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ABSTRACT

Frtimation of g smooth funclion is considersd when observations on this function added with
Giawssian emors are observed, The problem is formulated as a general lincar model, and a hier-
avchical Bayesisn approach is then used to study it. Credible bands are also developed for the
function. Sensitiviey analysis is conducted to determine the influence of the choice of priors on
hyperparameters. Finally, the methodology is illustrated using real and simulated examples where
ik 1§ compared with ¢lassical cubic splincs. I is also shown that our approach provides a Bayesian
solution to some problems in discrete time series.

RESUME

Nous Sludierons le lissage ' unc fonction lorsgue les observations de cette fonction sond sujeties i
des errcurs gaussiennes. Le probléme sera formulé 3 ade d7un modéle ndaire € nous wtiliserons
I'approche bayesienne hifrarchigue pour I"8ludier. De plus nous dévclopperons des bandes de
crédibilitd pour le lissage. Thne apalyse de sensibililé sera faite pour déterminer 'influence sur
le lissape de la densité g priod ser les hyperparamémes. Pour conclure. nous illusirerons cetee
nouvelle méthodologie § aide de donnécs réclles of d'une simulation; nous comparesons les
résuliats Chlénus avee coux fournis par les splines cubiques. 11 sera anssi montré que celle approche
fournit une solution bayesienne & guelgues problEmes en sédes chronolosigucs.

1. INTRODUCTION
Comsider the model

M) =gl +e, €T, falorag: (1)

where € = (£, €2,....6,)7 ~ N{0O,6°I) {0° unknown) and ('} is a smooth function
defined on some index set °T . This model has a wide tange of applications and can be
used to represent any continuous phenomenon (in one or several dimensions) which is
measured with independent errors (or with known covariance matrix). We were motivated
for the present study by the Mational Surface Water Survey, which collected large amounts
of data on acidic depositions in fresh-water lakes in the 1.5, and Capada. [Details can be
found in Linthurst e af. (1985).] Our ultimate objective is to construct two-dimensional
contours of acidic depositions using these data.

In this paper, only the one-dimensiomal case, ie, T C R, is studied. The problem
of interest is to estimate the function g for all ¢ € T and to provide an error band
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(“credible band™) for it. Before developing the main results in Sections 2.2 and 2.3, we
shall describe the prior model in a hierarchical Bayesian way and show that the prior
made] used in this paper is equivalent to a generalized linear model. Using the Bayesian
approach for linear models, an estimator for gif) will be proposed in Section 2.2, and
an error band for it will be derived in Section 2.3. In Section 2.4, a procedure for the
choice of the smoothness parameter will he proposed.

In Scction 3, the proposed methadology will be applicd 0 2 simolaced data see, It wall
also include & sensitivity analysis of the estimaror with respect to the choice of priors
on hyperparameters and with respect fo the degree of smoothness indicated by the prior
mindel. There has heen a ot of nterest recently on diserete Ume series with continuous
inensity functions {e.g. Kitagawa and Gersch 1984). We shall also illustrate bere how
our procedure can be wsed in such situations. Data on monthly procipitation in Vancouver
will be used. In this case g(f) is the underlying intensigy of precipitation, which can be
reasonably assumed to he a smooth function.

It should be noted that all the results described here have been abtained using the
hierarchical Bayes approach. Several other approaches have been utilized in the literature
for cstimating the regression function g(-). Among them are polynomial splines (Wahba
1978}, Bayesian curve fitting {O'Hagan 1978). locally regular smoothers {Weerahandi and
Zidek 1988), poin-process fitting {Delampady 1987}, and Bayesian muliiple regression
{Nebebe and Steoud, 1956). Later. in Section 2.1, our approach will be compared with
some of these works to illustrate the Hexibility and vsefulness of our work.

2. DESCRIPTION OF THE MODEL AND DEVELOPMENT OF
THE ESTIMATOR

The prior on g{-) will be described in several stages wsing the hierarchical Bayesian
approach. To facilitate the construction of the prior, the function g(-} will be cxpanded
in a Taylor series, that is,

t— o)
g0 = gli) + { ~ fo)g'(tp) + E-—,,-,—“--f gy

TR
(m— 1

= @50 + R0, (2)

g™ o) + Rt

where fu & T {; chosen by the user) and

B [t — o) = Y
rll(:‘:—(l.: e T e o D ) :

= (e(u) 2'tgh- ... 8% Yy,

R(#) 15 the remainder, and m represents the smouthness parsmeter, being the number of
derivatives plus 1. The purameters of interest will be & and Rnd-).

