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Abstract. We consider RBSDE in an orthant with obligue reflection and with time and
space dependent coefficients, viz.
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with Z;(-) = 0, ¥)(-) nondecreasing and ¥, (-} increasing only when Z,(-) =01 =i =
. Existence of a unique solution is established under Lipschitz continuity of b, B and a
uniform spectral radius conditionon /. On the way we also prove aresult concerning the
variational distance betweenthe ‘pushing parts” of solutions of auxiliary one-dimensional
problem.
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1. Introduction

Since backward stochastic differential equations were introduced about a decade back
there has been a lot of interest in them owing Lo wide applicability in stochastic control,
differential games and economics. Recently backward stochastic differential equations
with reflecting barrier have been studied by El Karowi ef af [5] and Cvitanic and Karateas
[1] in the one-dimensional case; and by Gegout-Petit and Pardoux [7] in 4 convex domain
in higher dimensions; these works concern the case of nommal reflection at the boundary.

On the other hand, following the impetss given by gqueucing theory, deterministic as
well as stochastic Skorokhod problem in an orthant with obligue reflection at the boundary
has been studied by many authors over the last two decades; see the references in [11].

The aim of this article is to study reflected backward stochastic differential equations
(RBSDE’s) in an orthant with oblique reflecton at the boundary. The drift vector and the
reflection matrix canbe time and s pace depende nt; existence and uniqueness are established
under a uniform spectral radins conditon on the reflection matrix (plus, of course, a
Lipschitz continuity condition on the coefficients); such a condition has proved useful in
the study of Skorokhod problem; see [8.9.11.12].

In $2, after descnbing the set up, we indicate briefly two situations from economics
where RBSDE cun be used as a model. The first one 15 a backward stochastic analogue of
the subsidy-surplus model considered m Ramasubramanian [11], and the second example
1% a backward stochastic (oblique) analogue of 4 projected dynamical system studied in
Nagumey and Siokos [10].
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An auxiliary one-dimensional RBSDE is discussed in §3. A result concerning the varia-
tional distance between the ‘pushing parts” of solutions of two auxiliary one-dime nsional
equations s established, the mspiration being adeterministic analogue due to Shashiashvili
[14]; see also [ 15]. Existence of a unigque solution to RBSDE 15 proved in §4 by a contrge-
tion mapping argument; the metric is given in terms of total variation and L' -norm. As in
[11] acouple of a prion results belp in confining the analysis to a smaller space. It is also
shown that it is enough to have the reflection coefficients defined on the boundary.

2. RBSDE in an orthant with obligue reflection

Let {Bir)y = (By(t),....By(t) : 0 =1 = T} be a d-dimensional standard Brownian
motion defined on a probability space (£2, F, P):let {F;} be the natural filtration generated
by {Bir)}, with Fy containing all P-null sets,

Let7 ={x R - = 0,1 =i = d} denote the d-dimensional posiive orthant. We
are given the following :

£ is an Fr-measurable G-valued bounded random variable;

b:Qx[0.TIxRB — B, R: Qx [0, T] x R — My(R) are both bounded
measurable functions such that for each z |R"r, bl - z) = (.-, 2), .... 00, -, D),
Ri-, -.2) = ({rij (-, -, 2D <i, joa ame {Fib-predictable processes; it is also assumed that
Fijl{---) = 1 which is just a suitable normalization. ( Here By () denotes the class of d = d
matrices with real entries.)

A pair (Y (1) = (Yi(t), ..., YaO DL AZ() = (Z1(0), ... Ze@D)L O <1 < T of {F}-
progressively measurable continuous integrable processes 15 said o solve RBSDE

(£, b, R) if there is an {F; }-progressively measurable square integrable process
LIy = (U (800 <), j=a such that

) fori=1,..., d0=tr=T

=
Zilt) =&+ [ bils, Z{s))ds + ¥ (T) — ¥ilr)
wl

T T d

+ [ rijls, Z{s))d¥ (s} — [ ZL-’,-J.-{:.'}-L!BJ.-{J;} 2.1)

=N I 0
(i) ZiN e Gorall 0 <t = T

(i) ¥y = 0, ¥ (-) continuous, nondecreasing and ¥ (- ) can inerease only when 25 () =

0.1 =i = d;thatis,

Y;'{f}'=_[] fioy( Zi(s)) dY;(s). (2.2)

Equation (2.1} i the analogue of Skorokhod equation. Note that the process U(-) need not
be continuous; b is the drift and R gives the reflection directions.
Wi now describe briefly two situations where the above model may be applicable.

