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A new problem ealled monotone bipartiioning of a planar point set is identified which is found to
be useful in VLEI layoutdesign. Let F denote a rectangalar floor containing a set A of n points, The
portion of a straight line formed by two points from the set A is called a line segment. A monotone
increasing path(MP)lin F is a connected and ordered sequence of line segments from the bottom-left
corner of F to its top-right corner, such that the slope of each line segment is nonnegative, and each
pair of consecutive line segments share a common point of A, An MP is said to be maximal (M MP)
ifno other point in A can be included in it preserving monotonicity, Let A® denote the subset of A
corresponding to the end points of the line segments inan MMP, L. The path L partitions the set of
points A\ AL into two subsets lving on its two sides. The objective of monotone bipartitioning is to
find an MMP L, such that the difference in the number of points in these two subsets is minimuam,
This problem can be formulated as finding a path between two designated vertices of an edge-
welghted digraph (the weight of an edge being an integer lyving in the ramge [—n, n]l, for which the
absolute value of the algebraic sum of weights is minimized. An Ofn = e} time algorithm is proposed
for this problem, where e denotes the number of edges of the graph determined from the geametry of
the point set. The monotone bipartitioning problem has various applications to image processing,
facility location, and plant layout problems. A related problem arises while partitioning a VLSI
floorplan. Given a floorplan with n rectangular blocks, the goal is to find a monotone stairease
channel from one comer of the Aoor to its diagonally opposite corner such that the difference in the
numbers of blocks lving on its two sides is minimum. The problem is referred to as the stairease
bipartitioning problem. The proposed algorithm for a point set can be directly used to solve this

Authors’ current addresses: P. Dasgupta, Computer Science and Engineering Dept., Electrical and
Computer Engineering Dept., University of California, San Diego, 3819 APM, UCSD, San Diego,
CA 920930114; email: partha@es uesd.edu (on leave from the Indian Institute of Management,
Caleutta, India); P. Pan, Aplus Design Technologies, Inc., 10850 Wilshire Blwd., Los Angeles, CA
G2 4; email: peichen®@aplus-dt.com; Subhas C. Nandy, Indian Statistical Institute, 203 B. T. Road,
Caleutta 700 108, India; email: nandyvse®isical ac.in; B. B. Bhattacharva, Dept. of CSE, University
of Nebraska-Lincoln, Lincoln, NE 68588; email: bhargab@ese unl . edu (on leave from the Indian
Statistical Institute, Caleatta, India).

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commereial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copyving is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, orto
redistribute to lists requires prior specific permission and/or a fee,

ACM Tranaactiona on Design Automation of Electronic Syatema, Vol 7, Mo, 2, April 2002, Pagea 23 1-248.



232 . Dasgupta et al.

problem in in?) time. However, an improved {n) time algorithm is reported for this special
case, This leads to an Oin log n) time algorithm for hieramchieal decomposition of a floorplan with
A sequence of stairease chamnels, Staircase bipartitioning has many applications to channel and
global routing.

Categories and Subject Deseriptors: B.7.1 [Integrated Circuits|: Types and Design Styles—VELST
fvery large scale integration); B7.2 [Integrated Circuits]: Design Alds—placement and mowui-
ing; 3.2.1 |Discrete Mathematies]: Combinatones—combinatorial algorthms, .2.2 [Discrete
Mathematices]: Graph Theorv—graph algorithmas; J.2 [Physical Sciences and Engineering|:
Engineering; J6 [Computer-Aided Engineering|: computeraided design (CAID)

General Terms: Theory, Design, Algorithms

Additional Key Words and Phmses: Complexity of algorithms, floorplanning, partitioning, roating,
very large scale integration {VLSI)

1. INTRODUCTION

Circuit partitioning is a well-known and important problem in VLSI layout
design. A cireunit is usually represented by a graph or a hypergraph [Sherwani
1999], where the nodes represent the modules or cireuit components, and the
edges capture the interconnection information. The goal of partitioning is to
decomposze the circuit into several components satisfying certain constraints
on area, number of terminals, ete., and to optimize some objective function(s),
forexample, the number of interpartition interconnections, intermodule longest
delay, to name a few. Partitioning is required in all levels of the circuit design
from the behavioral deseription to its final layout stage. Several graph bizsection
techniques are widely used in VLSI placement and floorplan design [Kernighan
and Lin 1970; Sherwani 1999].

