring of plankton population was carried
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out throughout the year 2000 off the north west coast of the Bay of Bengal. As we are
mnterested o report the effect of toxie phytoplankton on zooplankton, we chose Noctiluca
scintillans (phytoplankton) and Paracalanus (zooplankton) for this study. Motivated by
our field observations, a mathematical model of the phytoplankton—zooplankton system in
which the grazing pressure of zooplankton decreases due to toxic phytoplankion species
15 proposed and analysed. As the process of toxin iiberation is still not clear, we shall try
o explain the bloom dynamics by assuming various forms of toxin ibemtion process and
also by the eyclic nature of the system through periodicity.

2. Formulation of the model
2.1 Observational backgmund

In this study we concentrale our observations on the effects of harmful phytoplankton on
planktonie blooms, and on what follows, The study area extends from Talsan (Orissa,
India) to Digha Mohana (West Bengal, India) on the north west coast of the Bay of Bengal
{geographically the area is situated between 21°37° Northern Latitude, 87925 Eastern
Longitude and 21°42" Northern Latitude, 87°31° Eastern Longitude, see Fig. 1). The study
wits carned out during the penod Jan-Dec 2000, Samplings were done aboard a 10m
fishing vessel hired from the Talsan fish landing centre. Frequency of sampling was every
formight except for the months of Seplember and October when, because of the roughness
of the sea, the sampling programme had o be suspended. Plankton samples were collected
both from the surace and subsurface water (1-2m depth) by a horizontal plankton tow
with a 20 pm mesh net 0.3 m in diameter. The collected samples were preserved in 3%
formaldehyde in seawater. Counting of phytoplankton was done under microscope using
a Sedgewick-Rafter counting cell and counts are expressed in noflitre. Identification of
the plankton community was done following Davis (1935); Newell & Newell (1979)
and Tomas (1997). There were altogether 16 sampling days in the year 2000, Numbers
of samples (surface collecton) analysed were 1120 The study meveals the presence of
altogether 1135 phytoplankionic species of which 65 are from the diatoms followed by 19 of
green algae (Chlorophyceae), 9 of blue-greens (Cyanophyeeae) and 22 of Dinoflagellates
from the surface waters. In each group there were some unidentified species. Out of the
wtal 22 species of Dinoflagellates identified both from surface and subsurface water,
only three species (Dinopfivsis acwia, Noctiluca scintillans and Prowcentrum sp.) were
noted as hammiul (Richardson, 1997). Six species of the diatoms examined in both the
surface and subsurdface water ( Chaetocerms spp., Skeletonema costatum, Ceratanling spp.
Leptocylindricus spp., Nitzschia spp. and Phaecocystis spp.) are believed 1o be harmiul alga
(Souring, 1995),

Our tested phytoplankton species 1s Noctiluca scintillans belonging o the group
Dinoflagellates, which 1s also capable of producing toxm that are released into the seawaler.
Among zooplankton specwes we chose Faracalanus belonging 1o the group Copepoda
which dominates the zooplankton in community in all the world oceans, and 15 the
major herbivore which determines the form of the phytoplankton curve. The blooms of
Noctiluca scintiflans oceur in January and December. Paracalanus bloom also coexists
with Neoctiluca scintiflans. Figure 2 shows that after the bloom of both the species
(see the high peak obtained on the sampling date 2000120000, Noctiluca scintillans
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Fiz. 1. Map of coastal region of West Bengal and part of Orissa, India. (Source: CIFRI, Barmckpore, India.)

decreases and simultaneously the Paracalanus also decreases. The population of Noctifluca
seintillans then remains very low up to the sampling date 2971 172000 and during this penod
the Paracalanus does not show any large change in population. On the sampling date
131272000 we again observe that both species attain another high peak and then slowly
decrease. This observation indicates that Noctiluca scintiffans attaining the first peak in
January (with Paracalanus also present n high abundance) stans to release toxic substance,
and as a result itcontrols the bloom of Paracalanns population and also is own bloom. This
phenomenon persists for a long time (probably due to the effect of toxin concentration)
until there 1% again a low concentration of toxin, both populations again bloom and the
process continues. Our expenmental result s similar to the observation at Vasilev Bay,
where Paracalanus spo decreased drastically after 1987 due to increase in biomass of
Noctiluca scintiflans (see Kideys et al, 2000). Although the chemical toxin released by
phytoplankton 15 not yet tested, the results of our field observations as well as what is
already known motivaties us 1o formuolate o mathematical model on the phytoplankton—
zooplankton system in which the grazing pressure of zooplankton decreases due to release
of toxic substances by the phytoplankton species. It may be noted that the reduction of
grazing pressure of zooplankton due to release of toxic substances will have an important
role in the ermination of planktonic bloom—our analysis bears out this fact very nicely.