For convenience, it will be assumed that the firsi-stape prior of & is an wm-variate
nocmal distibution with mean p = {1, Kz, ...[.lm}T and covariance matrix ol the form
4T, where I' is a known matrix. In most of the applications it will be reasonable to
apptoximate I' by the identity matrix. Since R.(-) is the remainder from a Taylor series
expansiofn, it is assumed to be of the form B, (1) —= (¢ — ol 2y - 1) fim — 1), where
Z ix a second-order-stationary Ganssian process with mean 8(1) and covariance kernel
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given by Cov (200, Z(x)) = ¢*p(lt — s, with p(d} a monotone decreasing function of
0 < d < 0o. The more slowly p(-) decreases, the more stable 8,.0-) becomes. Therefore,
it also measures the influence of the yi#)Y's in cstimating R, (). Other covariance kernels,
such ux the spline keme] of Wahba (19780, were also considered, bul they did not provide
interesting results.

In order 10 camy out the caleulations analytically as much as possible, the following
model will be chosen or the hyperparameters. However, note that (Berger 1985; Goel
and DeGroot 1981} the effect of the second- and third-stage priors on the resuliing
cstimator is quite imited. Consequently, the hyperparameters (L and 8- will be assumed
o have the following prior distributions: {4 will be m-variate normal with mean 0 and
covariance matrix T, and 3 will be a secomd-order-stationary Gaussian process with
mean O and covariance kernel given by Cow (8ir), 8(s)) = Tpilt — 5)). Since the first-
stage model assumes # and Rg(-) to be independent, it seems natural to assume their
first-stage expectations, i.e., L and &), to be independent also, given the hyperparameters
¢ and 1°. The nuisance parameter 6° and the hyperparameters ¢° and 12 will be given
a noninformative prior to be specified later.

In summary, the model can be written as

Y =XB +x.
where ¥ = {y(r)p(e) 360, X = (LI, T = (@), @), D)), B =
BT R, R = (Rultr ), Relts)s . Raltad) . Ty = ({1 — 1™ VJlm — 1} (03 — i)™ 1/

m—1,. . . (s — :..}"‘"_,-"fm — I}!]T. The first stage prior on [§ is (m + w)-variate normal
with mean (p.T,ET]T and covariance matrix §°%,. where

r o
xi=
( n QFI
and , is the n < 7 mateix whose {i 7} element is given by

2.1. Comparizon with Other Modals.

In this subsection, our approach to the problem of curve fitting and smoothing will be
compared with those used in Wahba (1978) and O'Hagan { 1978), and with a hierarchical
Bayes approach to multiple regression proposed in Nebebe and Siroud (1986).

By modelling observations with Equations (1) and ¢2), we take an approach similar
to Wahba (1978). However, our hierarchical prior approach for modelling the prior
parameters, § and Ry, differs substantially from the one used by Wahba. Instead,
Wahba considers a diffuse prior on @ by assuming that 8 ~ N, (0, EI} with £ — 20, We
feel that often the prior information available oo ® is not vaguc, and hence a diffuse first-
stage prior on @ is nol appropriate as o peneral prescription. Also, the prior distribution
used there on Rei-) corresponds to the distribution of an integrated Wiener process with
the covariance kernel

T wrt g —ap
(re— 130 (m— 13

Qis, 1) =
S0

mi—1
= {min(s, H}" Z (m :_ I) {mings, 6y} — 5|17,



38 ANGERS AND DELAMPADY vol. 20, No. 1

We feel that our choice of the covariance kermel which arises from the representation
R = r"‘"Z{!“}f{m — 13! i more appropriate for a remainder werm. The spline cstimator
proposed in Wahba (1978) corresponds to the limit, when & goes to oo, of the posterior
mixde. Note that Wahba does not wse the prior mode] 0 denive the proposed cstimalor,
but instead uses it as a Bayesian justification of generalized splines.

