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Abstract: Some assumptions are implicit in the traditional model used for studying the op-
timality properties of cross-over designs. Many of these assumptions might not be satisfied in
experimental situations where these designs are to be applied. In this paper, we modify the model
by relaxing these assumptions and show a class of designs to be universally optimal under the
modified model.
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1. Introduction

In cross-over designs, a number of experimental subjects are exposed to the treatments under
study applied sequentially over some time periods, and in addition to the direct effect of a treatment
in the period of application, there is also the possible presence of the carry-over effect(s) of a
treatment in one (or more) subsequent periods. These designs are widely used in clinical trials and
also in agricultural field trials, dairy experiments and in many other areas of experimental research.

The optimality properties of these designs have been extensively studied in the literature. We
refer to Stufken(1996) for a review of these results. Most of the available optimality results are
based on the following model of Cheng and Wu(1980).

Yij = µ + αi + βj + τd(i,j) + ρd(i−1,j) + eij ; i = 1 . . . , p; j = 1, . . . , n; ρd(0,j) = 0 (1)

where µ, αi and βj represent the general mean, the i-th period effect and the jth subject effect;
d(i, j) denotes the treatment assigned to the j-th subject in the i-th period, Yij is the response under
d(ij), τh and ρh are the direct effect and first-order carry-over effect of treatment h respectively
and eij is the error.

Model(1) makes the following four main assumptions:
1. Carry-over effects stop after the first period.
2. There is no interaction between the treatments applied in successive periods to the same

subject.
3. The subject effects are fixed effects.
4. The errors are independent with mean zero and constant variance.
Clearly, in situations where these designs are used, specially in the recent applications of these

designs, one or more of these assumptions are likely to be violated. The first assumption is untenable
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in situations where the effect of a treatment does not die out abruptly after one period, which is
often the case when the interval between successive time periods is small. Regarding assumption 2,
it is known that in many situations the successive treatments do interact and possibly the earliest
data set reflecting this is in John and Quenouille (1977, pp 211-213). In experiments where the
subjects are a random sample of possible subjects, assumption 3 will be invalid. Finally, since the
same subject is giving rise to a set of observations over time, it is unlikely that all these observations
will be uncorrelated.

It seems that no study is available in the literature under a model where all the above 4
assumptions are simultaneously relaxed. In this paper, we first propose a modified version of model
(1) for which all the above assumptions are removed. Then, under this modified model, a class of
designs is shown to be universally optimal for direct effects in the class of all cross-over designs
with the same set of parameters.

2. Modified model and optimality
The proposed modified model is:

Yij = µ + αi + βj + ηd(i,j)d(i−1,j),...,d(i−k,j) + eij , k ≤ i ≤ p− 1, 1 ≤ j ≤ n;

Yij = µ + αi + βj + ηd(i,j)d(i−1,j),...,d(0,j) + eij , 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n, (2)

where µ, αi are as in (1), βj is the random subject effect. We assume that the carry-over effect
of a treatment can persist for upto k ≥ 1 periods, say, and there can be possible interaction
among succssive treatments for upto k periods. For simplicity of notation, we use one term, viz,
ηd(i,j),...,d(i−k,j) to denote the sum of the direct effect of treatment d(i, j), the first order carry-over
effect of d(i− 1, j), . . ., the k-th order carry-over effect of d(i− k, j) and all the interaction effects
between the treatments d(i, j), . . . , d(i− k, j).

We assume that β = (β1, . . . , βn)′ and e = (. . . , eij , . . .)′ are independently distributed with
variance matrices σ2

βIn and σ2
eIn, respectively, where Ia is the a × a identity matrix. This gives a

resultant error structure where observations from the same subject are correlated while observations
from different subjects are uncorrelated. This seems a more reasonable error structure for these
designs than that of independent errors as in model (1.1).

Clearly, model given by (2) relaxes all the assumptions 1, 2, 3 and 4 of model (1).
Remark 2.1 With model(2), the practitioner now has the freedom to choose k according to

the experimental conditions. If we put k = 1, ignore the interactions, take β to be fixed effects and
assume independent and homoscedastic errors, model(2) reduces to the standard model (1).