In this paper, we identify a new partitioning problem called monotone bipar-
fitioning of a planar point set. Let F denote a rectangular floor containing a
set A of n points that includes the bottom-left corner (2) and the top-right cor-
ner () of the floor. A monotone increasing path (MP) through A is a connected
and ordered sequence of straight-line segments, say {Iy,ls, ..., {;}, such that
each [; is bounded by two points from the set A, and has nonnegative slope.
Thus, each pair of consecutive line segments ([;,/; ;) on the path must share a
common element of A. The starting point of [; and the end point of [, are the
bottom-left and top-right corners of the floor, respectively. An MP in A is said
to be a maximal monolone increasing path (MMP) if no other point in A can be
included in it preserving its monotonicity. Consider an MMP L, and let the set
of points on L be denoted by A", The path L in F partitions the set of points
A\ A" into two subsets, one on its left and the other on its right; our objective is
to find an MMP L such that the difference of the number of points in these two
subsets is minimum. This can be formulated as a search problem on an edge-
weighted directed graph with n nodes. The nodes of the graph correspond to the
points in A; the edges and their weights are determined from their positions on
the floor. In this formulation, the weight of an edge turns out to be an integer
lying in the range [—n, n]. Here, the goal is to find a path between the nodes
g and ¢ in the graph, such that the absolute value of the sum of edge weights
along the path is minimum. An Q{n = e) time algorithm is proposed, where e
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denotes the number of edges in the graph. Thus, e may be O{n®) in the worst
case. Monotone bipartitioning using a maximal monotone decreasing path from
the top-left corner of the floor to its bottom-right corner can be obtained in a
gimilar fashion.

A VLS floorplan is a rectangular dissection of a bounding rectangle with iso-
thetic cut-lines [Sherwani 1999]. The bounding rectangle represents the chip
floor, each basic rectangle denotes a circuit module or a block, and a cut line
denotes routing space (channel). Given a floorplan F with n rectangular blocks,
the objective of staircase bipartitioning is to split ¥ by a stairease {monotone
increasing/decreasing) channel from one corner of F to itz diagonally opposite
corner, such that the difference in the numbers of blocks on the two sides of the
channel is minimum. The concept of staircase channels was first introduced in
Guruswamy and Wong [1988]. This problem can be solved using the algorithm
for monotone bipartitioning of point set as introduced earlier, in O(n®) time
since the underlying graph is planar. Exploiting certain geometric properties
of a floorplan, we then report an improved O(n) time algorithm for this spe-
cial case. This leads to an O{rlogn) time algorithm for hierarchical staircase
bipartitioning of a floorplan. Such hierarchical decom position facilitates global
routing satisfying safe (acyelic) channel routing order.

The paper is organized as follows. In Section 2, we introduce the monotone hi-
partitioning problem. Application of this problem to hierarchieal floorplan par-
titioning iz described in Section 3. In Section 4, we present a graph-theoretic
formulation and a polynomial-time algorithm for point set bipartitioning. In
Section 5, a linear-time algorithm for staircase bipartitioning is reported. In
Section 6, a technique for hierarchical partitioning of a VLSI floorplan is de-
scribed. Finally, in the last section, we conclude the paper and suggest a few
future rezearch directions.