2.2 Mathematical mode!

In the formulation of the model we assume that the growth of phytoplankion population
follows the logistic law (see Mumray, 1989; Odum, 1971) with intrinsic growth rate r and
environmental camying capacity K. I s already confirmed by our field observation and
the literatare that toxic substances released by phytoplankton reduce the gmzmg pressure
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Fii. 2. Field observation during the year 2000,

of its predator, zooplankton. As the fractional changes in the phytoplankton population
per unit time effectively illustrates the impact of predation on the population at any
particular time, it 1$ interesting o examine the specific predation rate for the system as
the outbreak advances (see Truscott & Bnndley, 19945, It s well known that at certan
times, conditions (adequate temperature, proper light intensity, warmer water and minimal
predation pressure) are adequate for planktome growth. The phytoplankton will continue
o bloom until one or more of the key factors prompting phytoplankion growth is no longer
available. Keeping the above-mentioned facts of phytoplankion—zooplankton population in
mind, we assume two predational forms for desenbing the dynamics. When phytoplakion
populations do not produce toxin, we assume that the predation mte will follow the simple
Low of mass action. But as hberation of toxin redoces the growth of zooplankion, it causes
substantal morality of zooplinkton and m this period phytoplankion population 15 not
easily accessible, hence 4 more common and mtuitively obvious choice 15 of the Holling
type I functional form o deseribe the grzing phenomenon. Morcover, saturation of
grazing functon allows the phytoplankton population o escape from the grazing pressure
of the zooplankton and form a tide. This suppression of grazing 15 vsually associated
with active hunting behaviour on the part of the predator, as opposed to passively wailing
o encounter food, and there 15 a2 maximum mate of consumption per mdividual however
Lairge the phytoplankton population becomes. Holling type 11 or type I predational form
(Ludwig et all, 1978) 1% an obvious choice o represent the hunting behaviour of predator,
In reality, the mptonal behaviour of Copepods 1s highly complex and exhibits a hunting
behaviour (Uye, 1986), and hence type [T or type 11 is an appropnate choiee.
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From the above assumptions we can wrile down the following differential equations:

s Pll P) PZ
—=r =

dr

(1)
E = ﬁPZ—;;E—iE.
dr y+ P

Here Poand Z mepresent the density of phytoplankton and zooplankton population
respectively, (= () is the specific predation rate and 8{= ) represents the ratio of
biomass consumed per zooplankton for the production of new zooplankton. = 0) is
the mortality rate of zooplankion. (= 0} is the rate of toxin production per phytoplanktion
species and (= ) 1s the hall saturation constant.

System (1) has to be analysed with the following initial conditions:

Py =0, Z{0) = . 2)
System (1) bas the following non-negative equilibriaz namely, a tovial equiliboum
Ep(0, 0), an axial equilibrium E1{K, 0) and the interior equilibrivm E*{ P*, Z*%), where
=By -8+ By —p—8) +4Byp
= T

z¢_L 1—P—*)_ ()
o K

A simple algebrmie caleulation shows that a necessary and sufficient condition for the
existence of positive equilibrium E* is

P*

(3)

FH
=
Wi first observe that the right-hand side of system (1) is a smooth function of the variables
(P, Z) and the parameters, as long as these quantities are non-negative, so local existence
and unigqueness properties hold in the positive guadrant.

From the first equation of system (1), it follows that P = 0 is an invariant subset, that
s P = 0if and only 1if P{r) = 0 for some ¢. Thos, P(r) = Oforall rif P{O) = 0. A
similar argument follows for Z = {) from the second equation of system (1),

Mow, we consider the boundedness of solutions of system (1),

g = (AK+ 8y — ) — (5)

LEMMA 2.1 All the solutions which initiate in { R340} are uniformly bounded.

Progf. We define a function

W=gP+aZ (6)
The time derivative of (6) along the solutions of (1) 1s
ﬁ=r’J|‘:|'j:"(1——)—1:»!;.;:4?— PUE il (7
dr ¥+ F
= rfiP (1——)—&;12 (8)

P
[r8 P (I—E)+uﬁPI—uW. )
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The term [rFFP (1 — %} + i Pl has a maximum valoe, so the above expression reduces o

£ +uW=C (10
Hy TAET
K(u+y)?
where € = EXEL YV (11
dr
Applying the theorem of differential inequality { Birkhoff & Rota, 1982), we obtain
0= WP, Z) =< i—:{l —e My 4+ WP(D), Z{0)e
and for t — oo, we have
[FKp(1+ £y /4]
0= W= .
i
Hence all the solutions of (1) that initiate in {R .70} are confined in the region
3 C
B=l(P,DYeR " :W=—1¢
i
for any ¢ = 0 and for ¢ large enough. O

Note. The vpper bound of W oimplies that the hnear combination of phytoplankton—
zooplankton population is kess than a finite quanuty which is determined by the mtio of
the effective growth rate of zooplankton to the net growth rate of phyloplankion.

