WWW.MATHEMATICSWEB.ORG

POWERED BY SCIENCE DIRECT® Journal of

Algorithms

ACADEMIC
PRESS Journal of Algorithms 46 (2003) 54-78

www.elsevier.com/locate/jalgor

Largest empty rectangle among a point-set

Jeet ChaudhufiSubhas C. Nandy: and Sandip Das

a Alumnus Software Limited, INFINITY, Salt Lake GP, Calcutta 700 091, India
b Advanced Computing and Microelectronics Unit, Indian Statistical Institute, 203 BT Road,
Calcutta 700 108, India

Received 5 January 2002

Abstract

This work generalizes the classical problem of finding the largest empty rectangle among obstacles
in 2D. Given a sefP of n points, here a maximal empty rectangle (MER) is defined as a rectangle
of arbitrary orientation such that each of its four boundaries contain at least one member of
and the interior of the rectangle is empty. We propose a very simple algorithm based on standard
data structure to locate a MER of largest area in the plane. The worst-case time complexity of our
algorithm isO(n3). Though the worst-case space complexity)i(:nz), it reserves0 (nlogn) space
on an average to maintain the required data structure during the execution of the algorithm.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The problem of recognizing all maximal empty axes-parallel (isothetic) rectangles,
commonly known as MER problem, was first introduced in [7]. Given aRetf n
points arbitrarily distributed on a 2D plane, a MER is an isothetic empty rectangle
which is not contained inside another such rectangle. The objective is to locate all
possible MERSs. In [7], an algorithm for this problem is proposed with time complexity
O(min(n?, Rlogn)), whereR denoting the number of reported MERs, may®é:?) in
the worst case. Later, the time complexity was improve®{@® + nlogn) [1,10]. The
algorithms in [2,3] locate the largest empty isothetic rectangle among a point set without

Y The preliminary version of this paper appeared in Proc. 19th Conference on Foundation of Software
Technology and Theoretical Computer Science, Lecture Notes in Comput. Sci., Vol. 1738, 1999, pp. 34—46.
* Corresponding author.
E-mail addressegeet@alumnux.com (J. Chaudhuri), nandysc@isical.ac.in (S.C. Nandy),
sandipdas@isical.ac.in (S. Das).

0196-6774/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
PIl: S0196-6774(02)00285-7

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 55

inspecting all MERs, in time (n log®n) and O (n log?), respectively. The MER problem
is later generalized among a set of isothetic obstacles [8], and among a set of hon-isothetic
obstacles [5,9].

In the context of our present work, we need to refer the following problem. Given
a set of pointsP, the location of all/largest empty-gon whose vertices coincide with
the members irP, is studied in [4]. Lety, (P) denote the number of empty convexjons
whose vertices coincide with the membersAn The algorithm proposed in [4] runs in
O(y3(P) + ry-(P)) time if r > 5; for r = 3 andr = 4, it requiresO (y,(P)) time. It is
also shown thays(P) > y3(P) — ("51), which provides a lower bound on the number of
empty convex quadrilateral in terms of number of empty triangles. They have also shown
that the empty convex polygon having maximum number of sides and vertices coinciding
with the points inP can be obtained i (y3(P)) time. The expected value @§(P) is
shown to beo (n2).

This paper outlines a natural generalization of the classical MER problem. Given
points on a 2D plane, a long standing open problem is to locate an empty rectangle
of maximum area. Thus the earlier restriction of isotheticity of the MERs is relaxed.
This type of problem often arises in different industrial applications where one needs
to cut a largest defect-free rectangular piece from a given metal sheet. We adopt a new
algorithmic paradigm, callegrid rotation, to solve this problem. The worst-case time and
space complexities of our algorithm ap&n3) and O (n?), respectively. But, using a linked
list representation of sparse matrices, the space complexity can be redueédlomn)
on an average.

The paper is organized as follows. In Section 2, we describe some important properties
of the point set which are helpful for finding the largest MER in arbitrary orientation.
We define the concept of prime MER (PMER), which restricts our search space; we will
also give a tight combinatorial bound on the number of PMERSs. In Sections 3 and 4, we
describe our grid rotation technique for identifying the PMERSs, and the complexity of our
proposed algorithm for this problem. The conclusions on this work and some related open
problems are discussed in Section 5.

2. Basic concepts

Let P ={p1, p2, ..., pn} be a set ofr arbitrarily distributed points on a 2D region.
Without loss of generality, we may assume that all the point® lre in the first quadrant
of the coordinate system. The coordinate of a ppjnis denoted by(x;, y;).

Definition 1. A rectangle (of arbitrary orientation) in the plane is called a MER if it is
empty, i.e., not containing any member®f and no other empty rectangle can enclose it.
Thus, each of the four boundaries of a MER must contain at least one padint of

If any of the boundaries of an empty rectangle does not contain a memlzertbén
either it is enclosed inside a MER or it is unbounded on that side. In the former case, it
is not a MER. In the latter case, such a MER is called unbounded on that particular side.
We are interested in locating the largest MER whose each of the four sides is bounded by

56 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

north boundary east boundary

Py

p.e

south boundary

Fig. 1. Definition of a MER.

some point(s) inP. In order to assign some order among the points in four sides of a MER,
consider a corner of the MER having maximyntoordinate. The side (boundary) of the
MER incident to that corner and having non-negative slope will be referred asritis
boundary The other side adjacent to this corner is ¢ast boundaryThe southandwest
boundaries are defined in an analogous manner. In Fig;,1p;, px, and p, appear on
north, west, soutlandeastboundaries, respectively. Actually, this type of nomenclature
is misnomer in the context of non-axis-parallel rectangles, but it will help to explain our
method.

Lemma 1. Given a set of four points inP, if they form a convex quadrilateral, it
may generate infinite number of MERs having those four points on its four boundaries,
respectively.

Proof. Let R be an empty convex quadrilateral whose verticespgre;, pr, pe € P. In

Fig. 2(a), an example is cited where it can not generate any MER at all. In Fig. 2(b),
we demonstrate a situation where MER is possible with those four points on its four
boundaries. LeiR be such a MER. Now, if we rotat® (as shown in Fig. 2(c)), it will
remain empty until we arrive a situation where one of the edge® afntain at least two
points of P. It is easy to understand that an infinite number of distinct MERs have been
generated during this rotationo

Lemma 1 tells that, there may exist an infinite number of possible MERs with a set
of four points on its four boundaries, respectively. In order to reduce the search space

(a) (®) : (c) ()

Fig. 2. Proof of Lemma 1.

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 57

for locating the largest empty rectangle, we shall introduce the concgptiroe MER
(PMER).

Lemma 2. Given a fixed anglé and a pair of pointsp;, px € P, the MER whose north
and south boundaries contaj and pi, respectively, and whose south boundary makes
an angled with thex-axis, is unique.

