On commutativity of rings

D.S.Nagaraj \& B.Sury

Introduction

Here we discuss how certain identities on a ring force it to be commutative under some mild hypotheses. Let us assume that A is a nonzero associative ring with unity 1 and satisfies an identity of the form

$$
x^{a_{1}} y^{b_{1}} \cdots x^{a_{r}} y^{b^{r}}=x^{c_{1}} y^{d_{1}} \cdots x^{c_{s}} y^{d_{s}} \quad \forall x, y \in A
$$

Here $a_{i}, b_{i}, c_{i}, d_{i}$ are fixed positive integers. Note that identities like $(x y)^{n}=$ $x^{n} y^{n}$ or $(x y)^{n}=(y x)^{n}$ give rise to special cases of the above identity. We prove some general commutativity results assuming the ring is N-torsion free for a suitable integer N. Here, A is said to be N-torsion free for an integer N if $N a=0$ for some $a \in A$ implies $a=0$. We also give some examples to show that some assumption on torsion is necessary. Some commutativity results appear in $[A],[A B Y],[A w]$ and $[J O Y]$.

Theorem.

Assume that A is a nonzero associative ring with unity 1 and satisfies an identity of the form

$$
x^{a_{1}} y^{b_{1}} \cdots x^{a_{r}} y^{b_{r}}=x^{c_{1}} y^{d_{1}} \cdots x^{c_{s}} y^{d_{s}} \quad \forall x, y \in A .
$$

Further, assume that $\left(\sum_{i=1}^{r} a_{i}\right)\left(\sum_{i=1}^{r} b_{i}\right)=\left(\sum_{j=1}^{s} c_{i}\right)\left(\sum_{j=1}^{s} d_{i}\right)$ and that the integer $u=\sum_{i=1}^{r} a_{i}\left(b_{i}+b_{i+1}+\cdots+b_{r}\right)-\sum_{j=1}^{s} c_{j}\left(d_{j}+d_{j+1}+\cdots+d_{s}\right) \neq 0$. Then, there is an integer N depending only on $a_{i}, b_{i}, c_{i}, d_{i}$ such that if A is N-torsion free, then it must necessarily be commutative.

Remarks

(i) If $M=\operatorname{Max}\left(\sum_{i=1}^{r} a_{i}, \sum_{j=1}^{s} c_{j}, \sum_{i=1}^{r} b_{i}, \sum_{j=1}^{s} d_{j}\right)$, then one may take N to be the least common multiple of M ! and u where u is as in the theorem.
(ii) Note that $r=n, s=1, a_{i}=b_{i}=1, c_{1}=d_{1}=n$ gives the identity $(x y)^{n}=x^{n} y^{n}$ and the corresponding $u=-n(n-1) / 2$.
(iii) The papers $[A],[A B Y]$ prove theorems of the following type:

Let R be a ring satisfying the following hypotheses: (1) for each $x \in R$ there exists an integer $k=k(x) \geq 1$ and a polynomial with integer coefficients
$f(\lambda)$ such that $x^{k}=x^{k+1} f(x)$; (2) for every $x, y \in R$, $(x y)^{n}-y^{n} x^{n}$ and $(x y)^{n+1}-y^{n+1} x^{n+1}$ are central elements, where n is fixed integer; (3) R is $n(n+1)$-torsion free; (4) the nilpotent elements of R commute. Then R is commutative.
An n-torsion-free ring R with identity such that, for all x, y in $R, x^{n} y^{n}=$ $y^{n} x^{n}$ and $(x y)^{n+1}-x^{n+1} y^{n+1}$ is central, must be commutative. Further, a periodic n-torsion free ring (not necessarily with identity) for which $(x y)^{n}-$ $(y x)^{n}$ is always in the centre is commutative provided that the nilpotents of R form a commutative set.
(iv) The papers $[J O Y]$ and $[A w]$ prove some commutativity theorems of the following type without assuming associativity :
If R is a ring (associative or not) with identity such that $(x y)^{2}=x^{2} y^{2}$, then R is commutative.
Let R be a non-associative ring with unity $1 \neq 0$, such that $(x y)^{n}=(y x)^{n}$ for some fixed positive integer $n \geq 1$ and for all x, y in R; further, let the additive group of R be p-torsion free for every prime integer $p \leq n$; then R is commutative.