Before analysing the model system, we would like to mention the meaning of the
periodic nature of blooms. I s well established that the occurrence of more than one
bloom in o season suggests that the features influencing o red tide event are cyclic (e.g.
see Satora & Laws, 1989). The periodic nature of blooms, in the sense of the mapid onset
and disappearmnce of oscillations under supposedly favourable environmental condition,
15 one of the main chametleristics in plankton ecosystems. This may happen in two ways:
namely multistability, in which the system tends o one of the coexisting stable equilibna,
and periodicity (Hopf bifurcation), in which the system oscillates around an unstable
equilibnum. At this point it may be mentioned that an extemal forcing agent in a proper
measure cin also bring out the essential physicalities of the system under study. Bul we
feel that such an addition only suppresses a proper understanding of the system. This is
because, given the extent of the regulatory behaviour shown by the system, the external
forcing agent remains to a large extent arbitrary and needs very fine tuning for which there
may not be any adequate explanation.

Henee we are tryving Lo explore 4 suitable mechanism for planktonic blooms which s
present within the system.

3. Stability analysis

Local stability analysis (LAS) of system (1) around the equilibria can be swdied by
computing a varational matrix.
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Itis easy to see that the trivial equilibriom Ejy 15 an unstable saddle point. Existence of a
positive intenor equilibrivm implies that the axial equilibriom £ 1% also an unstable saddle
in character. Violation of posiive equilibrium ensures that Ep is locally asymptotically
stable. The charactenstic equation of system (1) around the positive intenor equilibrium
E* is given by

M_ML+N=0D (12)
where
r *
M= 0 (13
X (=) )
wP*F* 1
=——— _[B(y + P*)2 —8y]. (1)
v+ P2 Bly ¥

. e v 2 = 4+ P 2
It can be easily verified from the second eguation of system (1) that 8 = B+ PY can

never be a solution of the system, hence simple bifurcation 1 also not possible in this case.
Now since M < (), the system (1) around E*(P*, Z*%) is locally asymptotically stable.

To investigate the global behaviour of system (1) we first prove that system (1)
around E* has no nontrivial periodic solutions. The proof is based on an application of
adivergence enterion (Hale, 1993).

Leth( P, Z) = -F'-z.(_}hviuusly RP.Z)=01P =02 =1

We define
P
SIlF,E}er(l—E)—ﬂPE (15)
(P, Z)=fg8PZ il kEZ (16}
WP Z)= —pZ— —
# y+F
i i
AP, Zy= —g;} —igh), 17
( ) HPL?H}'+HEI[32!} (17
and find that
-
AP.Z)= —— 18
i ) K7 (18}

which is less than e for all P = (), £ = 0. Therefore by the Bendixon-Dulac enterion,
there will be no himit eycle in the first quadrant.
Mow, we are in a position o prove the following theorem.

THEOREM 3.1 Existence of a positive interior equilibrium ensures that system (1) around
E*(P*, Z%) is globally asymptotically stable,
FProaf. The proof is based on the following arguments:

(a) System (1) is bounded and positively invariant in the first quadrant it 8 = (8K +

fy —p) — L5
by Trivial equilibrivm Ey is always an unstable saddle point and existence of a positive
equilibrium confirms that the axial equilibrium £y s also an unstable saddle point.
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ic) Positive equilibrium E* is LAS.
(d) System (1) around E* has no non-trivial periodic solutions.

From the above observations we find that there is no chance of exchange of stability.
Hence the cyclic mature of the bloom phenomenon which 15 very common in maring
phytoplankton—zooplankton systems cannol be explained by the above mechanism. AL this
stage we wish to mention that various combinations of predational functional response
and toxin liberation process give rise o exchange of stability through Hopl bifurcation
or multistability of the positive equilibrivm. But i this study we are mainly interested in
presenting 8 mechanism for planktonic blooms in which the liberation of toxie substance or
the effect of toxic phytoplankton 15 not an instantansous process but is mediated by some
tme lag.

4. Model with distributed delay

We assume that the liberation of toxic substances by phytoplankton species s nol
an instantancous process but is mediated by some tme lag required for matanty of
the species. There are also several reports that the zooplankton mortality due to the
wxic phytoplankton bloom occurs afler some time lapse (see http: //www . mote. org,
http:/ /www.ndsg. umd . edu). Our field observation also suggests that the abundance
of Paracalanus (zooplankion) population reduces afier some time lapse of the bloom of
wxic phytoplankion Noctiluea scimtillans (see Fig. 2) and this allows us some considerable
freedom for considening the delay factor in the model construction.