Let us consider a quadruple of four poiriis, p;, pr, pe} (€ P) such that they form
an empty convex quadrilateral. It is also observed that the rectangld myith ;, px, pe}
on its four boundaries, respectively, and the south boundary making an énigle
a MER. We rotate the rectangle in both clockwise and anti-clockwise directions keeping
{pi, Pj, Pk, pe} on its four boundaries until two points appear on any of the boundaries
of the rectangle. Let at those instances, the south boundary of the rectangle makes an
angle¢ and v with the x-axis. Thus, if we rotate the rectangle beyond the amgle
(respectively) in clockwise (respectively anti-clockwise) direction, the rectangle will not
remain empty. We define the closed interigal /] as themaximal intervalwith respect to

{pi. pj. Pk, Dt}

Lemma 3. For a given quadruple of four pointg;, p;, p, p¢} forming an empty convex
guadrilateral, the number of maximal intervals attached with this quadruple may be
greater than or equal t@.

Proof (by construction). In Fig. 2(a), an example is shown where a quadruple of four
points is attached with nho maximal interval. In order to show that a quadruple of four
points is attached with more than one maximal intervals, let us consider Fig. 2(d).
Here, a rectangle (marked &) is shown withp;, p;, pi, p¢ on its four boundaries,
respectively, and its south boundary makes an apgleith the positive direction of the
x-axis. Note that, its west side also touches another pgingo, the rectangle defined

by {pi, pj, Pk, pe} is empty if its south boundary makes an angle greater hawith

the x-axis. Now, we start rotating the rectangle until its north boundary touches a new
point p*. It is marked asR; in the same figure; its south boundary makes an arigle
with thex-axis. If it is further rotated, it will not remain empty (i.e., will contairt). Thus

[¢1, Y1l is a maximum interval with respect {@;, p;, pr. p¢}. We continue rotating, and

at some time its west boundary will tougfi (see the rectangle markedRg). If we rotate

the rectangle further, it will start to form empty rectangles. Thus it starts creating another
maximal interval. O

Definition 2. Consider a set of four poing;, p;, p«, p¢} and a maximal intervelp, /]
with respect to this set of four points. prime MER(PMER) is a MER whose area
is maximum among the set of MERs whose four boundaries are defingd, py, px
and py, respectively, and whose south boundary makes an ahgléth the positive
direction of x-axis, wheref € [¢, ¥]. We shall refer this PMER using the six tuple

{pi,pj, Pk, Pe, @, V).

58 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

Note. Given a set of four pointdp;, p;, pr, pe} and a maximal intervale, y1,
the corresponding PMERp;, p;, pk, pe, ¢, ¥} can be obtained inO(1) time (see
Appendix A).

In [4], it is shown that the humber of empty convex quadrilates@lP) in a 2D plane
containingn points is£2(n?). But we do not have any knowledge about the worst-case
upper bound of4(P). Again, each convex quadrilateral may not always produce a PMER,
and some times it may produce more than one PMER (see Lemma 3}4&Y, does
not give any estimate on the number of PMERSs. In the following section, we obtain the
worst-case number of PMERSs.

2.1. Combinatorial bounds on the number of PMERS

Consider a pair of pointp;, px € P. Let L; and L, be a pair of parallel lines passing
throughp; and py, respectively. In order to give an estimate of the worst-case number of
PMERs present in the plane, we shall discuss a scheme of generating all possible PMERSs
with p; and p; at their north and south boundaries, respectively, by rotatingnd Ly
aroundp; and py, respectively, in anti-clockwise direction, and both at same speed. From
now onwards, we shall refer the region bounded.bynd L ascorridor;,. The rotation
of L; andL;, as mentioned above, will be referred as rotationafidor;.

Observation 1. The initial orientation of corridoy,, and the schedule of its rotation is
decided as follows

o If x(p;) > x(pr) andy(p;) > y(pr), theninitially corridor; is taken to be horizontal.
Its rotation continues until it coincides with the line joinipg and py.

o If x(pi) <x(px) andy(p;) > y(pi), theninitially corridor; is taken to be horizontal.
Its rotation continues until it becomes vertical.

o If x(pi) < x(pr) andy(p;) < y(px), theninitially corridor is the line joiningp; and
Pk (i.e., a corridor of width zerp The rotation continues until it becomes vertical.

o If x(pi) > x(pr) and y(p;) < y(pr), then no MER withl; and L; at its north and
south boundaries, respectively, is possible.

At each position of.; andL;, we draw a rectangle whose two parallel sides are aligned
with L; and Ly, respectively, and its diagonal is the line segmgni;. This rectangle is
defined as theorerectangle insideorridor;;. Now, if the coreis non-empty, no MER is
possible withL; and Ly in their present orientation; otherwise a unique MER is possible
with its north and south boundaries definedyyand L, respectively.

We now describe a scheme of generating PMERS by rotating the corridor defiped by
and p,. As an initial step, if thecoreis non-empty, we rotate the corridor until it becomes
empty. Let the angle of; and L, with the x-axis beg, and the points bounding the west
and east sides of the MER g andp,, respectively. We rotateorridor;, until any of the
following situations happen. In Fig. 3, the dotted lines (respectively solid lines) indi¢ate
andL; before (respectively after) the rotation.

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 59

Fig. 3. Rotation otorridor;; and generation of PMER.

(&) A new point appears in theore (see Fig. 3(a)).

(b) A new pointp’, appears insideorridor;, and it bounds the west side of a new MER
(see Fig. 3(b)$, which in turn, will generate another PMER.

(c) The pointp; (which bounds the west side of the current set of MERSs) leewaglor;

(see Fig. 3(c)). Here a new MER emerges. Its west boundary is defined by appoint
(# pj) inside the corridor.

(d) The set of points insideorridor;; remains same, but a new MER emerges with its west
boundary defined by a different poip§. (# pj) inside the corridor (see Fig. 3(d)).

(e) A new pointp, appears insideorridor;;, and it bounds the east side of a new MER
as in case (b).

(f) The pointp, (which bounds the east side of the current set of MERS) leawelor; .
Here a new MER emerges. Its east boundary is defined by a pp{g# p) inside the
corridor.

(g9) The set of points insideorridor;; remains same, but a new MER emerges with its east
boundary defined by a different poipf (# p¢) inside the corridor.

If, after this rotation, the angle df; (L) with thex-axis isyr, we report PMERp;, p;, p«,
pe, ., ¥). In case (a), we continue the rotation bf and L until core becomes empty
(similar to the initial step). In all other cases, we continue rotatingnd L; with an aim
to generate another PMER; here the anglplays the role ofy for the next PMER. The
process terminates according to Observation 1.

Let mb, m¢,, m%, m, m},, andm?, be the number of PMERs which have generated
due to cases (b)—(g), respectively, during the rotationasfidor;;. Now, considering all
pairs of pointsp; and pi (i # k), we have the following lemma.

Lemmad. (a)); Zk# (ml.bk +m¢, +m¢, + m;’;{) = 0(nd).
(b) 3o Yoy (mif +mf) = 0(n).

Proof. Part (a) follows from the fact that, during rotation of tb@rridor;,, a point enters
and/or leaves the corridor only once.