2. MONOTONE BIPARTITIONING PROBLEM

Let A = {ay,as,...,a,} be a set of i points distributed arbitrarily on a two-
dimensional rectangular floor . We assume that a; and a, are, respectively,
the bottom-left and top-right corners of the floor. Henceforth, the points ay
and a, will alternatively be denoted as = and ¢, respectively. The coordinate
of a point ¢; € A will be denoted as (x;, ;). The problem is to partition the
plane by a piece-wise linear curve consisting of a set of straight line segments
1,02, ..., 03} from = to ¢ such that (i) the end points of each [; coincide with
two points in A, (ii) the slope of each I; is nonnegative, (iii) two consecutive
segments [; and I;,; always share a common point in A, and (iv) the starting
point of [ and end point of [; are ¢ and £, respectively. Thus, the sequence of
points {a;1(= 8), @2, ..., a3, aie(= )} on an MP, say L, satisfies the following
monotone increasing property:

X1 =Xz == and v = ye <= Yk

The path L formed by the above sequence iz called a monotone increasing
path (MP), and the corresponding partition of F is referred to as a monotone
biparfition.
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Fig. 1. {a)Anexample floor containing a set of points, and (b) the transitively reduced digraph .

Definition 1. A monotone increasing path L is said to be a maximal mono-
tone increasing path (MMP) if the insertion of any other point of A in path P
violates the monotone increasing property of P.

Let A" denote the set of points on an MMP L. The path L partitions the set of
points A4 A" into two subsets lying on its two sides. The weight (or cost) (L) of
L iz the difference of the number of points in these two subsets. In other words,
if nj, and nj denote, respectively, the number of points to the left and right side
of L, then &(L) is equal to the absolute value of (n} — n} ). Now we address the
following two problems:

P1: Find an MMP L zuch that 4( L) is minimum among all other MMP's present
on the floon

P2: Let the points in A be of two colors, say red and blue. In this version of the
problem, an MMP iz defined through the red points only. For such an MMP
L, let 8(L) denote the difference in the number of blue points on the two
sides of L. The objective is same as that of problem P1.

In Figure 1l{a), the path L; = 8 — a4 — ag — f is an MP, but not an
MMP, whereas the path Ls = 8 —+ a4y — a5 — ag — ! is an MMP. Many
such MMP's may exist on a floor, and (L) may be any integer in the interval
[0,(in—3)]. In Figure la), the MMP Lsis a solution of problem P1 with §(Ls) = 0.
In Figure 2, we demonstrate that the minimum value of (L) may be O(n)
in the worst case. Problem P1 finds many applications to image processing
[Conti et al. 1999], facility location, and plant layout [Schobel 1998]. In the
next section, we discuss an important applieation of problem P2 to VLSI layout
design.

3. APPLICATIONS OF MONOTONE BIPARTITIONING

An interesting problem of VLSI layout design is the staircase bipartitioning
of a VLSl floorplan [Majumder et al. 1998, 2001]. A floorplan is said to be
slicible if it iz either a single block, or there is a single isothetic cut-line
{slice) that partitions the enclosing rectangle into two slicible floorplans (see
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Fig. 3. Hierarchical bipartitioning of (a) a slicible floorplan, (b} a nonslicible floorplan.

Figure 3(a)). Floorplans that are not slicible, are called nonslicible floorplans
(see Figure 3(b)).

For convenience of wire routing, the channels are routed following a cer-
tain order, called safe (cyele-free) roufing order. A glicible floorplan can be split
recursively by the cut-lines to form a slicing free in a top-down fashion, and
it is known that a safe routing order always exists among the channels. For
such floorplans, particularly those with a balanced slicing tree structure, effi-
cient routing techniques are available [Luk et al. 1987a, 1987h]. For nonslicible
floorplans, such a partition using isothetic cut-lines does not exist, which leads
to an unfeasible (or unsafe) routing order [Sherwani 1999; Sur-Kolay and Bhat-
tacharya 1991]. Such a routing instance may be handled by introducing certain
switchbox regions [Yan and Hsiao 1996]. However, a switchbox is more diffi-
cult to route compared to a channel. Alternatively, if the channel definition
iz generalized to a monotone (increasing/decreasing) staircase, then both the
problems of decomposing the floorplan (Figure 3(b)), and that of finding a safe
routing order [Guruswamy and Wong 1988; Sur-Kolay and Bhattacharya 1991]
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Fig. 4. Hierarchical bipartitioning of a floorplan [Wimer et al. 1989].

can easily be solved. An efficient routing technigue for staircase channels has
recently been reported in Das et al. [1998].