It is not usually possible w0 know the past history of the release of toxic substances
by phytwplankion or the actual form of the delay kernel. S0 a particular member of the
family of kernels s at best an approximation. To search for excitability (andfor) a eyclic
nature of blooms in the system we now assume that the release of toxic substances by the
phytoplankton population follows a gamma distribution. This form of distributed delay
kernel has been widely vsed in biological modelling (see Cushing, 1997; MacDonald,
1978, and references therein) and scems 1o be the most useful family of reducible kernels
(e, delay kemels that allow a distributed delay model 1o be converted o an equivalent
system of ordinary differential equations). These kemels are not only mathematically
convenient, but also linear combinations of them represent a generic class ol distributed
delay kernels (see Busenberg & Travis, 19820 In this case system (1) can be represented
as

dFP

P
— =rP{l ——=)—aPZ
dr K

dz ; —s)* P(s
dr | % k! y + P(s)

(19)

Here &, a non-negative integer, 15 the order of the delay kernel and o, 15 real non-
negative. These are linked to the mean tme lag by T = k;—l It is interesting to note that
when the value of & increases then the phytoplankton consumed in the past by zooplankton
become more important compared o the case when & 15 small. In particular, when k& = 1
we have a strong kernel and when & = 0 we bave a weak kemel in the memory function.

This systemn also possesses the same equilibria as in system (1),
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Stability analysis of each equilibrium can be performed by using a variational matrix.
The behaviour of this system around Ey and  E is the saume as we observed in the previows
case.

The characteristic equation of system {19 around E*(P*, Z*%) is

r Pt Hoy P*Z*
AMit— |- ———=GA)+affP*Z* =0 (20)
( K) Bh =P A }
where
1 g k
Gild) = f ﬂ_k—l #c—[a’—l][l—.\] dy. (21}
e k!
W shall study system (19) with & = 1.
2
In this case (L) = (12—.’) and the characteristic equation becomes
rp* 3 H‘]}"P*z* 2 ¥ 7k 2 7

Equation (22} can be writlen in the form

Mt et + @) + file)h + falo) =0

where
e il (23)
filo) =0 + EJ;P‘-‘ +apP*Z* 24)
fila) = TP apo PFZ* (25)
filo) = afa” P*Z* — %. (26)

By using the Routh-Hurwitz critenon, we find that the real part of all roots are
negative. S0 in this case also there s no possibility for exchange of stability. Hence
the cychie nature of blooms cannot be expluned by this type of distnbution of toxic
substance or toxic phytoplankton. The prediction based on the system involving distributed
delay illustrates that concentration of oxic substances or toxic phytoplankton eventually
approaches equilibnum concentmbion and hence no penodic solutions are possible. 1t s
also worth noting that if the order (&) of the delay kernel, goes to infinity while keeping
the mean delay, T = ’-‘-(-;—l fixed, then the distobuted delay can be viewed as a discrete
delay (for details see Wolkowice ef al., 1997). Now, o explain the penodic nature of
bloom phenomena we shall assume the process of toxic liberation as a break-even point by
discrete delay.
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5. Model with discrete delay

We now assume that the process of toxie liberation follows a discrete me vadation.
System (1) now takes the form

dr P
—=rP (1——)—11'15‘2
K

dr

27
Q2 oo o BRG-T) =5
W Py

where 7 1% the discrete time delay.

As in the previous two cases system (27) has the same equilibria. System (27) around
Epy is an unstable saddle. Existence of £* implies that E| is also an unstable saddle. Non-
existence of E* implies that £ is stable in nature,

To investigate local asymptotic stability of system (27) around E* we perturb the
system (27) around E*{ P*, Z%) and obain the following system of differential equations:

dx -1
— =Ax 4+ By+tanxy+ampx”

dr
dy r xl(f—1)y¥ 5 x{ft—r1
—'=l:'.'r+E'.i.'l:r—"L']I+.fJ||.I:_1|‘+.|’?||4 11¥ (28}
dr ¥y +xi(r—r) ¥ +x(t—r)
where
rP*
x=P-P y=Z-Z" A=———, B=—aP",
Ay Z*
o S SR | i
o 3
—r
a)) = —o, ap = —, =4,
1 n = =p
by =8, ba=-62"% 29)
Retaiming only the linear terms m (28), the hnearized system bec omes
dx Frm
T x + By
d 1
D —ex+Exe -1 (30)
dr
System (30) can be wrilten as
LAY BCx— BEx(t—7)=0. (31)
dr= dr

We assume a solution of the form x(1) = et . and we have the corresponding characteristic
equation as

A, 1) =3 —AL—BC—BEe ™M =0 (32)
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MNow substituting & = o 4+ i in (32) and separating the real and imaginary parts we obtain
the system of tmnscendental equations

o> —ew® — Aa; — BC — BEe™ " coswr =0

2am— Aw+ BEeT™ sinwt =0 (33)

The stability or instability of the system is determined by the sign of those L satisfying
{32y if L is real or the sign of o satsfying (33} if & is complex.

THEOREM 5.1 The following are necessary and sufficient conditions for E* to be
asymptotically stable for every © =

(1) The real part of every ot of A{A, (1) =0 is negative.
(2) Forall real exy and © = 0, Aoy, 7) # 0.