In order to prove part (b), we need to consider cases (d) and (g). In case (d) no new
point enters or leavesorridor;; during rotation, but the point defining the west boundary
of a PMER changes frorp; to p;-. Note that, the instant of time when such an event is

60 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

— e

Fig. 4. Proof of Lemma 2(b).

noticed, bothp; to p;. appeared on the west boundary of a MER. A similar event (i.e., two

points p, andp;, appear on the east boundary of a MER) is observed when case (g) occurs.
We consider all pairs of point®;, px) € P defining the north and south boundaries of

the PMERSs, and observe the set of PMERs whose west (respectively east) boundary passes

through a pair of points (irP). The number of MERs having two distinct points Bfon

one specific boundary (of those MERS)dgn) in the worst case. In Fig. 4, a set of MERs

is shown with two distinct pointp andg (€ P) on their east boundary. This amortized

analysis shows that the number of times cases (d) and (g) arises during the whole process

of generating the PMERSs (i.e., considering all pairs of points) mag b)) in the worst

case. O

We demonstrate an instance with a totak®f27 PMERSs. Consider three subsetsgf
namelyA, B andC, each containing/3 points. The distribution of points in each set is as

Fig. 5. Justification of the worst-case lower bound on the number of PMERs.

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 61

shown in Fig. 5. For each pair of points, one from Betnd the other from set, we may
formn/3 PMERs with the points i, as shown in Fig. 5.
Hence we have the following theorem stating the worst-case number of PMERS.

Theorem 1. The number of PMERs among a setgboints in the plane ig2 (n3) in the
worst case.

3. ldentification of PMERS

In this section, we explain the recognition of all PMERSs using a very simple algorithmic
technique, calledyrid rotation. Initially, we drawr horizontal lines and: vertical lines
through all the members iR. The resulting diagram is @rid, but the separation among
each pair of horizontal (vertical) lines is not same. For a given poinPs#te initial grid
diagram is shown in Fig. 6(a). During execution of the algorithm these lines will be rotated,
and will no longer remain horizontal/vertical. We shall refer the lines which are initially
horizontal, ased lines the lines which are initially vertical, will be referred bhie lines
At any instant of time during the execution of algorithm, the arigieade by each of the
red lines with thex-axis, will be referred as thgrid angle(see Fig. 6(b)).

As mentioned in the proof of Lemma 1, at a particular grid angle,65a¥ a set of
four points{p;, p;, px, p¢} defines a MER, it will remain valid for some time during
the grid rotation, say for an intervéd, ¢] of the grid angle. The corresponding entry
{pi. pj, Pk, pe, 6, x} is created at grid angte We compute the PMER when the grid angle
becomes equal to.

Consider the set of MERs which aeenbeddedh the grid, i.e., the set of MERs whose
sides are incident to the grid lines. We maintain these MERs in a data structure gralled
diagram

3.1. Data structure

The grid diagram can be maintained usingiax n matrix, wheren = | P|. We use two
such matrices, calledt and N during the execution of the algorithm. At any instant of
time, each of these matrices stores the set of MERSs present on the plane at that particular
grid angle. During the grid rotation, when a pair of adjacent red (respectively blue) lines

(@)

Fig. 6. Demonstration of grid rotation technique using grid diagram.

62 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

swap, we use matrix\ (respectively/ ') to recognize the set of existing MERs that
vanishes and the set of MERs that newly emerges.

We sort the points irP in increasing order of theit- and y-coordinates, respectively.
Let P, ={p}, 5. Py} and P, = {p7, p5, ..., p;} denote the same set of poinks
ordered with respect to their- and y-coordinates, respectively. Each row (respectively
column) of the matrix\M corresponds to an entry iR, (respectivelyP,). Similarly, each
row (respectively column) of the matriX corresponds to an entry i, (respectivelyP,).
For all pointsp € P, if p = p; andp = p/ then M(j, k) and N (k, j) are set with the
value 1. The other entries ifvt and A are initialized to 0.

We now explain the method of representing #mbedded/ERs in the matrixM. The
same method will be followed to represent the MERs in the mdifiXAs each MER will
be present in both the matrices, a pointer, caflell indicatorattached to each MER in
M points to its own presence K, and vice versa.

Consider the MER in the grid as shown in Fig. 6(a). It is defined by the points
{b,a, g,d} € P atits north, west, south and east sides, respectivelyb ey, = pg
In other words, the poinb corresponds to the,th column and thes,th row of the
matrix M. Similarly, the column (row) indices correspondingdpg andd are oy, a;
ande, (Bw, Bs, andpg,), respectively. Since the objective of our algorithm is to find the
largest MER which is bounded by the points ®fin its four sides, we store only those
MERs in the matrixM which are bounded by a pair of points (#) at its north and
south boundaries. Each of these MERs is attached with a pair of points which appear on
its east and west boundaries, respectively. If such a MER is unbounded to either east or
west or both, the corresponding attached point is set to NULL. The reason for storing
such an unbounded MER is that, it may eventually be bounded during the rotation. The
matrix N stores the set of MERs whose each member is bounded by a pair of points
(in P) at its east and west boundaries; the points in the pair attached to each of these
MERs appear on its north and south boundaries, respectively. The{MERg, d}, shown
in Fig. 6(a), is represented by the point-pélt, g¢) (appearing on its north and south
boundaries, respectively) in the matix(; and it is stored in the&gs, o,)-th entry of
matrix M. The same MER is represented by the point-gair/) (appearing on its east
and west boundaries, respectively) in the matvixand is stored in théw,,, 8.)-th entry
of the matrix\.

Note that, a MER unbounded in either or both of east and west, is stored in ovdfrix
but is not stored in matri®/. Similarly, a MER unbounded in either or both of north and
south, is stored in matri®/, but is not stored in matrix1.

Observation 2. (i) Given a fixed grid angle, and a pair of poings and py, if there exists
a MER whose north and south boundaries contgimnd py, respectively, then the points
appearing on its east and west boundaries are unique.

(i) Given afixed grid angle, and a pair of points and py, if there exists a MER whose
west and east boundaries contain and p,, respectively, then the points appearing on its
north and south boundaries are unique.

The matrix M is initialized with the set of all axis-parallel MERs which are present at
the grid angle equal to 0. These are obtained by invoking the algorithm presented in [10],

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 63

and it require®0 (R + nlogn) time, whereR is the total number of MERs present at that
particular grid angle with sides parallel to the coordinate axes.
Note that, for a particular grid angle, the mat#iA is such that

(i) exactly one entry in each row has value 1 and exactly one entry in each column has
value 1;
(i) exactly R entries have value 2;
(iii) all the entries having value 2 in a roivcorrespond to the set of MERs with poipft
at their south boundaries;
(iv) all the entries having value 2 in a column, saycorrespond to the set of MERs with
pointp; at their north boundaries;
(v) among the non-zero entries in each column, the value 1 appears at the maximum row-
index position.

See Fig. 7 for a clear understanding about the malfiat a particular grid angle. Similar
properties hold for the matrix” also.

b

N Y R P
P P B !
E E | E i E E E ® —» represents apoint
'.a A i I ' ? ! W — represents a MER
* 1 Eg 1 |. i .- ;e
-4 -
SR SN - -
P
(@)
P, c |
b
. R
d
a E H
e 5 o< 1]
g f N »[2.00)
: e e>|

(b)

Fig. 7. Sparse matrix representation of matkix.

64 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

Lemma 5 [7]. At any particular orientation of the grid, the worst- and expected-case
number of MERs ar@® (n2) and O (nlogn), respectively.