The design problem discussed above leads to the staircase biparfitioning
problem: Given a floorplan with rectangular blocks, find a staircase { monotone
increasing/decreasing) path through the cut lines from one corner of the floor
toits diagonally opposite corner, that partitions the set of blocks into two equal
halves. In clazsical graph partitioning problems, the objective is to find a min-
cut hizection; in contrast, the goal here is to find a staircase bisection. This
problem can be mapped to an instance of P2, where the T-junctions are the red
points, and the center of the blocks are the blue points. Further, the method can
be used recursively to partition a general floorplan in a hierarchical manner
An example of a benchmark floorplan and its hierarchical decomposition using
stairease channels are shown in Figure 4.

Moreover, since the stairease path is targeted to partition a floorplan into
two almost equal halves (balanced) with respect to the number of blocks in
each level of recursion, the depth of the hierarchy tends to be the smallest. This
may provide certain advantages listed below:

—Itiz cbserved that in order to ensure a safe routing order, staircase channels
should be routed in a bottom-up fashion [Sur-Kolay and Bhattacharya 1991].
Inother words, the channels at the bottom-most level of the hierarchy should
be routed first, followed by those lying at the next higher level, and so on.
Further, these channels tend to become longer as one moves up from the
bottom level to the top level. Thus, balanced bipartitioning offers an efficient
divide-and-conquer scheme for global routing.

—In a parallel processing environment, channels belonging to the same hierar-
chical level can be processed in parallel. Balanced bipartitioning results in a
minimum depth of recursion, and in turn, accelerates detailed routing phase
[Sherwani 1999] of layout design.

—Staircase bipartition is also applicable to a slicible floorplan, and balancing
would lead to an improved routing algorithm.

The monotone bipartitioning problem may find many other important applica-
tions to computational geometry, operations research, ete.
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4. FORMULATION OF THE PROBLEM

To formulate problem P1, we consider an edge-weighted digraph G(V, E), called
monotone graph, where the set of vertices V' corresponds to the set of points
in A. Thus, V = {ay, as, ..., a,}, and the set of edges E = {(a;,a;)|x; < x; and
¥i = ¥} The computation of edge weights is deseribed in Subsection 4.1. The
digraph & iz acyclic. Node s (respectively {) has indegree (respectively outde-
gree) 0. Any directed path from s to { in & is a monotone path. An important
property of the graph G is mentioned in Lemma 1.

Definition 2. [Golumbic 1980] Suppose [1 = [7y,73,...,7,] be a permu-
tation of n natural numbers {1,2 .. n}. Denote hy :r‘-'l the position of { in
1. The permutation graph Gn(Vn, En) iz an undirected graph with the set of
vertices Vp = {1,2,...,n}, and the set of edges Ep = {ii,j) | {,j € Vp and
(i — jom ' —a;h) <0}

Lemma 1. The undirected version of the digraph G is a permutation graph
[Golumbic 1980].

Proor. We label the pointsin A as 1, 2, .., r, in increasing order of their
y-coordinates. Now, a line is swept from the right boundary of the floor to its
left boundary, and the labels of the points, as they appear, are recorded. The
sequence of labels, thus observed, plays the role of [1. [

We construet the graph GG by a plane sweep technique. The points in the set
A are processed in increasing order of their y-coordinates. A height-balanced
binary tree T [Cormen et al. 2000] is dynamically maintained on all the points
processed so far. When a point g; is processed, it is inserted in 7. Each of the
points that appears to the left of a; in 7 should have a directed edge to a;. The
time of construction of the graph G is therefore O E| + n logn).