Proof of theorem.

Applying the identity to $1+t x$ and y where t is a positive integer, we have

$$
(1+t x)^{a_{1}} y^{b_{1}} \cdots(1+t x)^{a_{r}} y^{b_{r}}=(1+t x)^{c_{1}} y^{d_{1}} \cdots(1+t x)^{c_{s}} y^{d_{s}} \quad \forall x, y \in A .
$$

This can be rewritten as $\sum_{i=0}^{M} \alpha_{i} t^{i}=0$ where $\alpha_{i} \in A$ are independent of t and $M=\operatorname{Max}\left(\sum a_{i}, \sum c_{i}\right)$. Let us write these down for $t=1,2, \ldots, M+1$. We have a matrix equation

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 2^{2} & \cdots & 2^{M} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & M+1 & (M+1)^{2} & \cdots & (M+1)^{M}
\end{array}\right)\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{M}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

The matrix on the left hand side is a Vandermonde matrix whose determinant is $M!(M-1)!\cdots 1$!. First, note that A is $M!$-torsion free since by assumption A is N-torsion free for a multiple N of M !. So, if $M!(M-1)!\cdots 1!a=0$ for some $a \neq 0$, then $(M-1)!(M-2)!\cdots 1!a=0$ since A is $M!$-torsion free. Multiplying by M, we again have $(M-2)!(M-3)!\cdots 1!a=0$. Proceeding in this manner, we obtain $a=0$. Now $M!(M-1)!\cdots 1!\alpha_{i}=0$ for all
$i=0, \ldots, M$. Therefore, $\alpha_{i}=0$ for each $i=0, \ldots, M$. In particular, $\alpha_{1}=0$ gives us

$$
\begin{aligned}
& a_{1} x y^{b_{1}+\cdots+b_{r}}+a_{2} y^{b_{1}} x y^{b_{2}+\cdots+b_{r}}+\cdots+a_{r} y^{b_{1}+\cdots+b_{r-1}} x y^{b_{r}} \\
= & c_{1} x y^{d_{1}+\cdots+d_{s}}+c_{2} y^{d_{1}} x y^{d_{2}+\cdots+d_{s}}+\cdots+c_{s} y^{d_{1}+\cdots+d_{s-1}} x y^{d_{s}} .
\end{aligned}
$$

This is an identity for each $x, y \in A$. Now, we apply it to x and $1+t y$ for natural numbers t. Writing it for $t=1,2, \ldots, \operatorname{Max}\left(\sum b_{i}, \sum d_{i}\right)+1$ and using once again the Vandermonde argument with y in this identity, we get

$$
\begin{aligned}
& \sum_{i=1}^{r} a_{i}\left(b_{i}+b_{i+1}+\cdots+b_{r}\right) x y+\sum_{i=2}^{r} a_{i}\left(b_{1}+\cdots+b_{i-1}\right) y x \\
= & \sum_{j=1}^{s} c_{j}\left(d_{j}+d_{j+1}+\cdots+d_{s}\right) x y+\sum_{j=2}^{s} c_{j}\left(d_{1}+\cdots+d_{j-1}\right) y x .
\end{aligned}
$$