THEOREM 5.2 As A = Oand B < (), then in the parametne region —E < C the intenor
equilibrium E* of system (27) is locally asymptotically stable for 0 = 1 = i

Progf. From (32) it is clear that E* is asymptotically stable forr = 0if — F = .
Proving the second condition of Theorem 3.1 requires the Nyqguist criternion and its
consequences, Consider (30) and the space of all real-valued continuous functions defined
on [—rt, oo) satsfying the mitial condition x{(t) = 0for —v £ ¢t <= 0, x{(07) = F = 0
and £(07) = Py = . After taking the Laplace transform of (31) and simplifying, we have

Pis+Pr— AR

Lixis))=L(s) = 32— As — BC — BEe—*"

(34)

The inverse Laplace tmnsform of Lis) will have terms which increase exponentially
with t iff L{s) has poles with positive real part. Thos it s clear that a condition for stability
of E* is that all poles of Li{s) have negative real parts. We apply the Nyquist criteron
(see Thingstad & Langeland, 1974) to conclude whether Lis) has any pole in the nght
half-plane. This criterion leads us to the conditions

Im (i) = 0 (35)
Re yriian) =0 (36)

where
Wis) =3 — As — BC — BEe™™, (37)

with ey the smallest positive value of o for which (36) holds. Now,

Wik ) = —m;]:' —1AwgBC — BE{cosmpT — 18InayT)- (38)
Im (e ) = —Awy + BE sinant (39

and

Re i) = —awx® — BC — BE cos axt. (G
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Writing conditions (35) and (36) using the expressions ( 39) and (40) and taking account of
B = 0and E = () we obtain H"}F = 3:5"'1:'5 and f.r);]: =—BC — BE cosayrt.

Simce A <=0, —(BE) = 0, condition {35) 15 satisfied for 0 = 7 = %.

Further since B < (), E < (0 we have

—BC — BE =« —BC — BEcosaqt = —BC + BE-

Hence 7 = n}c]z and 7 = —BC — BE cos oyt mtersect on 0 < my =< % From (40) we
also have (in the pammetnic region —E <= C)

{}-:—BC'—BE-:M]E-:—BC'+BE, r{]i'ﬂ-ﬂ:{r)c]{i (41}
T

soowe have an upper bound e of ay given by
w, = +BE — BC. (42}

Hence we can conclude that in our case the Nyquist enterion holds and the intenor
cquilibrum E* of the system (27) is locally asymptotically stable for all values of
satisfying 0 < 7 < . O

6. Bilurcation of the solutions

In this section we state a condition under which the system goes through a point where a
Hopf bifurcation occurs. We show the existence of such a T (= o) and @ (= an).

LEMMA 6.1 IfA2+2BC < 0and 0 = O = —F then there exists a unigue pair (g, o)
with ey, Tp = 0, ety < 2 such that Afiey, p) = 0, where e and 7 are given by (46)
and (51), respectively.

FProgf. From A{iey, o) = 0 and from (39) and (40) we have
—Awy 4+ BE sinayty =10 (43)
and
—ax — BC — BE cos gz = 0. (44)
Squanng and adding together (43) and (44) we arive al
an* + (AT +2BC)ax” + (B°C* — B°E") = 0. (45)

We see from (43) that & has a pair of purely imaginary roots of the form $iey provided
A4 2BC < 0and0 € C < —E.
The comresponding roots of (45) in this case are

1 5
s = ;[—{AI +2BC) ++/ (A2 +2BC)2 — 4 B2C2 - B2E?) | (46)

Using (433 in (44, we oblain

_[{BEﬁl — costanm)

YE | — BC — BE cosaptn =10
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oar
(BE)Y cos’anmty — BEA® cos aqyty — BCA® — (BEY = 0. (47)
Set
flz) =(BE):* — BEA*; — BCA® — (BE)* =0. (48)
We have
f(ly=—BE*(C+E)<0 (49)
and
f(=1)=—BEXNC—-E) =0 (501)

Hence fiz) has a real solution in {—1, 1) of the form cos aptg = &, where [k] = 1. From
(43),

1 o —Aay nmw
) = — Arcsin -+ vini=y A, R (31}
o BE £

In (46) we assume A® + 2BC < 0, so that there is only one imagnary solution
A= iay (g > 0) and therefore the only crossing of imaginary axis is from left o dght
as t increases and the stability of the tnvial solution can only be lost and not regamed.
Obviously in this case n = (. O

LEMMA 6.2 Let A2+2BC < 0.0 = = —FE. Then the real parts of the solutions of (32)
are negative for T < T, where p = () 15 the smallest value for which there 15 4 solution to
{32) with real part zero. For T > 1, E* is unstable. Further as t increases through 7, E*
bifurcates into small amplitude of penodic solutions.

