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Introduction

Here we discuss how certain identities on a ring force it to be commutative
under some mild hypotheses. Let us assume that A is a nonzero associative
ring with unity 1 and satisfies an identity of the form

xa1yb1 · · ·xarybr

= xc1yd1 · · ·xcsyds ∀ x, y ∈ A.

Here ai, bi, ci, di are fixed positive integers. Note that identities like (xy)n =
xnyn or (xy)n = (yx)n give rise to special cases of the above identity. We
prove some general commutativity results assuming the ring is N -torsion free
for a suitable integer N . Here, A is said to be N -torsion free for an integer
N if Na = 0 for some a ∈ A implies a = 0. We also give some examples
to show that some assumption on torsion is necessary. Some commutativity
results appear in [A], [ABY ], [Aw] and [JOY ].

Theorem.

Assume that A is a nonzero associative ring with unity 1 and satisfies an
identity of the form

xa1yb1 · · ·xarybr = xc1yd1 · · ·xcsyds ∀ x, y ∈ A.

Further, assume that (
∑r

i=1 ai)(
∑r

i=1 bi) = (
∑s

j=1 ci)(
∑s

j=1 di) and that the
integer u =

∑r
i=1 ai(bi + bi+1 + · · · + br) −

∑s
j=1 cj(dj + dj+1 + · · · + ds) 6= 0.

Then, there is an integer N depending only on ai, bi, ci, di such that if A is
N-torsion free, then it must necessarily be commutative.

Remarks

(i) If M = Max (
∑r

i=1 ai,
∑s

j=1 cj,
∑r

i=1 bi,
∑s

j=1 dj), then one may take N to
be the least common multiple of M ! and u where u is as in the theorem.
(ii) Note that r = n, s = 1, ai = bi = 1, c1 = d1 = n gives the identity
(xy)n = xnyn and the corresponding u = −n(n − 1)/2.
(iii) The papers [A], [ABY ] prove theorems of the following type:
Let R be a ring satisfying the following hypotheses: (1) for each x ∈ R there
exists an integer k = k(x) ≥ 1 and a polynomial with integer coefficients
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f(λ) such that xk = xk+1f(x); (2) for every x, y ∈ R, (xy)n − ynxn and
(xy)n+1 − yn+1xn+1 are central elements, where n is fixed integer; (3) R is
n(n + 1)-torsion free; (4) the nilpotent elements of R commute. Then R is
commutative.
An n-torsion-free ring R with identity such that, for all x, y in R, xnyn =
ynxn and (xy)n+1 − xn+1yn+1 is central, must be commutative. Further, a
periodic n-torsion free ring (not necessarily with identity) for which (xy)n −

(yx)n is always in the centre is commutative provided that the nilpotents of
R form a commutative set.
(iv) The papers [JOY ] and [Aw] prove some commutativity theorems of the
following type without assuming associativity :
If R is a ring (associative or not) with identity such that (xy)2 = x2y2, then
R is commutative.
Let R be a non-associative ring with unity 1 6= 0, such that (xy)n = (yx)n

for some fixed positive integer n ≥ 1 and for all x, y in R; further, let the
additive group of R be p-torsion free for every prime integer p ≤ n; then R
is commutative.

Proof of theorem.

Applying the identity to 1 + tx and y where t is a positive integer, we have

(1 + tx)a1yb1 · · · (1 + tx)arybr = (1 + tx)c1yd1 · · · (1 + tx)csyds ∀ x, y ∈ A.

This can be rewritten as
∑M

i=0 αit
i = 0 where αi ∈ A are independent of t

and M = Max (
∑

ai,
∑

ci). Let us write these down for t = 1, 2, . . . , M + 1.
We have a matrix equation











1 1 1 · · · 1
1 2 22 · · · 2M

...
...

...
...

...
1 M + 1 (M + 1)2 · · · (M + 1)M





















α0

α1
...

αM











=











0
0
...
0











.

The matrix on the left hand side is a Vandermonde matrix whose determinant
is M !(M−1)! · · · 1!. First, note that A is M !-torsion free since by assumption
A is N -torsion free for a multiple N of M !. So, if M !(M − 1)! · · · 1!a = 0 for
some a 6= 0, then (M − 1)!(M − 2)! · · ·1!a = 0 since A is M !-torsion free.
Multiplying by M , we again have (M − 2)!(M − 3)! · · ·1!a = 0. Proceeding
in this manner, we obtain a = 0. Now M !(M − 1)! · · · 1!αi = 0 for all
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i = 0, . . . , M . Therefore, αi = 0 for each i = 0, . . . , M . In particular, α1 = 0
gives us

a1xyb1+···+br + a2y
b1xyb2+···+br + · · ·+ ary

b1+···+br−1xybr

= c1xyd1+···+ds + c2y
d1xyd2+···+ds + · · · + csy

d1+···+ds−1xyds .

This is an identity for each x, y ∈ A. Now, we apply it to x and 1 + ty for
natural numbers t. Writing it for t = 1, 2, . . . , Max (

∑

bi,
∑

di)+1 and using
once again the Vandermonde argument with y in this identity, we get

r
∑

i=1

ai(bi + bi+1 + · · ·+ br)xy +
r
∑

i=2

ai(b1 + · · ·+ bi−1)yx

=
s
∑

j=1

cj(dj + dj+1 + · · ·+ ds)xy +
s
∑

j=2

cj(d1 + · · · + dj−1)yx.