Thus, we have

$$
\begin{gathered}
\left(\sum_{i=1}^{r} a_{i}\left(b_{i}+b_{i+1}+\cdots+b_{r}\right)-\sum_{j=1}^{s} c_{j}\left(d_{j}+d_{j+1}+\cdots+d_{s}\right)\right) x y \\
\quad=\left(\sum_{j=2}^{s} c_{j}\left(d_{1}+\cdots+d_{j-1}\right)-\sum_{i=2}^{r} a_{i}\left(b_{1}+\cdots+b_{i-1}\right)\right) y x
\end{gathered}
$$

for all $x, y \in A$. Now, note that the assumption that $\left(\sum_{i=1}^{r} a_{i}\right)\left(\sum_{i=1}^{r} b_{i}\right)=$ $\left(\sum_{j=1}^{s} c_{i}\right)\left(\sum_{j=1}^{s} d_{i}\right)$ means that the coefficients of $x y$ and $y x$ above are equal and equal the integer denoted by u in the theorem. As A is u-torsion free, we get $x y=y x$. This completes the proof.

Corollary.

Let A be a non-zero associative ring which contains 1 and let n be a natural number ≥ 2 such that A is $n!$-torsion free. If A has the property that

$$
(x y)^{n}=x^{n} y^{n} \quad \forall x, y \in A,
$$

then, A is necessarily commutative.
Remarks. There is another way of proving commutativity in the case of some special identities like the ones in corollary. This depends on a noncommutative polynomial identity which may be of independent interest. We
merely state this and do not discuss it in detail. For convenience, let us denote by S, the polynomial in n noncommuting variables given by

$$
S\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} x_{\sigma(1)} \cdots x_{\sigma(n)}
$$

Note that $S\left(x_{1}, x_{2}\right)=x_{1} x_{2}+x_{2} x_{1}=\left(x_{1}+x_{2}\right)^{2}-x_{1}^{2}-x_{2}^{2}$.
Our contention is that $S\left(x_{1}, \ldots, x_{n}\right)$ can be written as a sum or difference of n-th powers of certain polynomials. To state it, we introduce one last notation.
For $1 \leq r \leq n$, there are $\binom{n}{r}$ ways to choose r of the x_{i} 's. Call $S_{r, 1}, \ldots, S_{r,\binom{n}{r}}$, the corresponding sums of the $x^{\prime} s$. In particular, $S_{1, i}=x_{i}$ and $S_{n, 1}=$ $x_{1}+\cdots+x_{n}$. Then, one can prove :

$$
\begin{gathered}
S\left(x_{1}, \cdots, x_{n}\right)=S_{n, 1}^{n}-\left(S_{n-1,1}^{n}+\cdots+S_{n-1, n}^{n}\right) \\
+\left(S_{n-2,1}^{n}+\cdots+S_{n-2,\binom{n}{2}}^{n}\right)+\cdots+(-1)^{n-1}\left(S_{1,1}^{n}+\cdots+S_{1, n}^{n}\right) .
\end{gathered}
$$

The identity can be deduced from the inclusion-exclusion principle. Note that the special case when the variables commute leads us to the familiar elementary identity

$$
n!=\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{r}(n-r)^{n}
$$

We now give some examples to show that there are noncommutative rings in which identities such as we have been discussing hold good. These possess torsion.

Example. Consider any commutative ring A with identity and let M be the free module of rank 2 with an A-basis e_{1}, e_{2}. Form the tensor A-algebra

$$
T_{A}(M):=\bigoplus_{n \geq 0} T^{n}(M)
$$

where $T^{n}(M)$ is the n-fold tensor product $M \otimes \cdots \otimes M$ of the A-module M. Look at the two-sided ideal I_{3} of $T(M)$ generated by $T^{3}(M)$; then $R_{A}:=T(M) / I_{3}$ is a noncommutative, associative A-algebra. Note that any $x \in R_{A}$ is the image of an element $x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{1} \otimes e_{1}+x_{4} e_{2} \otimes e_{2}+$ $x_{12} e_{1} \otimes e_{2}+x_{21} e_{2} \otimes e_{1} \in T_{A}(M)$. For any prime number $p \geq 3$, we look at
the further quotient ring S_{A} of R_{A} by the two-sided ideal generated by all elements $(x y)^{p}-x^{p} y^{p}$ for $x, y \in R_{A}$. It is evident that elements of S satisfy the identity $(x y)^{p}=x^{p} y^{p}$. We claim that the ring $S_{\mathbf{Z}}$ is noncommutative and has $p(p-1) / 2$-torsion.
Let us consider the images f_{1}, f_{2} in $S_{\mathbf{Z}}$ of e_{1}, e_{2} in $T_{A}(M)$. The identity