Thus, we can reduce the space complexity of storing the MERSs in the matricaisd
N by using a suitable linked list representation of sparse matrices [6]. Here, the 0-valued
entries in a matrix are absent. During rotation of the grid diagram, the indices of a pair
of adjacent rows/columns may be interchanged. The corresponding changes in the matrix
entries can be done very easily in our sparse matrix representation.

We use three linear arrays Py, andP,, whereP contains the set of points with respect
to their input order. At any instant of timé, (respectivelyP,) contains the members of
P in bottom to top (respectively left to right) order with respect to their corresponding
blue and red lines. Initially, when the lines in the two sets are parallel to tfand x-
axis, respectively, the blue lines are ordered from left to right and the red lines are ordered
from top to bottom. It is already mentioned that, each elememk,ofrespectivelyP,)
corresponds to a column (respectively row) of the matrix Below we explain the linked
list representation of matri#1. The matrix\/ is represented in the same manner.

Sparse matrix representation of M. Each (non-zero) element o1 consists of the
following fields.

(i) A value field containing 1 or 2 depending on whether the corresponding entry

represents a point iR, or a MER.

(ii) Two pointers P1 and P2. They indicate two different points in the arr& which
define the red and blue lines (i.e., the row and column) corresponding to that grid
point. If the value field of this entry contains 1, théxl and P2 point to the same
member ofP. If it contains 2, then the points indicated A1 and P2 appear at the
south and north boundaries of the corresponding MER.

(iii) Two more pointersP3 andP4. They indicate two different points iR which appear
on the east and west boundaries of the MER represented by that element. Again, if
the MER represented by an element is unbounded at either east or west or both, the
corresponding pointer(s) is (are) set to NULL.

(iv) The grid angle® where this MER is generated (i.e., inserted in the matrixduring
the grid rotation.

(v) Two pairs of pointers @' and 0?) and (Q! and 0?). They establish bidirectional
links among the neighbors of a matrix element appearing in the same row and in the
same column, respectively, as described below.

The (non-zero) matrix elements appearing in a row are connected in a doubly linked list
using theirQ! and 02 pointers.

It is already mentioned that the 1 entry in a column, gapppears at the maximum
row-indexed position. The other non-zero members in that column represent the MERs
with pointp;’ at their north boundary. These elements are stored in two doubly linked lists

using the pointer®?! and Q? as follows:

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 65

o left_list: the elements such that the MER corresponding to each of them has point on
its south boundary to the left of columnin the current orientation of grid diagram,
and

o right_list: the elements such that the MER corresponding to each of them has point on
its south boundaries to the right of columin the current orientation of grid diagram.

° Q} and Qf attached to the element containing ‘1’ in a column, indicate the first
element ofeft_listandright_list, respectively, in that column.

As mentioned earlier, each element of both the mattieeand A is attached with another
pointer field, calledself_indicator This is used to point its own occurrence in the other
matrix, if it is present there.

The sparse matrix data structut# for storing the MERs at a particular grid angle
is shown in Fig. 7. It needs to mention that, tle§_list andright_list attached to each
column are easily understood from the figure.

Each element ofP, and P, stores the address of the corresponding element in the
array P. Apart from that, each entry oP, and P, is attached with two sets of three
pointers(M Q1, M Q2, M Q3) and(N Q1, NQ2, N Q3). M Q1 pointer of an element i,
(Py) points to the 1 entry in the column (row) of the mati® corresponding to that point.
The M Q, and M Q3 pointers of an entry inP, (representing a row aiM), point to the
address of the left-most and right-most elements in that rowM 9 and M Q3 pointers
of an entry inP, (representing a column o), point to the last elements in both the
left_listandright_list, respectively. In Fig. 7(b)M Q1 pointers of each element iR, and
P, are shown using dotted lines, but in order to avoid the clumsines3/thgandM Q3
pointers are not shown. ThHEQ1, N 02, and N Q3 pointers are set to point the relevant
elements in matriy\” in a similar manner.

3.2. Grid rotation

In this subsection, we demonstrate how the grid diagram changes due to the rotation
of the grid. During grid rotation a pair of mutually perpendicular lines, passing through
each point, are rotated gradually in anti-clockwise direction, and all at the same speed. Let
us imagine the MERsmbeddedn the grid to be rotating with the rotation of the grid as
shown in Fig. 2(b). As mentioned in the proof of Lemma 1, for a very small rotation of
the grid, although the rectangles change in size, their boundary points nevertheless remain
same. However, when a pair of adjacent (red/blue) grid lines swap, some rectangles might
degenerate, some rectangles might be formed anew, while some may have its bounding
vertices changed. These instants are referreavast pointsAt each event point we need
to do the following:

e Update the data structure to account for the new set of MERs.

e The rectangles (defined by a specified set of points) which were present in the data
structure as MERSs prior to the current rotation, and remain MER after the rotation
also, do not need any computation.

66 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

o For the MERs (defined by a specified set of points) which were present in the data
structure, but will not remain present from now onwards, we may need to compute the
PMERs as described in Appendix A.

If we gradually rotate the grid by an angt¢2, we can enumerate all the PMERS that exist
in the plane. Our aim is to find the one having maximum area.

3.2.1. Selection of event points

To perform the grid rotation, so tha¢! and A" are updated properly at each relevant
time instant, we need to know the order in which a pair of grid lines of same color swaps.
This requires a sorting of the absolute gradients of the lines obtained by joining each pair
of points. During grid rotation, we need to stoj(n?) times when either theed linesor
the blue linesbecome parallel to any one of those lines. We consider two different sets
containing all the lines having positive and negative slopes, respectively. The lines in the
first (second) set are sorted in increasing order of the ahgléh the x-axis (y-axis) in
anti-clockwise direction. Finally, these two sets are merged to get the ordered set of event
points. This need®) (n2) space for storing the angles of all the lines, anh?logn)
time for the sorting. But note that, we do not need to store the gradient of all the lines
permanently; rather we are satisfied if we get the event points (the angles) in proper order
during grid rotation. Below, we describe a method which can generate the event points
using O (n) space.

3.2.1.1. A better approach.Let P* = {p7, p3,..., p;} be the set of dual lines corre-
sponding to the points iP. Consider a lineLygs: y = mqpx + cqp in the primal plane,
obtained by joining two pointg, and pg. In the dual plane, it corresponds to the point

7 = (mag, cap), Which is the point of intersection of the lingg andpj;. Thus in order to

get the linesLqp (with mqp > 0) in increasing order of their gradients, we need to sweep
a vertical line£ from x = 0 towards right in the dual plane and to report the intersection
points among the members Bf in increasing order of their abscissa. Similarly, the lines
Lqg (with mqg < 0) are also generated in increasing order of their gradients, by sweeping
a vertical line£’ from left to right (starting fromX = —o0) in the dual plane and reporting

the intersection points among the member®bin order of their appearance. The sweeps
of £ andL’ are done concurrently. We need to maintain two heaps to obtain the two event
pointsm (> 0) andm’ (< 0) (the next point of intersection) to be faced Byand £/,
respectively. Now,

e If m <|m’|, then the grid is rotated such that its red lines form an angteltarwith
the x-axis of the coordinate system.

o Otherwise, ifm > |m’|, then we rotate the grid such that its blue lines form an angle
(tan1m’ — 7 /2) with the y-axis of the coordinate system.