CFHagan (1978) assumes the model

¥(1) = TR +e.

where fir) is & veetor of known functions of ¢, and i) is a vector of unknown parameters
which may depend on . Lt is assuimned that the errors have an i.i.d. normal distribution with
known variance, The priar assumptions made are that J(} is a second-order-stationary
Caussian process with

TIB()kal = by,
E B — baHB ") — b} lbal = ptls — £ 3B,

where by and By are assumed to be known and 1w be independent of ¢, Also considered
ix Lhe case where by is assigued a second-stage normal prior with known mean b* and
covariance kB, with the owltiplicative constant £ allowed to increase ko oo, providing
a diffuse prior. Our approach is very similar, but we prefer (2), since often substantial
priot information is available showt the derivatives of a regression lunction. However,
exactly specifving p (by} and I (8y) is almost always an impossible task, so that a natural
solution is © assign a second-stage prior on these gquantiies as we suggest Alwo, we
consider the assumption that the error varianee 6° is known o be unrealistic and hence
asslgn g noninfurmative prior diseribution to this misance parameter. The major difference
between the two approaches is our choice of hyperparameters using a carcful sensiivity
analysis instead of adepting a diffuse prior in the last stage. Clearly, our approach will
provide an estimator of the regression function which is mure robust with respect (o the
choice of priors. It is important to nole alse that carefol choice of byperparameters and
some of our key simplifications will help keep the additional computativms Lo a minimur.

Without the &, () term, the mods] deseribed by Eguations (1) and {2) can also be
viewed as a polynomial regression model (Nebebe and Stroud 1986) with dependent
errors, Alsa, our wse of o sccond-stage prior on the hyperparameters of the first-stage
prior is similar to their analysis. However, the represcntation (2) that we use in our model
can be considered an appealing allernative w Bayesian multiple linear regression with
polynomials. The remainder B.(-) acts as an imsurance against the possibility that the
funclion g(-) may not be a polynomial of order s — 1.

2.2. Developmernt of git).

Let By = ('.87)'. Then, using standard hierarchical Bayes technigues for the linear
model (Lindley and Smith 1972}, one can show thar the first-stage posterior of B s a
(t =+ #t}-variate normal distribotion with mean

(0% + 0 XTX) g 23 'Po+oXTY), (3

and covaranes malfix
(L o IXTN) L
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If one uses the posterior mode as decision rule, the first-stage Bayes estimator is given
by (3).

Muote that the marginal of ¥ given Bo. 07, and ¢ is an #-variate normal with mean
XBy and covariance matrix X, = oI + ¢*XI X",

The Baves estimator of B 15 obtained by tuking the posterior expectation of (3) with
respect 1w the hyper- and nuisgnce parameters (cf. Berger 1985). The main reason for
conducting hierarchical Bayesian analysis is to reduce the dimension of the numerical
integration required to compute this posterior expectation. Since, as shown in Section 3,
the estimator does not depend crucially on the second- and higher-stage hyperpriors, one
can choose these hyperprioms in ways that will allow most of the caleulations to be done
analytically.

Az mentioned previously, the prior on By is a (m+#)-variate normal centered at O with
covaniance matrix T°%,. Therefore the posterior distribution of f given ¥, o2, ¢, and 12
i% {#t + W )-variate normal with mean

s XXy IXTE Y
and covariance matrix
I L XTESINL
Replacing By by its posterior expectation in (30, one obtains

-

Boge = 0722 40 XTD!
X {75 TR T A XTE X IXTE T Y 40 XYL (4
Using the matrix identities {cf. Scarle 1982}
e S & St igth b TN o S W L) e b Al (5)
o IR T+ oKX = ¢"EXTE, (6)
one can show that Equation (4) becomes
By = XTI, o 2(E, + 2XEXT) L4 Q)Y (7)
Noting that %, = ¢’I+¢°XE X", Equation (7) can be simplified to
Biog o = (% + DEXTE, + XEXTY.

[t can also be shown that the marginal of ¥ given o7, ¢7, and 12 is an a-variate normal
with mean 0 and covariance mateix %, + °XZ X",

Before we can proceed to the third-stage calculations, some algebraic simplifi-
cations are needed. Spectral decomposition yvields XXX = HDH', where D =
diagidy, .. ... ehe) is the matrix of cigenvalues and H is the orthogonal maidx of
eigenvectors. Thus

3, + PXEXT = H{dT+ %> + TOHDIH'
= uH(vl +THH", (3}

where w = pf + 18 and v = o fu.
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Izing the representation in Equation (8), the marginal density of ¥ given « and v can
be written 1%

rH—

ml Y. vl = (ﬁjrl:]_”-'azu_""ﬂ?‘ det{vI + I3}

M " 5
- —n/2 )2 . _% 1 5
- @m [ dy 2exp (—ﬂ 2 "‘“‘3)’

i-1 i=1

exp (—z—lu YTH{vI+D}“HTY)

where s = (5. 52,....5,T = H'Y. Using the same representation. the second-stage Bayes
estimator of B given the hyperparameters can be recxpressed as