Let Ωt,n,p be the class of all cross-over designs with t treatments, n experimental subjects
and p time periods. Following Bose and Mukherjee(2000), a design in Ωt,n,p is studied as a tk+1

factorial arrangement in a p× n array where the direct and the (i− 1)-th order carry-over effects
are interpreted as the main effect of factor F1 and Fi respectively, and their different interactions
are interpreted as the factorial interactions between the factors F1, F2, . . . , Fk+1. While initially
our formulation of the problem is influenced by that of Bose and Mukherjee(2000), considerable
additional work is needed to incorporate the present setting. For example, model(2) is different
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from that in Bose and Mukherjee(2000) and so expressions like (3),(4),(5) do not arise in their
set-up and as a consequence, the subsequent development in this paper is different from theirs.
Model(2) is rewritten as follows in a form suitable for factorial treatments so that the Kronecker
Calculus for factorial arrangements, as introduced by Kurkjian and Zelen (1962), may be used.

E(Y ) = Xθ, D(Y ) =
∑

(3)

where Y = (Y01, Y11, . . . , Yp−11, Y02, . . . , Yp−12, . . . , Y0n, . . . Yp−1n), X is the design matrix, θ =
(µ, α0, . . . , αp−1, η00...0, η00...1, . . ., ηt−1,t−1,...,t−1)′,

∑
= diag(A, . . . , A), A = σ2

eIp +σ2
β1p1′p and 1p is

the p× 1 unit vector. In (3), E(.) stands for the expectation operator and D(.) for the dispersion
matrix.

After considerable algebra using properties of Kronecker product of matrices, it may be shown
that under model (2), for a design dεΩt,n,p, the coefficient matrix Cd of the reduced normal equations
for η is given by

Cd =
1
σ2

e

p−1∑
i=0

n∑
j=1

λijλ
′
ij − a

n∑
j=1

(
p−1∑
i=0

λij)(
p−1∑
i=0

λ′ij)

− 1
nσ2

e

NdN
′
d −

a2σ2
β

n
Gd1p1′pG

′
d −

a2σ2
e

n
GdG

′
d

−
σ2

β

nσ4
e

Nd1p1′pN
′
d +

σ2
β

nσ2
e

aNd1p1′pG
′
d

+
a

n
NdG

′
d +

σ2
β

nσ2
e

aGd1p1′pN
′
d +

a

n
GdN

′
d,

(4)

where a = σ2
eσ

−1
β (σ2

e + pσ2
β)−1,

λij = νd(i,j) ⊗ νd(i−1,j) ⊗ . . .⊗ νd(i−k,j), k ≤ i ≤ p− 1, 1 ≤ j ≤ n,

= νd(i,j) ⊗ νd(i−1,j) ⊗ . . .⊗ νd(0,j) ⊗
{
Π⊗ t−11t

}
, 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n,

Gd = (
p−1∑
i=0

n∑
j=1

λij , . . . ,
p−1∑
i=0

n∑
j=1

λij), (5)

Nd = (
n∑

j=1

λ0j , . . . ,
n∑

j=1

λp−1,j). (6)

and Π⊗ denotes the Kronecker product of (k − i) terms, νm is a t × 1 vector with 1 in the m-th
position and zero elsewhere.

Let d1 be a design in Ωt,n,p in which each treatment is applied equally often to a subject and
equally often in a period and in which each subset of 2, 3, . . . , k+1 consecutive periods contains each
2-plet, 3-plet, . . . , (k + 1)-plet of treatments equally often. Theorem 2.1 establishes the universal
optimality of d1 under model (2). For the definition of universal optimality we refer to Kiefer
(1975).