Thus, we have

(
r
∑

i=1

ai(bi + bi+1 + · · ·+ br) −
s
∑

j=1

cj(dj + dj+1 + · · · + ds))xy

= (
s
∑

j=2

cj(d1 + · · ·+ dj−1) −
r
∑

i=2

ai(b1 + · · · + bi−1))yx

for all x, y ∈ A. Now, note that the assumption that (
∑r

i=1 ai)(
∑r

i=1 bi) =
(
∑s

j=1 ci)(
∑s

j=1 di) means that the coefficients of xy and yx above are equal
and equal the integer denoted by u in the theorem. As A is u-torsion free,
we get xy = yx. This completes the proof.

Corollary.

Let A be a non-zero associative ring which contains 1 and let n be a natural
number ≥ 2 such that A is n!-torsion free. If A has the property that

(xy)n = xnyn ∀ x, y ∈ A,

then, A is necessarily commutative.

Remarks. There is another way of proving commutativity in the case of
some special identities like the ones in corollary. This depends on a non-
commutative polynomial identity which may be of independent interest. We
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merely state this and do not discuss it in detail. For convenience, let us
denote by S, the polynomial in n noncommuting variables given by

S(x1, . . . , xn) =
∑

σ∈Sn

xσ(1) · · ·xσ(n).

Note that S(x1, x2) = x1x2 + x2x1 = (x1 + x2)
2 − x2

1 − x2
2.

Our contention is that S(x1, . . . , xn) can be written as a sum or difference
of n-th powers of certain polynomials. To state it, we introduce one last
notation.
For 1 ≤ r ≤ n, there are

(

n

r

)

ways to choose r of the xi’s. Call Sr,1, . . . , Sr,(n

r
),

the corresponding sums of the x′s. In particular, S1,i = xi and Sn,1 =
x1 + · · ·+ xn. Then, one can prove :

S(x1, · · · , xn) = Sn
n,1 − (Sn

n−1,1 + · · ·+ Sn
n−1,n)

+(Sn
n−2,1 + · · · + Sn

n−2,(n

2
)) + · · ·+ (−1)n−1(Sn

1,1 + · · ·+ Sn
1,n).

The identity can be deduced from the inclusion-exclusion principle. Note
that the special case when the variables commute leads us to the familiar
elementary identity

n! =
n−1
∑

r=0

(−1)r

(

n

r

)

(n − r)n.

We now give some examples to show that there are noncommutative rings in
which identities such as we have been discussing hold good. These possess
torsion.

Example. Consider any commutative ring A with identity and let M be the
free module of rank 2 with an A-basis e1, e2. Form the tensor A-algebra

TA(M) :=
⊕

n≥0

T n(M)

where T n(M) is the n-fold tensor product M ⊗ · · · ⊗ M of the A-module
M . Look at the two-sided ideal I3 of T (M) generated by T 3(M); then
RA := T (M)/I3 is a noncommutative, associative A-algebra. Note that any
x ∈ RA is the image of an element x0 + x1e1 + x2e2 + x3e1 ⊗ e1 + x4e2 ⊗ e2 +
x12e1 ⊗ e2 + x21e2 ⊗ e1 ∈ TA(M). For any prime number p ≥ 3, we look at
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the further quotient ring SA of RA by the two-sided ideal generated by all
elements (xy)p − xpyp for x, y ∈ RA. It is evident that elements of S satisfy
the identity (xy)p = xpyp. We claim that the ring SZ is noncommutative and
has p(p − 1)/2-torsion.
Let us consider the images f1, f2 in SZ of e1, e2 in TA(M). The identity

(1 + f1)
p(1 + f2)

p = ((1 + f1)(1 + f2))
p

gives

(1 + pf1 +

(

p

2

)

f 2
1 )(1 + pf2 +

(

p

2

)

f 2
2 ) = (1 + f1 + f2 + f1f2)

p

= 1 + pf1 + pf2 + pf1f2 +

(

p

2

)

(f 2
1 + f 2

2 + f1f2 + f2f1)

since p ≥ 3 and all products of fi’s of length ≥ 3 are zero in SZ. This reduces
to

(

p

2

)

(f1f2 − f2f1) = 0.

We have not used until now that p is a prime. To show that SZ indeed has
(

p

2

)

-
torsion, it suffices to show that f1f2 6= f2f1 in SZ. To do this, we take p to be
prime. Note that f1f2 = f2f1 if, and only if, SZ is commutative. Therefore,
let us show that SZ is noncommutative. Let us look at the construction
of RA and SA when A = Z/p. In this case, if x ∈ RA is the image of
x0 + x1e1 + x2e2 + x3e1 ⊗ e1 + x4e2 ⊗ e2 + x12e1 ⊗ e2 + x21e2 ⊗ e1 ∈ TA(M),

then xp = x0 since p ≥ 3 and p as well as
(

p

2

)

are zero in Z/p. Therefore, the

identity (xy)p = xpyp is automatically satisfied in RA when A = Z/p. Note
that SA is noncommutative when A = Z/p as SA = RA here. Finally, since
SZ has this noncommutative ring as a quotient by the ideal generated by p,
the ring SZ itself is noncommutaive.
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