ﬁlzr‘.qa",ta = EXTHivl+ D s

Therefare, the only numerical intepration required to obtain the third-slage estimator is
the posteriur expeclation of /(v +d;) for i — 1,2,..., n with respect to » and v

Since Equation (2) corresponds to a polynomial regression, one may be temptad o
use arthogonal polynomials to compute the Bayes cstimator. Deing so, Equation (2) can
b written as

m—|

glin = Z T () + Ralti ). (%

o=

where y;(5) s a jth-degree polynomial such that S ws i) = 0 for all j £ L
Ulsing the same prior model us previously defined, the hicrarcl;ris:al Bayes estimators of
¥ = Mo +“r’m—1]'T and Rulf} = {RmU]LRm“Z‘:'- o --Rm('rﬂ}j are given by

¥ = E[vFE™'Y, {109
R =Y - ELETQ'Y, (1)

whete the expectation is taken with respect to the posterior of v, and where
F=0T '+¥T¥) W7,
E=vQ ' +1-#T0T,

and ¥ is an a2 % m matix whose (4, /th element corresponds to yy (). Hence to
compute the 4 and R..(1), an i« m and an # ¥ # matrix have to be inverted, in contrast
with the diagonalization of a # x # matrix needed in the previous sclup. However, sinoe
those inversions have to be done for all v's (which i% not the case (or the diagonalization)),
it is less computationally intensive to use the onginal formulation given by Equation (2).

Al the next step, a noninformative prior on @*, @7, and T of the form w* (o /(% +
1), 0 + %) will be used here. Recalling that « = * + 1% and v — "/, the prior '
umplies a prior

min, v = (Je Ym0, u)
on w and v, where J{w. v) is the Jagobian of the trunsformation. Therefore. « and v being
hyperparamelers, the choice of the prior on them is not crucial, since its effect on the
estimator is limited (cf. Berger 19835; Goel and DeGroat 1981 ). Conscguently, a prior of
the form
i, v = w e+ g Vn @ constant,

has been chosen in order to reduce the dimension of the nomerical imtegration,
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Tueorem 1. The hierarchical Baves estimator of B is given by

B - SXTHE|+Dy s, (12)
where the expectation is taeken with respect o
: b oyt
, b \ ; i
R o (v + v (H (1 +d,}) (:‘S_}‘ Hd}_) 5 (13)
FProgf. To compute |§ the expectation of (v +dj)~' for j = 1,.._, n with tespect to

file, v| Y} is required. Note that

na o
Elv +dy) g =f f {v+d;) Vi, v Y e ey
0 4]

=f [1-'+|._-{l.}—1 (f e, L'|Y}du) v,
0 1

1

= ) o " -1
f e, v|Y)du o [ arlinizastbey gy LT 0 + )
o Jo

] e ';;J'
RExp (_ﬂ E F+cf,-) i

i=l

It can be shown that

bl

=i{r+ m}_b (H Ay +d;})

% e —{I’n.;"?_}+u-rl}e.{ _L i SJ? i
1 u 0 n v+ d;

2": ‘? —{in 214}
— v dy |

Fdl—

v+ © (H{v +ﬂ';}]
i—1

which completes the proot. QED.

Remark. All the above inleprals remain fimite provided that b > a+ 1.

Comensawy 1. The hierarchical Bayes estimator of {g(n), g¢t).....2(t))| = XB is XB.
Cowoniagy 2. The hiergrohical Bayves estimator of g(0) for anv r & T s
g = (@ q"Q B, (14)
where
1 m—1 . '
Q) = ——————{{{t —tdn —m)} plit—nj
{{m_qu}l{{ I 1 } 1

Lt — todes — )} ptle — e {0t — tdlte — 80} Pl — )"
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Proaf. From Equation (2).
S =®T0 + &0, (15)

gi_ncel?l is known (first m coordinates of é}, all that is lefl o be done is to compute
Rt = TIRL(0|¥] The joint distribution of Reis) and Y given u and v is an (n +
1)-variate normal with mean O and covarance matriy
1 6"
"(q(;} H(wI+D]|HT) '
Consequently the expectation of R (f) given Y, w, and v s
Rolt) o — git) " HOI+ DY 'H'Y,