$$
\left(1+f_{1}\right)^{p}\left(1+f_{2}\right)^{p}=\left(\left(1+f_{1}\right)\left(1+f_{2}\right)\right)^{p}
$$

gives

$$
\begin{gathered}
\left(1+p f_{1}+\binom{p}{2} f_{1}^{2}\right)\left(1+p f_{2}+\binom{p}{2} f_{2}^{2}\right)=\left(1+f_{1}+f_{2}+f_{1} f_{2}\right)^{p} \\
=1+p f_{1}+p f_{2}+p f_{1} f_{2}+\binom{p}{2}\left(f_{1}^{2}+f_{2}^{2}+f_{1} f_{2}+f_{2} f_{1}\right)
\end{gathered}
$$

since $p \geq 3$ and all products of f_{i} 's of length ≥ 3 are zero in $S_{\mathbf{Z}}$. This reduces to

$$
\binom{p}{2}\left(f_{1} f_{2}-f_{2} f_{1}\right)=0
$$

We have not used until now that p is a prime. To show that $S_{\mathbf{Z}}$ indeed has $\binom{p}{2}$ torsion, it suffices to show that $f_{1} f_{2} \neq f_{2} f_{1}$ in $S_{\mathbf{Z}}$. To do this, we take p to be prime. Note that $f_{1} f_{2}=f_{2} f_{1}$ if, and only if, $S_{\mathbf{Z}}$ is commutative. Therefore, let us show that $S_{\mathbf{Z}}$ is noncommutative. Let us look at the construction of R_{A} and S_{A} when $A=\mathbf{Z} / p$. In this case, if $x \in R_{A}$ is the image of $x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{1} \otimes e_{1}+x_{4} e_{2} \otimes e_{2}+x_{12} e_{1} \otimes e_{2}+x_{21} e_{2} \otimes e_{1} \in T_{A}(M)$, then $x^{p}=x_{0}$ since $p \geq 3$ and p as well as $\binom{p}{2}$ are zero in \mathbf{Z} / p. Therefore, the identity $(x y)^{p}=x^{p} y^{p}$ is automatically satisfied in R_{A} when $A=\mathbf{Z} / p$. Note that S_{A} is noncommutative when $A=\mathbf{Z} / p$ as $S_{A}=R_{A}$ here. Finally, since $S_{\mathbf{Z}}$ has this noncommutative ring as a quotient by the ideal generated by p, the ring $S_{\mathbf{Z}}$ itself is noncommutaive.

References.

[A] H.Abu-Khuzam, Commutativity results for periodic rings, Acta Math.Hungar. 58 (1991), no.3-4, 273-277.
[ABY] H.Aby-Khuzam, H.Bell \& A.Yaquib, Commutativity of rings satisfying certain polynomial identities, Bull. Austral.Math.Soc. 44 (1991), no.1, 63-69.
[Aw] Ram Awtar, On the commutativity of nonassociative rings, Publ. Math. Debrecen 22 (1975), no. 3-4, 177-188.
[JOY] E.C.Johnsen, D.L.Outcalt \& A.Yaqub, An elementary commutativity theorem for rings, Amer. Math. Monthly 751968 288-289.

Acknowledgements

We thank the referee for some questions and remarks which helped clarify the results here.
D.S.Nagaraj

Institute of Mathematical Sciences
C.I.T.Campus, Taramani

Chennai - 600113
India.
dsn@imsc.res.in
B.Sury

Statistics \& Mathematics Unit
Indian Statistical Institute
8th Mile, Mysore Road
Bangalore - 560059
India.
sury@isibang.ac.in