The selection of each event point negdidogn) time, and the space required for storing
the heaps i®) (n).

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 67

Fig. 8. Empty region—observed while swapping ravendi + 1.

3.2.2. Some important properties of grid rotation

Next, we come to the most crucial part of determining the generation of a new set of
MERs and consequently updatig as a pair of grid lines of the same color swap. We
need to consider two distinct cases which are caused by the swap of (i) two red lines, and
(ii) two blue lines.

We first consider the case when a pair of adjacent rowdfinsayi andi + 1, get
swapped due to the swap of a pair of red lines. Let the points attached to these two rows
be po (= p/) andpg (= p;’,), respectively. After the swap of these two rows in the grid
diagram,pg andp, will correspond to rows andi + 1, respectively. In Fig. 8, the shaded
area indicates the region where no point can appear as the line joining the pair ofjgoints
andpg has the least gradient among the lines with the unprocessed pairs of points.

L emma 6. While processing an event point corresponding to the fig joining a pair of
points(pa, pg). P« to the left ofpg,

(i) if the gradient of the lind g is positive then
(a) the MERs whose north or south boundaries contain neitigamor pg, will not be
changed with respect to their definition
(b) the MERs whose south bounding poinpis but pg does not appear on any of its
sides, and MERs whose north bounding poingjs but p, does not appear on
any of its sides, will not be changed with respect to their definition.
(i) if the gradient of the lind..4 is negative then
(a) the MERs whose east or west boundaries contain nejtheror pg, will not be
changed with respect to their definition
(b) the MERs whose west bounding poinpis but pg does not appear on any of its
sides, and MERs whose east bounding poipisisbut p, does not appear on any
of its sides, will not be changed with respect to their definition.

Inview of this lemma, we state the following exhaustive set of MERs which may emerge
or vanish due to the swap of a pair of rows corresponding to a pair of ppintsd pg
(wherep, is to the left of pg). A similar set of situations may also arise when a pair of
columns swap; we will not mention them explicitly.

All the MERs that vanish due to the swap of two red lines correspondipg tnd pg
can be classified into one of the following classes.

A: a MER with p, andpg on its south and north boundaries, respectively;
B: aset of MERs witlp, andpg on their south and east boundaries, respectively;

68 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

C: aset of MERs withpg on their south boundary;,
D: aset of MERs withp, and pg on their west and north boundaries, respectively;
E: aset of MERs withp,, on their north boundary.

The sets of MERs that are generated due to the swap of two red lines correspongling to
andpg can be classified into one of the following classes.

A’: a MER with p, andpg on its north and south boundaries, respectively;

B’: aset of MERSs withpg and p,, on their south and west boundaries, respectively;

C’: aset of MERs withp,, on their south boundary. The other boundaries will be newly
defined,;

D’: aset of MERSs withp, and pg on north and east boundaries, respectively;

E’: a set of MERs withpg on their north boundary. The other boundaries will be newly
defined.

Note that, the MER in set modifies into the MER in sed’.

All the MERs in setB collapse to form members in s€t; in addition, some new MERs
may be generated as members inGgtwhich can be derived by observing few specific
members in the seB. Similarly, the members in se that collapse, result in members
of set B’ if at all they remain, and conversely every member inBetesults from some
member in seC. To be a bit more explicit about the sé€t of collapsing MERSs, ones
having their north bounding point to the right pf only would still exist and degenerate
into members of the sé’. Rest are all destroyed.

Again, the MERs in seth degenerate into MERs in sé’; in addition, some new
members in the seE’ may also be generated which can be derived by observing few
specific members in sé. Similarly, the members in sét that collapse, resultin members
in set D’ if at all they remain, and every member ¥ is derived from some member in
setE. These observations will guide our actions due to a row swap.

We now highlight the necessary actions when a pair of red lines corresponding to
and pg swap; we also indicate how the creation and deletion of all the MERs are taken
care of.

3.3. Updating the grid diagram

Suppose that the line joining., pg) is under process. Itis having the smallest absolute
gradient among the set of unprocessed lines, and its gradient is positive. We now study the
effect of rotating the grid so that all red lines become parallel to the line joifppgps).

Leti andi + 1 be the rows inM corresponding to the pointg, and pg before the
rotation; the columns correspondingpg and pg be k and¢, respectively. Without loss
of generality, assume that, is to the left of pg, i.e.,k < £. After the rotationp, andpg

will correspond to rows + 1 andi, respectively. But at this stage we like to mention that,
the swapping of rows will be done at the end of all other updatesfowhich have caused
due to the swap of romisandi + 1.

During grid rotation, when a new MER emerges it is enteredvif and when an
existing MER vanishes, the corresponding PMER is evaluated using the method described

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 69

in Appendix A, and the corresponding entry is removed fobin Appropriate updates in
the matrix\/" are also to be done. From Lemma 6 and succeeding discussions, we have the
following results.

Lemma 7. (a) All the MERs which disappear after processing the line joiniiggand pg
(i.e., due to the swap of two rows correspondinggoand pg) are present in either of the
two rowsi andi + 1, and either of the two colummsand ¢.

(b) Similarly, all the MERs that newly emerge after processing the line joiping
and pg, will also be inserted in either of the two rowsandi + 1 and in either of the
two columnsg and<.

Below we state the five major steps of processing the line segmentps) with
positive gradient. Note that, we do not explicitly create two sets, one for the vanishing
MERs (from which PMERSs need to be reported), and the other one for the newly emerging
MERSs (to be inserted in the data structure). The appropriate actions are taken as and when
these MERs are encountered.

Step A. The only MER in the se# is the one withp, and pg at its south and north
boundaries, respectively, before the swap; it is unbounded at its east and west sides. After
the rotation, this MER will not exist further. S@/ (i, £) is to be deleted. But a new
MER emerges witlpg and p, at its south and north boundaries, respectively, which is
unbounded in both east and west. This is the only MER iM$eSo, M (i + 1, k) is set

to 2 (as the rows andi + 1 are not yet swapped). Note that, before the deletiav @f ¢),

it was the first entry in théeft list of £th column. So, in théth column, itis easily reachable
in O (1) time. Similarly, after the rotation\ (i + 1, k) will be the first entry in theight_list

of kth column. So, in théth column, it can also be addeddh(1) time. Since this MER is
unbounded in east and west sides, B8and P4 pointers attached to it, are set to NULL.
No update is necessary i, since the entry corresponding.td (i, £) was not present in
N as it is unbounded in east and west sides, &hd + 1, k) will not be stored in\ due

to the same reason.

Step B. The setB of MER(s) with p, and pg on their south and east boundaries,
respectively, before the swap (see Fig. 9(a)), will eventually collapse. So, for each of them
the corresponding PMER needs to be computed. This set of MERs are obtaif¢an
follows:

B.1 Scan théth row (corresponding tp,) from its left end until:
(i) arectangle is reached whose east side is not boundeg byr
(ii) the cell M(i, k) (=1) is reached.
Each of these entries, excepting the last one, represents a MERARN set

B.2 Scan théth row from its right end. The first (non-zero) entry corresponds to the MER
in the setA. The second element, if it is not equal to 1 (i.e., the pgintitself), it
corresponds to a MER in sét. In Fig. 9(a), such an entry appears in the column
corresponding to the point, .