Therefore,
Bolt) = itV HE [T + Dy s,

Thas replacing By (1) in Eguation (15) by the last expression, we pet
HO =P8 + g HE[(vL+ DY s
TT'

Q, )H‘E (el + D} s

— (BT, 0B + 0, g QY (

Noting, that (T, Q,,TJ = XX and using Bquation (12), we have

g0 =@ " 0B + O, a)'Q, B
= @) g Q; "B,
which is the desired result. Q.E.D.
2.3. Construction of ihe Error Band.
The error band thal we propose for gir) is of the form
201y £ 24/%(2), (16)

where 1(2) is the posterior variance of girl. As it will be shown m Corollary 4, v{f)
depends on the posterior covarance matrix of @, which is given in the following theoreimn,

THecREM 2. The posterior covariance martrix of B is
D)= Eu)E —ZXHET |u(vI+ D) ' H'XE
+ BB Blgal BB, (17

where the expeciation is taken with respect to the posterior distribution of u and v.

Proof. The proot of Theorem 2 is immediate from the identity
T —BIp —B)T] = BT L BTSSRI g —Byg —)T]))

and from the malrix identities (3) and (6. Q.E.D.
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CopoLLary 3. The posterior covarignee matrix of (g{r ), g{rz), ... BN = Xp is

20
.
o | 2 | | uxs X7 - XEXTHE [l + Dy T HTXEXT
£l
+XEXTH{E [(vI+ D) "ss (Wl + DY}

EfvI+D ' ssTE[(v1+ Dy JHTXEXT,
where the expectation is taken with respect to the posterior of u and v.

Proof. The proof is straightforward from Theorem 2, since (g (1. g{t2).. ... g5 = XB.
QE.

CorovLLary 4, The posterior variance of §{1) is

vit) = (BT, gy HEWE " - XTHE [upvI+ Dy ' JH'X

. » I'e
VI LBl -BNE (00 ) a®

Proof. From Corollary 2, we have
80— @0 an'Q, )

r-' 0 -
@@T. a0D{ "y i )8

= (@', g2 'p. (19
The calculation of vif) is now immediate from Theorem 2 and Equation (19). QED.

To obtain an emor band for x(7) for 1 € 7, one computes F{r |Equation (143] aml
vif) |Lquation {18)}] and substitates these values in Equation (16), Note that the mumerical
mtegrations required to evaluate Lguations {14) und (18) do not depend on ¢ but depend
unly on 1,4y, ..., 8, throagh the caleolation of B [Equadon (121} and D (B) |Eguation
(171

2.4. Choica of the Smoothness Parameter m.

The smoothness parameter m corresponds to the number of unknown regression
parameters in Equation (2). Thus m itsell should be comsidersd a hyperparameter.
Therefore, the classical Bayesian approach to this problem is lo assign a prior on m
and to conduct the full Bayesian analysis on the complete model. This is equivalent to
computing the posterior expectation of B [refer o Equation (127} with respect to .

Although this involves only anuther stage of numerical integration, the amount of
calculation required will be enormous. This is because the limt-stage covaniance matrix
% and Lhe design mattix X = (T, I) depend on m through Q, and T respectively. This
implies that the spectral decomposition of XEXT = HDH" will have to be done for cach
m separately. Therefore, we shall use a simpler altemative approach.

Our approach involves Bayesian testing to choose the most appropriate value of m.
Ome way of doing Bayesian testing is to choose that m which maximizes the postetior
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probability of m given Y. (Eguivalently, vne could compute the Bayes factor of the
hypothesis #y - m = my vs. H : m # myg, for each my.) Note that comparing the
passterior probability of m given ¥ is equivalent to comparing marg(Y |#2) » misr), where
marg(Y|m) represents the marginal density of Y given mr, und mim) is the Prior mass
function of #r on the set of positive integers. This approach is eguivalent k& tinding the
ML-II estimate of /., which is a standard method of choosing some of the hyperparameters
in hierarchical Bayes analysis,

The problem of choosing m can also be viewed as 3 model selection problem (ef. Rao
and Wu 1989). If ong knows the largest value m can lake, denoted M, then choosing the
optimal value of m is equivalent to deciding among the hypotheses

He R0 =8 ot B E =T e e MY

{(Note that accepting the hypothesis # corresponds to decide that w1 = j + 1.) Since it
15 assumed that M is known, one can, for example, use a uniform prior on s [7{m) =
(1/M 1 <meury(m)] and carry out a proper Bayesian analysis of the problem,