Progf. For t = 0,1t is obvious that £* is stable. Hence by Butler’s lemma (see Freedman
& Rao, 1983), E* remains stable for 1 = 1. We have now to show that % lr=1, = Owhere
w = ay (forn =0,1,2,...). This will signify that there exists at least one eigenvalue
with positive real part for T > 1y, and hence E* is unstable for © = 1. Moreover, the
conditions for Hopf bifurcation (see Hale, 1993) are then satisfied yielding the required
periodic solutions. Now differentiating (43) with respect o 7, we get

o d
{20y — A+ BEre ™" umwr}d—l +{—2w+ BEte ™" sin :.r)tl-d—w
T T

=BEe ™" —o| coswr —mwsinmt | (52)

and

dew
dr
= BE!:_“’T{m SIM T — o 00% T |, (53)

do
[2w — BEre™" sinmr}d—l +{20) — A+ BEre ™" coswr
T
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Therefore

do
[{2e) —A+E Ere ™ T eos ::;I}I—{EuJ—BErc_a’T sin et M —2w+ BEre ™" sin mr}ld—l
T

i

= BEte """ [{—o| coswr —wsinet){2e) — A+ BEre” ’Tummr}

— (o] $IN T — w st W —2o + BEte ™7 sinwt)].

Mow atar; =100, T = 1. @ = ay. we have

] g 7 dﬂ|
H—A+ BEmgcosayty}” + {2my — B Exypsin -:rmrn}‘!EI[aFn. T=ty, =iy

= BE[—myg sinayto] —A4 + BEmocosmnty + op cos aptol —2on + BEwp sinay )]
= B Ew| A sinapty — Zeoy cosaon T ]
= B Ewyy py cos{anTy — 1) = 0 (54)

AN ST 20 2 _ A
where p1- = A< 4 day~, tand) = {lw .
Hence %lll'a]=t]_ r=1, w=ay) = . Therefore the transversality condition holds and

hence a Hopf bifurcation ocours al e = ayy, T = ). O

The stability of the bifurcating brunches is given in the appendix.

7. Discussion

The dynamics of plankionic bloom 1s wery complex and the mole of algal toxin in
the complex ecology of HABs is still not clear Researchers are trying to find a
suitable mechanism for this. Apart from some noticeable poisoning by phytoplankton, the
eccological consequences of algal toxms are also not well elaborated. This allows us some
considerable freedom to formulate o mathematical model.

A simple mathematical model of phytoplankton—zooplankton (prey—predator) system
in which the grazing pressure of zooplankion reduce due to release of toxic chemical
by phytoplankton or due to toxic phytoplankion being eaten by zooplankton has been
proposed and analysed. In our study we have tied to establish the following three major
ProCesses:

(1) the eyechie nature of the phytoplankton-zooplankton system around the positive
equilibrium,

(1) that phytoplankton start to release toxic chemical or become toxic very quickly in the
presence of dense zooplankton population; as a result the grazing pressure decreases,
and

(1ii) the toxic effect on zooplankton will help in the ermmination of blooms,

It was stated clearly in the introduction that toxic phytoplankton or toxic chemicals
reduce the growth of zooplankton populations and as the process of toxie hberation s
still not clear, we have investigated the model under three types of distribution of toxic
substances. We have observed that the eyehie nature of blooms which are a very common
feature in the planktonic world cannot be explained by our model formulation if the
distribution of toxic substances is of Holling type 11 or if it follows a gamma distribution,
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TABLE 1 Abbreviations, default valies and ranges of the parameters. The ranges cover
valies uved by different authors in theie different models as mentioned by Edwards &
Brimdley (1999}

Parameters Symbols  Default values  Reported ranges
Maximum P growth rate r 02(h~T) 0-07-0.28 (h—T)
Maximum Z grazing rate i 09 (1h Y 0-6-1-4(1h 1y

Z growth efficiency # 03(1h~" 0220500 Y
Matural death rate of I o2 {Il_I ¥ 0-015-0-15(h ™1y
Z grazing half-saturation coefficient v 006 (171 0-02-0-1 (171

whereas if the distribution of toxic substances s of discrete type, we have observed that
the system around the positive equilibrivm enters a Hopl bifureation and exhibits the cyelic
nature of blooms for a certain amount of time delay. To ascertain this local behaviour we
have performed the stability analysis of bifurcating penodic solutions (see the appendix)
and obtained the conditions for supercritical or suberitical bifurcation. In most situations,
the oscillation phenomena of ecological systems are generally deseribed by distributed
delay models. The point s that reduction of grazing pressure on phytoplankton due to
release of toxin 15 not continuous but follows a discrete fashion. The research by JoAnn
Burkholder and others at North Carolina State University also reflects our observation.
They suggest that Pliesteria piscicida assumes more than 20 different forms during s
lifetime, including a difficult-to-detect cyst stage, an amoeboid stage and a toxic vegetative
stage, in which, propelled by its flagella, it can kill its predator (see http: //www  mdsg .
umd . edu/Marineliotes/Jul-Augd7).