70 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

|
| R
| o/
Y Lo N
R R, z
2| :p“/
z rel-———F-~-~—[-*—
2| P
| .
[D e qpe
v H
25| IR S S ER A Fﬁ.i....l.
il :
| Bo b
R L
k I m
columnid — -
(a) (b)

Fig. 9. lllustration of Step B: (a) before rotation, and (b) after rotation.

Thus, location of all elements in sBtcan be done irO (| B|) time. As mentioned earlier,
all the members in s will contribute a member in the new set of MERS In Step B.3,
we explain the necessary modifications that need to be done (in the Mdjrin convert
the members in seB to the members in saf’, as and when they are encountered. In
addition, few more new MERs may appear with at its south boundary after the present
grid rotation. In Step B.4, we explain their addition in the maikik (as members of”).
The required changes in mateh are done in Steps B.5 and B.6.

B.3 Note that, in thei 4 1)-th row of the matrixM, there exists a MERR with p, and
pgp at its north and south boundaries, respectively, before the rotation. In Fig. 9(a),
R is shown using dotted boundary. pi, bounds the east side & then after the
rotationp,, will bound the east side of all the membergih(see the changed MERs in
Fig. 9(b)). In order to obtai®, one needs to scan tlie+ 1)-th row of the matrixM.
Thus, p,, can be obtained i (n) time, and all the MERs i€’ that are contributed
by the elements oB, are generated i (| B]) time.

B.4 In addition, few new MERs are generated wjil at its south boundary. Leg,,
corresponds to the columua prior to the present grid rotation. We scan the- 1)-th
row (corresponding tgg) of the matrixM from themth column towards right, and
generate this new set of MERs as follows:

Let R = M(i + 1,m) denote a MER withp,, and pg at its north and south
boundaries, respectively (see Fig. 9(a)). After the rotation, a new MERill

be generated witlp,, and p, at its north and south boundaries, respectively (see
Fig. 9(b)). The east side at* may be unbounded or bounded by a point (pay
depending on whetheR’ is unbounded or bounded (by the popmi) to its east
side. The west side at* is either unbounded or is bounded by the point same as
that of its preceding entry i6”; this can be settled by observing the rightmost entry
in C’. Finally, it is added as the rightmost element in the list attached tlthew

of M; its position in the column op,, is just before the element corresponding to
the MERR'.

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 71

This process of generating new MER is continued by scanning towards the right of
the (i + 1)-th row until a newly generated MER is obtained which is unbounded to
its east side. The total time required in this ste@ié: + |C’\B|). Here, theO (n)

extra time is required for identifying the MER in tlig+ 1)-th row which hasp,, at

its north boundary.

B.5 The MERs in setB which are bounded in both sides, are reached\vinusing
self_indicatorattached to them. The row index of each MERG@h generated in
Step B.3, will remain same as that of the corresponding member iB;s&t column
index will be changed frond (corresponding tpg) to m (corresponding tg,,) after
rotation. So, thep! and Q2 pointers need to be adjusted to delete this set of MERs
from the ¢th column, and to add them in tlweth column. Deletion of an entry from
a column can easily be done (1) time. Regarding the insertion, the members in
C' are closer to the ‘1’ entry in thieft_listof p,, than its existing elements. So, they
can be added in theft_list of the ‘1’ entry in themth column in the reverse order of
their generation ir0 (| B|) time.

B.6 The MERs generated in Step B.4 are considered for insertion in the matinxhe
reverse order of their generation. If a MER is unbounded in either or both sides, is not
inserted in\. Otherwise, leppy andp, bounds the east and west sides of a MER, say
R*. As, R* is closest to the ‘1’ entry in the row (respectively column) corresponding
to p, (respectivelypy) in N, it can be inserted:

() inthe left or the right side of the ‘1’ entry in the row correspondingto and

(ii) as the first element of eithéeft_list or right_list of the ‘1’ entry in the column
corresponding tgy.

Thus, anO (1) time is spent for each MER consider in this step.

Note that, if there exists any MER with, at its south boundary byts not appearing in
any of its sides, it remains unchanged in the data structure during the execution of Step B.

Step C. Next we consider the set of MERs C, each having south boundary contaipjng

but p, does not appear on any of its boundaries. Due to the rotation, some of them will be
truncated byp, at their west side. The corresponding PMERSs are reported and the matrix
entries are updated to generate a new set of MERs, referredR6. &s Fig. 10(a), the
possible cases prior to the rotation are shown; the necessary changes after the rotation are
demonstrated in Fig. 10(b).

C.1 The entries in row+ 1 (corresponding tgg) are considered from extreme right one
by one. If the west boundary of such a MER is observed to be to the leiff, oit
will no longer exist after the rotation (in Fig. 10(a), see the MER withat its north
boundary); so the corresponding PMER is reported. Note that, here a new MER is
generated (as a member in &) (see Fig. 10(b)) from the old one by truncating its
west side apy; the necessary change in the matkikis done immediately. The scan
continues until a MER is encountered whose west boundary is to the right, afr
the cellM (@i + 1, ¢) (=1) is reached.

C.2 Next, we check the entries of raw- 1 from extreme left. All the MERs which appear
to the left of M (i + 1, k), i.e., whose north boundaries are defined by points to the

72

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

This MER will remain unchanged

| Bo
| . These MERs will be truncated at B, p¢
|
| o .
| e Y
| “ B/ This MER will S
| I is Wi Yo pu
| be removed ~
I
| A e, I e
Lo

|1 P B W U | QU
| . T N U aes
I e T RS,
| Tp(x | O b
L I I I B

____________ Jl_a;n__ ert poc

column id — -»
(a) ®)

Fig. 10. lllustration of Step C: (a) before rotation and (b) after rotation.

left of py, will not remain valid after the current rotation (in Fig. 10(a), see the MER
with p; at its north boundary). These entries are deleted from the data structure after
reporting the corresponding PMERs.

C.3 The search continues along that row pastthecolumn, to detect the MERs having

C4

their west bounding point to the left @f,. This set of MERs will be truncated by,

to the west (in Fig. 10(a), see the MER with at its north boundary) to contribute

to the setB’. But prior to the updating of these entries in the data structure, the
corresponding PMERs need to be reported. We stop when a MER is encountered
whose west boundary is defined by a point to the righpgf(in Fig. 10(a), see the
MER with py4 at the north boundary), or the ceW (i + 1, £) (= 1) is reached. Thus
O(|C|) time is needed to report all the PMERSs corresponding to the membergin set
andO(|B’|) time is needed to generate all the MERs in the&et

The elements in sét are reached usingelf_indicatorand are deleted fronV. The
members inB” are added in théth row of the matrix\/. These newly added entries
are closer to the ‘1’ entry in théth row than all the existing entries in that row.
So, they can be added in order of their generation, and in time proportional to their
number. The position of these entries in their respective columns will remain same.

Step D. This step is similar to Step B. Here, the set of MER$&avingp, andpg at their
west and north boundaries, respectively, are reached in the matas follows:

D.1

D.2

Traverse theight_list of pg from its beginning until a MER is obtained which is
not bounded by, at its west side. All these MERs excepting the last one, are the
members of the sdb. After the current grid rotation, this set of MERs will no longer
be bounded by, at their west boundaries.