2.5 Case of Non-L1.D. Errors.

In this subsection, ¢ will be assumed an a-variate normal with mean 0 and covariance
matrix o’ R, where B is a known positive definite marrix.
Straightforward calculation leads to the firsi-stape estinator given by

Boie e = (673 '+6 X"R™'X)y (0" "By + 6 2XRY),

and shows that the fArst-stage marginal 15 normal with mean XPy and covariance matrix
A = a'R+'XTX". Using matrix identities as in Bquations (5) and {6}, (he second-stage
estimalor can be writlen as

Iiwz_{,zﬂe = {:pz +f2]ExT{0’1R + (¢ +T21XEXT} y
| 1 1 L
~ZX'RIvi+RIXZX'RZ) 'RIY.

The marginal of Y given ¢, ¢, and T° will be a-varate nommal with mean 0 and
covariance matrix u[vR + XEX].
Consequently the hierarchical Bayes estimaror will be given by

- i L
B=3X"RIHE[vI+D) "TH'RIY, {2(h

i |
where HDH' = R 2XZX'R 2. Note that Equation (20 is identical to Equation (12),
so that Theorem 1 and Corollaries 2 and 3 apply directly.

2. ILLUSTRATIVE EXAMPLES AND SENSITIVITY STUDY

In this section, our resalt will be illustrated by means of examples. We have chosen the
covariance kernel pix) = ¢, Ifirst, we shall apply our procedure o a dara sel congisting
of observations lrom a discrete time serics. To be specibic, the duta nsed in this example
comes from Ma and Zidek (1988, and they represent the monthly precipitation {rain plus
one-tenth snow) in inches from March 1965 to December 1966 in Vancouver (Canada). As
indicated in the introduction, here g4/} represents the underlying intensity of precipitation.
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and not just the wue rainfall {as in a measurement-error model). Therefore a model such
ag (2) is meaningful and leads to our methodology. Also note that this is, therefore,
an appealing alternative to the computatiomally intensive approach of Kilagawa and
Gersch (1984). Figure 1 displays the graph of g{fi{fe = O.c = l.m = 2wy = 1)
along with the error bands and the cross-validated smoothing spline {cf. Wahba 1983).
The hyperparameters were chosen after sensilivity analyses were conducted as described
below for the simulated data set. Note that #{-) is very close o the smoothing spline.
Being a cubic spline, the smoothing spline is smoother, but #{-) 1% ool as smooth, sinee
it inclodes the ercor Z{f) in the model. It can also be seen that the smoothing spline lies
within the ermor band.

We shall now describe sensitiviey analyses and the proper cheice of hyperparameters
using a simulated data set. We generated n — 20 ohservatioms using the model v, —
2080 + ¢, where gity — 10 log(] + 1), #; — i/n, 1 < i < n, and ¢ are independent
observations from MEO, 11, AN the calculations have been dome wath ¢ = 1, unless
specified otherwise. Figure 2 shows the regression function g, the generated data, and
the estimate § that we obtained with g — 0, m = 3, and vy = 1.

A swensitivily analysis has been comducted for e, and the tesults are displayed n
Figure 3. Note that o and vy are fixed at ¢ = 0, vy = 1. As expected, large values of
m imply larger smoothness for §{-). When m = 1, the procedure tries to fit a constant
plus 3 Gaussizn process; m—= 2 dlso does not provide enough smoothing; margt ¥ |m)
is maximized at m = 3. but the graph corresponding 1o m = 4 is only slightly more
smooth.

Figure 4 shows graphs of £{f) for values of 4 = 0, %, and 1, for hxed values of m
f — 3) and wy {1, — 13, Note that & has been chosen to be 4 + 1.05. Generally the
stoothacss of i) increases with g, but in this example the sensitivity to the choice of
a 1% Insignificant.

Figure 5 shows the behaviour of £} when wy varies from (0.5 to 5 [vbar = (ir D) /n.
which is approximately 1.3] while ¢ and m are fixed {u = 0,m = 2). The behaviour
of #{-) is similar to that in Figure 4, that is, a large value of vy generally implies more
smoothness,

It can be seen from Figure @ that the value of ¢ is important. The shape of the curves
is similar for all values of ¢, butl the larger ¢ 15, the closer §(.1 is to the ¥{#;)'s. The choice
of ¢, therefore, depends on whether one is interested In curve fitling or curve smoothing.

Computer programs written in S-language and FortRar which generate all the fipures
except Figore 1 are available from the authors upon roquest.
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