Remark 2.1, Following Ramasubramanian [11], RBSDE (£, b, B) can be viewed upon as
a subsidy-surplus model. We consider an economy with & interdependent sectors, with the
following interpretations:
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(a) Zi(t) = cumrent surplus in Sector foal ime 1

(b)y ¥;i{t) = cumulative subsidy given to Sector § over [(), t];

(c) & = desired surplus in Sector §oat time T7;
of course, Z5 (1), ¥i(t) depend on “information” only up to time 1

(d) _,I:I Bifn, Z{n)yde = net production of Sector @ over [s, ¢] due to evolution of the
system; this being negative indicates there 1% nel consumplion;

(e) _,I:I :E{n, Z{u)yd¥(n) = amount of subsidy for Sector j mobilized from Sector i over
[5.1];

i _,I:I rj.}{n, Z{u))dY¥ ;(w) = amount of subsidy mobilized for Sector j which is actually
used in Sector i (but not as subsidy in Sector 1) over [5,¢].

The condition (ni) in RBSDE (£, &, R) means that subsidy for Sector § can be mobilized
only when Sector § has no surplus; this is a natwral minimality condition. The uniform
spectral radius condition (A3) which 15 imposed in 4 would mean that the subsidy mohi-
lized from external sources 15 nonzero; so this would be an “open” sysiem in the jargon
of cconomics; see also §2 of [11]. This suggests that the above situation may be called a
stochastic differential subsidy -surplus model ala Duffie and Epstein [2].

Remark 2.2, We give another interpretation. Suppose the system represents o traders each
specializing inadifferent commodity. For this model we assume rip(--- ) = 0, § # j.Here
Zi(t) = current price of Commodity @ at time £; there 15 a price floor vie, prices cannol
be negative;
Yilt) = cumulative “tatonnement” (adjustment) involved in the price of Commodity §
over [0, r];
B, Z(t)) di = infimtesimal change in price of Commodity 7 due to evolution of the
system;
& = desired price level of Commaodity @ at time T,
Condition (1) (thatis, (2.2))0of RBSDE (£, &, R) then means that tatonnement/adjus tment
d¥;i(-) can take place only if the price of Commaodity 7 is zero. In such a case
f: J'E (. Z{n)) d¥;(n) = tatonnement from Trader i when price of Commodity § is zero.

MNote that d¥ () can be viewed upon as a sort of anificial/foreed infinitesimal consump-
tion when the price of Commodity § 1$ zero to boost up the price; hence r"-;-{r, Zir)d¥;ie)
i5 the conwibution of Trader i towards this forced consumption. As before, (A3)
implies that there is nonzero “extemal tatonnement”, ike perhaps govemmental interven-
tion/consumption to boost prices when prices crash.

In the context of the Skorokhod problem with normal reflection, a similar interpretation
is given in ([10] pp. 7680} in connection with financial networks; these authors call
the model as a ‘projected dynamical system’; see also [4]. One-dimensional RBSDE (of
course, with normal reflection), has been proposed as a model for pricing of Amercan
contingent claims in El Karoui and Quenez ([6], pp. 2209-231).

Since “tonnement’ can be viewed upon as a “subsidy’, the above may also be taken as
aspecial case of Remark 2.1,

3. Anxiliary one-dimensional problem

In this section we look at an auxiliary one-dimensional problem needed for studying the
d-dimensional problem.
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Let (22, F, P), {B(1)}.{F 1.0 = r = T beas in §2. We are given the following:

¢ s an Fr-measurable bounded nonnegative random variable;

F2x[0TIxE—-R g;:2x[0TlxE—R 1= j=k, are bounded
measurable functions such that for each z € B, F(-. . 2). g; (- -, 2) are {F; }-predictable;

Ajl = j = kare | R }-progressively measurable integrable continuous nondec reasing
PIOCESSES,

Apair {Lin)}, IM ()}, 0 = ¢ = T of real valued {7 }-progressively measurable con-
tinuous integrable processes s said o solve the auxiliary one-dimensional problem cor-
responding to (g, f, g;. A;) if there exists an {F, |-progressively measurable square inte-
grable process (Vi) = (V). ..., Vit 0 = ¢ = T such that

(1) the Skomkhod equation holds, vie.

T & T
M) =g+ f fls. M(s)ds + f gj(s. M(s)dA;(s)
i j=1v

T k
+ L(T) — Lit) —f ZVﬁ{&'}dBﬁ{&'} (3.1)
=1

I

i) Mit) =0forall0 =¢ = T;
(i) L{0) =0, L{-) nondecreasing, L(-) can increase only when M{-) =0

Proceeding as in the proof of Proposition 4.2 and Remark 4.3 of [5] the following result
can be proved.