In addition, the MER corresponding to the second element dethdist of pg (if it
exists) is also bounded by, at its west side (as in Step B.2). It is also a member of
setD since it will no longer exist after the rotation.

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 73

For all these members iR, the corresponding PMERSs are reportedifi D|) time.

D.3 The updated set of MERE' are obtained by changing the west boundary of each
element inD by following the method similar to Step B.3 as described below.

Consider a MERR in the setD. Let its south and east sides are boundegpy
andp,,, respectively (see Fig. 11). After rotation, it will not be bounded at the west
by p.. But observe that before the rotation, there exists another MER bounded
by p, on the north andpy on the south, and it would also hayg on its east
boundary (in Fig. 11, it is marked a®'). If this MER is bounded byp; in the
west, then surely the MER we started with, will haveps on its west boundary
after the rotation.

The pointps is obtained by checking the MERs present in thght_list of M (i, k)
(=1, which corresponds to the poipt,); and it need<) (n) time in the worst case.
After the rotation, each element &f will be bounded at its west by the poips.

D.4 Surely, a new set of MERs will be generated with north side boundeggbyor
example, see the MER in Fig. 11 whose north and south sides are bounged by
and ps, respectively. Its west and east bounding points are obtained by scanning the
left_list and right_list of p,. All such MERs are obtained in a manner similar to
Step B.4, and ir0 (n + |E’\D|) time.

D.5 Each element in seb can be reached in the matriX" using theself indicator
attached to it, and can be deletedd1) time. All the MERSs in setE’ are added
in the row corresponding tps of the matrix\'. The MERs generated in Step D.3
(i.e., corresponding to the members/iy) are closer to the ‘1’ entry in its row (of/)
than the existing elements in that row. The position of these entries in their respective
columns are obtained as follows:

Consider a membeR in E’ with p, and ps at its east and west boundaries,
respectively, which will be added in the column corresponding to the pgijnt
Note that,p, is abovep, both before and after the rotation.pf is also abovey,,
then the position oR in theleft_listof p, is same as that of the MER witty, and

MER R
before rotatign after rotation
R /
B
P L P
\...% 4
H L]
:)
H pfl
. H
23
® This MER is
: newly added

Fig. 11. lllustration of Step D.

74 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

Do at east and west boundary (as a membeDpfOtherwise, it will be added as
the first element in theght_list of p,,.

Thus, each of these MERs can be added in the respective row and coluiirinof
0(1) time.

Step E. Some of the MERs in séf (i.e., with p, on their north boundaries), might loose
emptiness (apg will enter inside those MERs) due to the current rotation. These will
either be truncated on the east sidefy or simply be destroyed. The new set of MERs
D’ is obtained using the following procedure which is similar to Step C.

E.1 Asin Step C.1, we traverse thedt-list andright-list of the elementM (i, k) (the ‘1’
entry corresponding tp,) separately each from its beginning until:

(i) a MER is encountered whose east side is bounded by a point to the gt of
(i) end of the list is reached.

E.2 For each of these MERs, if the point appearing on its south boundary is to the right
of pg, itwill no longer exist, and will be deleted from the data structure after reporting
the PMER.

E.3 Otherwise, ifpg is to the left of the point bounding the east side of that MER, then the
corresponding MER in the séY’ is obtained by truncating its east side at the ppint
So, necessary updates are made in the matrideafter reporting the PMER. The
search continues further downwards in the list to detect MERs having point on their
south boundary to the left qfg.

E.4 The insertion of these MERs j¥ are done as in Step C.4.

Thus Step E can be completedd(|E| + | D'|) time.

Step F. After the computation of the PMERS, and the necessary updatesamd.\/, the
final step of our algorithm is swapping of rowsndi + 1 in the matrixM. Surely, this
implies the swapping of columinand: + 1 in the matrix\" also. It can be shown that this
task can be completed ifi(n) time executing the following substeps.

F.1 p/ (= pe) andp;, (= pp) are swapped in the arraf,.

F.2 The row-id ofp, andpg in matrix M are set ta + 1 andi, respectively.

F.3 Thelists attached tof’ andp;’, , in matrix M are swapped. In other words, we traverse
row i andi + 1 simultaneously. If at a particular column, batih and (i + 1)-th
row has non-zero entries, their* and Qf pointers are to be adjusted. To be precise,
this involves the changing ad! and Q2 pointers of two more elements of the same
column, one appearing just abave- 1)-th row and the other one appearing just below
ith row, respectively.

F.4 The column-id ofp, andpg in matrix \ are set ta + 1 andi, respectively.

F.5 The lists attached t@’ andp;’, , in matrix \V are swapped. In other words, we traverse
left-list (and thernright-list) of columni andi + 1 simultaneously. If at a particular row,
bothith and(i + 1)-th column has non-zero entries, thQﬁ and Qf pointers are to
be adjusted as in Step F.3.

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 75

One crucial point is to be kept in mind while making this update. The steps have to be
executed exactly in this order. This is because one step ahead of another may corrupt the
values being used by the other. As an example, the updates inhirotep B depend on
the existing entries in row + 1. If we execute Step C ahead of B, it is evident that the
entries in rowi + 1 get corrupted.

The processing of a linég (joining p, and pg) with negative gradient causes the
swap of a pair of rows in the matri%". The identification of PMERSs from matri%’, and
updating ofM and\ are done exactly in the same manner as described for swap of a pair
of rows in matrixM.

3.4. Correctness of the algorithm
The correctness of our proposed algorithm follows from the following facts:

e We are rotating the grid in one (anti-clockwise) direction.

o Our grid rotation halts at each instance where either a pair of adjacent red grid lines or
a pair of blue grid lines swap. These events happen when either red grid lines or blue
grid lines are observed to be parallel to the line joining a pair of point®,iand we
are considering all th€) pairs of points inP.

o For all the intermediate grid angles between two consecutive halts of the grid rotation,
the identity of each MER (i.e., the quadruple of points defining its boundary) remains
same.

o Finally, when a pair of adjacent grid lines swap, we have correctly recognized (i) all
the MERs that will no longer exist, and (ii) all the MERs that are newly generated.

The first two facts follow from our processing sequence. The third one follows from
Definition 2. In order to prove the fourth one, we consider the swap of a pair of adjacent
red grid lines, say andi + 1, corresponding to a pair of points, spy and pg, where

Pa = p; = p; andpg = p/’ = p,. By Lemma?7,

o all the MERs which will no longer exists due to the aforesaid swap, are available in
rowsi andi + 1 and columng and¢ of the matrix M, and

o all the MERs which are newly generated due to the aforesaid swap, will find their
positions in rows andi + 1 and columng& and¢ of the matrix M.

Note that, while swapping of a pair of blue grid lines, the set of MERs which will no
longer exist, are to be recognized from matkix So, we also need to assure that for all the
changes in matrix\1, the corresponding changes in matkiXare done correctly.

In Steps A—E, we have inspected the relevant elements in the aforesaid two rows and
two columns to locate the MERs which will no longer exist after the rotation. For each of
them, the area of the corresponding PMERSs is calculated.