Theorem 3.1 Under the model(2), d1 is universally optimal for the separate estimation of full
sets of orthonormal contrasts of direct effects, over Ωt,n,p.
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Proof : It is enough to show that the factorial experiment corresponding to d1 is universally
optimal for estimating full sets of orthonormal contrasts of main effect F1. By a result in Muker-
jee(1980), in d1, the contrasts belonging to main effect F1 will be estimable orthogonally to those
belonging to all other main effects and interaction effects if Z1Cd1 is symmetric, where Z1 is the
Kronecker product of k +1 matrices given by Z1 = Et⊗ It⊗ It . . .⊗ It, Et = 1t1t, It is the identity
matrix of order t.

On simplification, using (5),(6) and the definition of d1, we can show that for the design d1,

Z1

p−1∑
i=0

n∑
j=1

λijλ
′
ij = Z1(

n

t2k+1
[It ⊗ Et ⊗ . . .⊗ Et]

+
n

t2k
[It ⊗ It ⊗ Et ⊗ . . .⊗ Et] + . . .

+
n

tk+2
[It ⊗ It ⊗ . . .⊗ It ⊗ Et] +

n(p− k)
tk+1

[It ⊗ . . .⊗ It])

= np
tk+1 (It ⊗ Et ⊗ . . .⊗ Et)

(7).

Z1

n∑
j=1

(
p−1∑
i=0

λij)(
p−1∑
i=0

λ′ij) =
n∑

j=1

p

t
(1t ⊗ . . .⊗ 1t)(

p−1∑
i=0

λ′ij)

=
np2

tk+2
(Et ⊗ Et ⊗ . . .⊗ Et)

(8)

Z1Nd1N
′
d1

=
n2p

tk+2
(Et ⊗ . . .⊗ Et), Z1Nd1G

′
d1

=
n2p2

tk+2
(Et ⊗ . . .⊗ Et)

Gd1G
′
d1

=
n2p3

t2k+2
(Et ⊗ Et ⊗ . . .⊗ Et), Nd1EpN

′
d1

=
n2p2

t2k+2
(Et ⊗ Et ⊗ . . .⊗ Et)

Gd1EpG
′
d1

=
n2p4

t2k+2
(Et ⊗ . . .⊗ Et), Nd1EpG

′
d1

=
n2p3

t2k+2
(Et ⊗ . . .⊗ Et) (9).

From (4), (7), (8) and (9), it follows that Z1Cd1 is symmetric and so, in d1, direct effect con-
trasts are estimable orthogonally to contrasts belonging to all other effects. Hence, using standard
notations it follows that

Cd1(direct) = P 10...0Cd1(P
10...0)′, Cd(direct) ≤ P 10...0Cd(P 10...0)′ (10)

for all dεΩt,n,p, where the coefficient matrix of the reduced normal equations for the full set of
orthonormal contrasts belonging to direct effects in a design dεΩt,n,p is denoted by Cd(direct), and

P 10...0 = P ⊗ 1′t√
t
⊗ . . .⊗ 1′t√

t
, where P is such that ( 1t√

t
, P ′)′ is orthogonal.

Again, using (7),(8) and (9), Cd1(direct) as in (10) simplifies to the form

Cd1(direct) = α[It ⊗ . . .⊗ It], (11)

where α is a constant, being a function of n, p, t and k. Thus, Cd1(direct) is completely symmetric.
From (4), (7), (10) and (11) it follows after considerable algebra that d1 maximizes trace(Cd(direct))

over dεΩt,n,p.
Hence, d1 satisfies the sufficient conditions for universal optimality as given in Kiefer (1975)

and the theorem is proved.
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Remark 3.2. Theorem 3.1 is quite general in the sense that the class of competing designs
include all designs in Ωt,n,p. The size of d1 naturally becomes larger than that required for optimality
under the model (1), because the simplifying assumptions of (1) are removed and d1 is optimal under
more general conditions. The actual size of d1 depends on the value of k to be used in the model.
The higher the order of carry-over effects present in the experiment, the larger will be the design.
It is expected that in most experiments k will be moderate and so the design will not be very large.

The following is an example of a design d1εΩ2,8,6 with k = 2. The design is written with periods
as rows and subjects as columns.

0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1
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