Lemma 3.1, Let{L{t )} AM{t)}1. O =t = T be asolution to the awciliary one-dimensional

problem. Let {£(1)}1, 0 =t = T denote the local time at 0 of the continwous semimartingale
{M{t)}). Then

k
0= dLit) = KM i) {Ij'{r, 0y dr + Z lgjlr, 0| dA (1) {(3.2)
=l
k
O = dée) = T (M ey g LFG. 00 dr + Zlgj-{r, 0 dAJ.-{r}] i (3.3)
i=l
If in addition A; 1 = | = k are absolutely continuous then
dL ldE = oy (M (1,0 ; e, 0 da, 1) _d 3.4
(1) + 5 de(e) = oy (M (@) | £, }+;mr. = (34

The next result concerns the variational distance between the L-parts of the solutions of
two auxiliary one-dimensional equations; ithas been motivated by adeterministic analogue
due to Shashiashvili [ 14] in the context of Skorokhod proble m. For our purposes it suffices
to consider the case when f : @ = [0, T] — Ris | }-predictable and g; = 0 forall j.

To be more precise, for k =1,21et f* : @ x [0, T]— R be bounded {F, }-predic-
table process, ¢ bounded nonnegative |[Fr}-measurable random variable; let
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{Ll“{f}}, M m{r}l}, 0=t = T solve the auxiliary one-dimensional problem comespond-
ing to {¢™, %' 0, 0) so that

=
MB @) = W +f FOds + LT - L0

I

-
—f (v‘“{s}, dB(s)). (3.5)

[ MS () dL™ (5) =0, (3.6)

ME )y = 0, L0y = 0, L'9(.) continuous nondecreasing. k = 1.2, 0 = ¢ < T (all
these hold a.s.). By Proposition 5.1 of [ 5] unique square integrable M m{-}l, Lm{-}l. 'Ir"m{-}l
exist solving the above. Clearly L'V(-) — L' (.} is of bounded variation a.s.; in fact, by
the preceding lemma L A absolutely continuous; let )-.l{-},)-.ll]{-} denote their
respective derivatives. Let |d (L' — L)) () denote the measure given by the total variation
of (LD — L3)(.).

Theorem 3.2. Foranvd =0, 0=s =1 =T

E [ {':l‘?.l‘ sk 1}[)'-“]{!,} _)'-lz]{f'}l dr

I
:Ef " — DydEe™t! — L®Yim
< E[(e® — MY (1) — MP (1)) — (® — MV (s) — MP (5]

I
—E f ePaM Wiy — MY ()| dr

I
+E f € — DI — 2| dr (3.7

Proaf All equalitiesfinequalities below are satisfied almost surely. We denote E{-}l =
J';'“]{-}I B 5‘3]{-} for £ = A, L. f, V. Proceeding as in the proof ol eq. (13) in Shashiashvili
([14], pp. 171-173) using

T0,00y (M AL (r) = 0, Ii_ o0 M) ALDr) =0
wepetforO<s =t =T

f |dDIer) = f [—sen(F (") + Loy (M) x (14D () (3.8)

where xi-) is {7 }=progressively measurable function wking only the values +1, —1 and
the function sgn is defined by

1 if x=10
sgnfx) = {0 if x=1.
-1 if x =10

Progressive measurability of y () follows by the proof of Radon-Nikodym theorem and
p- 171 of Shashiashvili [ 14]. Therefore denoting the integrand on the rhs, of (3.8) by J(r)
and using (35) for k =1, 2, we get
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f_ @ — Dxir)dr =f_ (e — 1) d(L)|(r)
— fricﬁ‘f — Iy d(L)(r)

I
:_f (" — () f(r)dr
+f (" — I {V(r), dB(r))

o= fI{l:'?‘l' — D J{rdMr)

=h+h+1 (3.9
As |J(r)] = 1 itis clear that
I -
E(h) = Ef € —DIf(r)|dr. (3.10)
and {7 being an [to integral
(3.11)

E{h)=10.
Let t — £(t, a) denote the local time of the continuous semimartingale Mata e R By
the version of Io-Tanaka-Meyer formula given in Exercise 1.25, Chapter VI (p. 219) of
[13] we get
di(e” — DIM|(r) = |MI(r)6e™ dr + (¢ — 1) dIM](r)

- P (e -1 .
= |Mi{r)de” dr + 5 [déir, Oy +déir, 0—)]

+ (" — I)[sgn(M){r) d(M)(r)]

and consequently
f (" — 1)sgn(M(r)) d(M)(r)

= — DM — —1}tﬁ[{s}—f oI MI(r) dr

A

- % [[{u"” — 1) déir, 0) + [ € — 1)déir, n—}]_ (3.12)
By Theorem 1.7, Chapter VI of [13]
j:_ € — D) i (M) A 1)
= %[{uﬁ" — DI, 0) — £(-.0-)(r)
(3.13)