To substantiate the analytcal findings we have used the parameter values which are
presented and discussed elaborately in Edwards & Brnndley (1999). Abbreviations, default
values (which we have used) and the mnges of the parameter values are given in Table 1.
For these sets of values and for r = 18 h, K = 400 "' and 8 = 0.9 h ', wi have obtained
the values of g = 00223115 — 63372121, v = —(HHOT769111 + 007877564, v7 =
0-4902216 + 046321691, g = (0-53868627 4+ 3-291251, g = 2-M9286 +
34967051, g = —7-952592 — 0080118344, g = 33-582 — 13-223660, Re C{) =
—13-89942, po = 5399.1 and 72 = 621-9235,

For these sets of parameter values we have obtamed po = 0, the bifurcation s
supercritical and the system exhibits a stable hmit eyele. Further, since 2 = 0, the penod
of the oscillations increases with ©. Numencal solutons of (27) were camied out using
the modified fourth-order Runge-Kuotta method. The results mdicate that the equilibrium
solution s stable (by decaying oscillations) for (0 = ¢ = 18 and unstable (by growing
oscillations) for v = 18 (see Figs 3 and 4). The system exhibits a stable limit cycle periodic
solution at the bifurcation value Ty = 18 h(see Fig. 5, which is guite reasonable for the life
span of phytoplankton). This observation indicates that there is a threshold limit 7, below
which the system shows no excitability and above which the system enters into excitable
range. These findings demonstrate the delayed effect of toxic phytoplankton and the eyelic
nature of blooms in this phytoplankton—zooplankton system. We would like to mention
here that in our field study we observed that the blooms reappear after 10 months whereas
our model simulation shows that the blooms reappear after 6 months. The above findings
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show that the wxin producing planktons may act as biological control for the termination of
planktonic blooms. Although these results give only gualitative agreement (this may be due
o sampling process, environmental factors, ete.) this fact cannot be ignored. We believe
that biologists might be interested in this idea and will perform more explicit studies in the

luboratory in this direction.
We further observed that when the ratiwo of initial phyloplankion—zooplankton

population was 5 : 1, the system around positive equilibrium exhibits a stable limat cyele
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for T = 18 h, but when there is a dense concentration of zooplankion (we chose initial
phytoplanktion—zooplankton population ratio as 3 : 1) the tme lag decreases and the
periodicity (through the stable limit eyele) occurs al v = 6 h (see Fig. 6). This result shows
the sensitivity of toxie phyloplankion in the presence of dense zooplankton populations.
Diminution of time lag also implies that toxin acts as a controlling agent in the presence
of dense zooplankton. The results obtained by our field observation also suggest that
ke substances or toxic phytoplankton may serve as a key factor in the termination of
planktonic blooms. Thus, we may conclude that the above observations establish the role
of toxin in the reduction of gmzmg pressure of zooplankton. It may also be noted that
the expenmental and mathematical observations of Chattopadhyay et al. (2002) and the
experimental research of Buskey & Stockwell (1993) support our conclusion.

Finally, we would like to mention that the dynamics of the planktonic community,
specifically the understanding of the role of HABs in the planktonic world, 15 still in a
state of mfancy and hence interdisciplinary involvement 15 necessary. For example, the
life stage of an individoal (larva, juvenile or adult) will also greatly affect the esponse
W a toxic substance. In general, larvae and juveniles are more vulnerble o imjury or
death from exposure to these substances. Studies of the effects of toxie substances must
consider both the age and species of specimens o fully access the chemical wxicity. Also,
w study the dynamics under the presence of external foree may be another interesting
problem m this context, as massive phytoplankton blooms were observed in Sew Inland
Sea, Japan (Prakash, 1987) and in Hong Kong Harbour (Lam & Ho, 1989} which were
due to artificial eutrophication, although we feel such an approach may be viewed as very
artificial and hence at present we have avoided it So, all the possible mechanisms existing
n the planktonic world may not be captured in a single mathematical model. However, the
present simple model with its outlcome may give some insight o researchers of this very
complex and important issue.
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Appendix. Stability of the bilurcation

Here we determine a formula that establishes the stability of bifurcating periodic orbits.
The calculation is based on Hassard er al (1981). We assume the case where Hopf
bifurcation ocewurs (al v = g and @ = ) and vsing the standard notation as in Hassard
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et al. (1981 ) we rewnte (28) in the form
iy = Agpx; + Ry (Al)

where x; € C{[—rt,0], i) is given by x(8") = xi{r + 8"); o' represents the parameter
values at T = 1, @ = ax.