The MERs which emerges after the present rotation, are classified into five categories.
In Step A, we have placed the only MER in ggtin its right position in matrix\M. Some
of the MERs in the other classes are obtained by truncating one of the sides of an already
existing MERs (see Steps B.3, C.3, D.3, and E.3). After the necessary modifications, their

76 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

positions in matrixM are adjusted. In addition, some MERs will be formed anew (see
Steps B.4 and D.4), which are also identified with reference to some existing MER in
(i + 1)-th row of M. They are also properly positioned in mati®®. The MERs which
are present prior to the rotation, and will no longer exist after the rotation, are reached in
matrix A" usingself_indicatorand are deleted. Lemma 7 essentially tells that all the newly
generated MERs will be added in thth and¢th rows, andth and(i 4+ 1)-th column of
matrix V. For each of these MERSs its positionM is also successfully obtained.

When a pair of blue lines swap, the relevant MERs can be successfully identified in the
matrix \V in an exactly similar manner, and the necessary updates in both the matrices can
be done.

4. Complexity analysis

As discussed in the preceding sections, our algorithm consists of two phases, (i) finding
the successive event points (grid angles) at which the computation is done during the grid
rotation, and (ii) the management of grid diagram during the rotation. The first phase
requiresO (n?logn) time as shown in Section 3.2.1. Now it remains to analyze the time
complexity of the second phase.

The construction of initial grid matriX\ requiresO (n?) time in the worst case. While
processing each pair of pointp., pg), it needs to traverse a pair of rows and a pair
of columns corresponding to the poings and pg in either of the matrices\t and A/
depending on whether the gradient of the libgs (joining p, and pg) is positive or
negative. The total number of entries encountered during the traver3ét)jsn the worst
case. For each MER encountered during the traversal, which will not exist further, the
corresponding PMER can be reportediril) time. The generation of all new MERs and
their insertion in the matrice$t and A\ may requireO (n) time in total. Finally, the swap
of two rows in the matrixM requires anothe® (n) time. So, apart from the reporting of
the PMERSs and generating new MERS, one needs an additib@altime for processing
each pair of pointp,, pg € P during the grid rotation. The grid rotation haltgn?) time.

Thus, we have the final theorem stating the time complexity of our algorithm.

Theorem 2. The time complexity of our algorithm of recognizing(althd hence the largest
PMER isO (%) in the worst case.

The space required for storing the matrick$ and A" at a particular grid angle is
equal to the number of MERSs present in the plane at that time. Surely, it may(/ir
in the worst case; but it i®) (nlogn) on an average [7]. As we are usi@(n) space
for determining the event points, the average case space complexity of our algorithm is
O(nlogn).

J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54-78 77

5. Conclusion

In this paper, we have considered the problem of locating the largest empty rectangle,
of any arbitrary orientation, among a set of points. An algorithmic technique is proposed
to solve this problem which inspects all the PMERs present in the plane. One may hope
for a faster algorithm without considering all the PMERs.

Acknowledgments

The authors acknowledge Prof. Micha Sharir for suggesting the example in Fig. 5, which
proves that the upper bound of the number of PMERS {82). We thank the referees of
the paper for valuable suggestions which improved the presentation of the paper.

Appendix A. Area calculation

Let us consider a set of MERs denoted by six-tuplgsp;, p«, pe, ¢, ¥}. The PMER
is a member in this set which has largest area. Let the grid angle corresponding to the
PMER bef. The value ob is obtained as follows:

At grid angled, the lines corresponding to the north and south boundaries of the PMER
willbe (y — y;) = m* (x —x;) and(y — yx) = m x (x — x), respectively, whera = tan(9).
The lines at the east and west boundaries will(be- y;) = (—=1/m) % (x — x¢) and
(y —yj) =(=1/m) * (x — x;), respectively. So we have the coordinates of its four corners
as follows:

m(ye — yi) + (m2x; +x¢) m(xg — x;) + (m2y, +yi)>

north-east: ,
m2+1 m2+1

2 2

north-west: m(y; = yi) + (mxi +xj), mxj —xi) + (m%y; + yi) ,
_ 2 B)

south-east; ML YK+ 0 xk+x@)’ m(xe — xg) + (m“ye + yi) ’

south-west: myj =y + (mx +x-")’ m(x; — xp) + (m2y; + y) .

The area of the rectangle is

_ mQe—yj) + (ve = xj';)((yk — i) +m(x; — xk))’ 6 <0<y
mé+1

This is a unimodal function in & 6 < 7 /2. Its maximum value can be obtained by solving
2 Ag = 0. Now we have
1) An —
507" T mZ+1
+ 2m[(xi — x0) (e — ¥j) + Ok — yi) (xe — x)]
—m?[(ve — y)) 3k — yi) + (x¢ — x))(xi —xx)], wherem = tan(6).

Ag

[k —) (e — yj) + (xi — x) (x¢ — x)]

78 J. Chaudhuri et al. / Journal of Algorithms 46 (2003) 54—-78

The choice of the optimal value 6f is as follows:

¢ if LA <0atd=¢,v,
0*=3vy if 5A9>0at0=¢,vy,
0" if LAp=0atd=0"€ (¢, V).

Thus, given the four points and the range of grid angfecan be computed in constant
time.

References

[1] M.J. Atallah, S.R. Kosaraju, An efficient algorithm for maxdominance with applications, Algorithmica 4
(1989) 221-236.

[2] A. Aggarwal, S. Suri, Fast algorithm for computing the largest empty rectangle, in: Proc. 3rd Annual ACM
Symp. on Computational Geometry, 1987, pp. 278-290.

[3] B. Chazelle, R.L. Drysdale, D.T. Lee, Computing the largest empty rectangle, SIAM J. Comput. 15 (1986)
300-315.

[4] D.P. Dobkin, H. Edelsbrunner, M.H. Overmars, Searching for empty convex polygons, in: Proc. 4th Annual
ACM Symp. on Computational Geometry, 1988, pp. 224-228.

[5] K. Daniels, V. Milenkovic, D. Roth, Finding the largest area axis-parallel rectangle in a polygon, in:
Computational Geometry: Theory and Applications, Vol. 7, 1997, pp. 125-148.

[6] D.E. Knuth, Data Structure, in: The Art of Computer Programming, Vol. 1, Addison—Wesley, 1973.

[7] A. Naamad, D.T. Lee, W.L. Hsu, On the maximum empty rectangle problem, Discrete Appl. Math. 8 (1984)
267-277.

[8] S.C. Nandy, B.B. Bhattacharya, S. Ray, Efficient algorithms for identifying all maximal empty rectangles
in VLSI layout design, in: Proc. FSTTCS-10, in: Lecture Notes in Comput. Sci., Vol. 437, Springer, 1990,
pp. 255-269.

[9] S.C. Nandy, A. Sinha, B.B. Bhattacharya, Location of largest empty rectangle among arbitrary obstacles, in:
Proc. FSTTCS-14, in: Lecture Notes in Comput. Sci., Vol. 880, Springer, 1994, pp. 159-170.

[10] M. Orlowski, A new algorithm for largest empty rectangle problem, Algorithmica 5 (1990) 65-73.