1 : A ¢ i @y .
3 [f (e” — 1ydéfr, +f (" — 1)dér, [}—}] .
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By (3.12),(3.13)

I = (™ — DM — & — DIMI(s) — f ¢ a1M|ir) dr (3.14)

oy

Taking expectation in (3.9) and (3.14), and using (3.10), (3.11) the required estimate (3.7)
is now immediate. W

4. Existence and unigueness
We make the following assumptions on the coefficients b, R.
(Al):Forl =i =d, 2+ b;(w, 1, z) is Lipschitz continuous, uniformly over (w, 1); there
15 a constant f; such that [By{e. £, 2)| = f; forall ee, £z, Denote = (8. ..., Aa).
A2:Forl =i, j=d, z+ rijlew, . 2} s Lipschite continuous, uniformly over {w, 1),
Alsor;; = 1 foralli.
(Ad): Fori & jthere exists constant vy; such that [rijle., 1 2)] = v Set Vo= (vg;) with
v =0 we assume that o (V) < 1 where o (V) denotes the spectral radius of V.

If i V) = 1 observe that

T-WVl=T4+V+Viqiviqg ..

1% 8 matrix with nonnegative entries; here 718 the (d = d) identity matnx.
Wi first establish an a prion estimate.
PROPOSITION 4.1

Assume (AL—(A3) and ler £ be a bounded Fr-measurable G -valued random variable.
Suppose (Y ()} AZ(0 10 =t = T solve RBSDE (£, b, R). Then

0= dY{r}g{f—V}_lﬂdr (4.1}
in the sense that
0= d¥i(r) = ({(f — V}‘l,ﬁ};dr, 1 =f=d. {4.2)

In particular AY;(-) is absolutely continnous, and hence the local time at Daf Z;(-) is also
absolwely continwows foreachi =1, ..., d.

Froaf Foreachfixedi=1,. .., dnotethat {Lit)= ¥ IMny=Z;(t)}, 0= =Tis
asolution to the auxiliary one-dimensional problem comresponding to g = £, flw, 5, 2) =
b, 5, E;.:{J;, w)), gilw, 5. 2) = rijlm, s, f,-_:{:.', w)), dA;{s) = d¥;(s). j #£ i1 =
i, j = d where EI.: =Ly Zjo1, 2o Eig1s v oon Ll

By Lemma 3.1 and our hypotheses

0 = dYilt) = Liy(Z; (1)) | [Bile, Z(r)) | dr + Zlf'u{r, Z{r))| dY;ir)
o7
= Pide+) vy dY ().
~
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Consequently

d¥;(t) = ) vy d¥;(0) < fide, 1 <i <d.
o

The above can be expressed as
((F =V)d¥)lr) =(Bhdr, 1 =i =d. (4.3)

Aso(V) = Dwecan get (4 1), (4.2) from (4.3). The last assertion 5 now a consequence
of Lemma 3.1. W

Remark 4.2, As G{V+} = a( V), where VT denotes transpose of V., by (A3) it follows

that there are constants a; > 0.1 = j=dand0 <o = 1 such that

D ailrij(w.1.2)| < ) ajvij < aa; @.4)
= =
forall j=1,..., doe 0=r=T, e R see, for example, Dupuis and Ishin [3]

for a proof. O

Let # = 0 be a constant. Let H denote the space of all (equivalence classes of) {F}-
progressively measurable processes (Y () := (Fi{r). .. .. Ya(t)) (Z(t) = (Zy(1). ...,
Zg(tN}, 0 =+ = T such that

M Zi=00=<r=T,1=i=<d,
(i) ¥i(h =0, ¥i{-) s nondecreasing, 1 =i = d,
i
(i) EY fy ¢ alZi(n)]dt < oo
i=l

a
(iv) EY fy ™ aig(¥i)di < o0

where @, ( g) denotes the wtal vanation of g over [, T]. The constant & = 0 will be chosen
suitably later; the constants q; are as i Remark 4.2,
For (¥, Z), (¥, Z) € 'H define the metric

i T
d((Y. Z). (Y. Z)) = EZ-[] " ai| Zi(6) — Zi(r)| dr

i=1

o T m
+ E ZL cerﬂj'fﬁ':{h — ¥ipdr. (4.5)

=1

Note that (H, d) is a complete metric space.

Let 'H denote the collection of all (¥, Z) € H such that there is an {F; }-progres-
sively measurable process D = (D), ... Dyt 0 =1 =T with 0= D;(r) =
(I —V)~' fas. and Yi(t) = ) Di(s)ds, 0 =¢ =T,

Observe that H is a closed subspace of H and hence {ﬁ, d )15 a complete metne space.
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