— =8 =0

dg
da’
li]
f dni(p.a)pip) & =0
—r

0
e
({}) T=f <0

an g1 (6 ¢2(8") + and? (@)

Apd(®) =

Rp(8) =

' ’ - i’ —1) )
b [ i b ———————ai(# f =
{ II,¢I{ :Iﬁrzl[] 4+ Hy+¢|l[ﬁ"—t}¢'{ ) A =10
—T
+b12 5 s |
{A3)
ron _ f AdE) B &) '
Aelese) = ( C8(8') + 88"+ 1) Dae) )dﬁ' : el
An eigenfunction of the problem corresponding o the eigenvalue oy
gid) = ( ’fl )ui“"ﬁ' (AS)
where
_ B
Pr= oy
Al L = 1w
AB +i1Bay
=—)" (Ab
B R )
Now we define the following bilinear form:
0 &
(W, @} = (D) (D) _f,.;. nuf”[‘;' — &) [dn(8")]p(&)ds. (AT)
Em— o

To obtain the corresponding adjoint eigenfunction g(8"), we use the standard result
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ig. gy =1and {g,g} =0 letling g = el (1 1n), then we have

- 0 o
{¢m=4mmm—f L G(E — ) dy(8)q (&) d

= iy 4+ 1m _fn fHJ c—iw[E—l‘i"]h,-l %) 0 ) Hi )ciumEdH:dE
R S =N a'E(@ 4 1) 1

= B + 11 —fﬂ _[]E ¢ o 550 + 1) de’ dE
-1
= fi] + 11 —o T cosanT —iT sinayt ). (AH)
Therefore,
A 4+ 1=(l —a'T cosanT + 't Sinagt) = 1 [AQ)

{g.§y = +1n

:],-.9’ O S L 0 ) A ) i g
_y’:r.l:] c {U| U'I} a:‘%{ﬂ:_i_r} 1 c :!l;.

0 [ ; .
= 117 +1n — f e 00— m 80 + e go' de (A1)
—r J0
Therefore,
~ rl’;z .
A 4 e — sinayt =100 (ALL)
ax)

So, the required equations for vy and va are

vy tepnn = 1
# & g
vy e = 0 (AL2)
where
el =1 —a'teosant +ia't sinagt
ol (A13)
er =1 +1— sinaptT
L]
_ €3
A ol — R
€1l — €11
) —B (Ald)
h=——
exfh —e1f)

Finally, we have the values of v and va by aking the complex conjugate of { A14). Using
the notation as in Hassard er al (1981), we write

( - ) =zq+ig+W (A1S)

H(2)
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2(1) = ianz(t) 4+ g(0) - f(wiz, 7. 8') + Relz(g@)})
= e zit) + g0 - folz, 2) (ALT)

|
fo= ( j:” ) (ALS)
1]

fo = AWHO) + 2Re(z(n) 1) an (WD) + 2Re z(1))
+az(WH0) + 2Re (z(N B D],

£2 = {W2(0) + 2Re z(0)}[by (W' (0) + 2Re (2(1)f1)) (A19)
+h1 1 (W!{—1) 4 2Re (z(n)e 0T g )]
+h12(W'{—1) + 2Re (z(ne 07 g)))?

where

Using the result Aie, t) =0, for @ = o, T = 10, and letting 4 = e~ ylso we have
assumed that W = 24]z1%). We have retained only the terms necessary o compute O (0).
Therefore,

£l = an (WHO) + iz + FENWAO0) + 2+ 2)
+an(WHO) + iz + /D)
(AZ20)
= (anf +anfh izt + (anfi +ﬂ1ﬂﬁ:11}52
Ha (B + 1)+ 2anf f)z2 + Oz

fo = b (WO + iz + FIDWHO) + 2+ 2)
HWHO) + (F12 4+ Fi12)20)b1 (W2 (0) + 2 + 5)
+hi(WHO) + (F1z + Bi12)12)°

= (b By +b1af 2522 + (b fr + b2 453 (A21)
+ (b1 (1 + B1) + 2b1afi fi)zz
b2 + by fy 20028 + by (B1* + 21 pr) i 2%

b2+ Az + 03z,

So, after taking the dot product of fy and E{{}} and after expanding, we have
t=impz+ i fy + S

% + 1 ¥ cq 1 =3 + o 1 3
= 1T - Tk = & ZZ - F
2 zg_ﬂ 23(]2 £11 ﬁgll]

S S ;] 4
+agm:. + 582272+ 381222 + {zl™M (A22)
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where
g0 = 200 (@ fi + aofi?) + nbn i + biafi )]
g2 = 200 (@ fi +aofi) + Bbufi + biafi )]
g1 = vilan (B + F1) + 2axnfiB1) + mibn(Br + fi)
+2b1281 1)

. S, (A23)
g2 = 2 (248 + BT
g1 = 2iab 1 (2H1 81 + BT’
230 = 6v by B2 07
SR iy
go3 = 6by B 7
Finally we use the expression of Hassard er af. (1981 ):
i i 1 = 1
Ci) = —(gmgn — 2lgul” + zlgoel™) + g2
Py 3 2
Re C i)
H2 = — (AZ4)
a'(0)
Fm CHOY 4 praa (D)
3= — i
LLL ]

So, the bifurcation is supercntical if po = 0 and suberitical if 2 = 0. Further of 72 = 0,
the penod of the solution increases with T.
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