The digraph G is fransifively orienfable. The transitive reduction of G is
denoted as Gp(V, Ev), where Ey € E is the set of transitively reduced edges
of E. The transitive reduction of the graph obtained from the set of points in
Figure 1(a) iz shown in Figure 1(b). The following lemma iz now obvious.

Lemma 2. An MMP L on the floor corresponds to a path from s to  in the
graph Gy, and vice-versa.

Proor.  Follows from the construction of the graph Gy. O

4.1 Calculation of Edge Weights

Consider the following problems:

P1: Let {g;,a;) be an edge in Gyp. Two horizontal lines H; and H; are drawn
through the points g; and a; till they hit the boundary of the floor {see
Figure 5). Let nj; and n;; be the number of points appearing to the left and
to the right of the edge (g;, a;) within the horizontal band defined by H;
and H;. The weight (cost) of the edge (a;, a ), denoted by twla;,a;), is equal
to {nf-_,- —nf-_r- ). Thus, the value of wia;, a; ) may be positive, negative, or zero.
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a

Fig. 5. Computation of edge weights for the monotone bipartitioning problem.

P2: In this casze, the floor contains points of two colors, say red and blue. Here
Gy is constructed with the red points only The weight (cost) of an edge is
the number of blue points on its left minus the number of blue points on
its right, and is caleulated as in problem P1.

Opservarion 1. The edge weights for the above ftwo problems may be any
integer between —n and n, where n is the tolal number of points in the set A for
problem P1, and the number of blue points in the sef A for problem P2.

4.2 An Optimal Solution Method

In both the problems P1 and P2, the number of MMP's may be exponentially
large. The following lemma shows that both the problems can be mapped to the
problem of finding a path from s to £ in the digraph Gy such that the absolute
value of the algebraic sum of costs of all the edges on the path is minimum.

Lemma 3. Let L bean MMP on the floor, and P be the corresponding path in
Gr. Now, (L) isequal tothe absolute value of the sum of costeof all the edges in P.

Proor. Follows from the definition of the cost of an edge in the digraph
Gr. O

Given an acyclie digraph with arbitrary edge cost (any real number with un-
restricted sign), the problem of finding a path between two designated nodes
such that the absolute value of the sum of edge costs on that path is minimum
among all possible paths is known to be NP-hard in Dasgupta et al. [2001]. An
efficient heuristic based on depth-first branch-and-bound technique iz also pro-
posed in Dasgupta et al. [2001]. However, in the case of point-set bipartitioning,
the edge costs have an integer value lying within an interval [—n, n]. Lemma 4
indicates an important property of this problem which helps in designing a
polynomial-time algorithm for finding the optimal path in the digraph Gr.

Let us consider a vertex v € V, and all possible paths from s to v. Let Div)
denote the set of distinet § values of those paths. Obviously,

Div) = U U (e +wiv', vl ii)

v vieEr deli)
where wiv', v)is the weight of the edge (v', v).
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Levma 4. |Div)] = 2n+ 1.

Proor. Follows from the fact that number of points that present in one side
of the path from s to v may be any integer from O ton. [

The algorithm OPTPART, stated below, finds the path of minimum abso-

lute cost from = to £ in the weighted digraph G, where edge weights satisfy
Observation 1.

4.2.1 Algorithm OPTPART

Input: The graph Gy, and pointers to the source and target vertices ¢ and £.

QOutput: A list containing nodes on the optimal path.

Data structure: With each node v € V', an array Div) of size 2n + 1, indexed
by [—n, —(n—1),...,-1,0,1,...,(n— 1), 1], is attached. Each element of this
array is a tuple {cost, back_ptr}. The cost-bit of the d-th element is 1 if there
exists a path from s to v with cost . The back_ptr points to the predecessor
node v* (of v) which contributes cost .

In addition, the algorithm maintains a queue ) containing the vertices of
the input graph.

begin
set Dis) = {0}; insert( @, s); (* insert node 5 in § *)
repeat

v :=delete(@ ); (* delete the front element of € and assign it tov *)
while (v # £) do
for each node (v*) such that (v, v*) € Er do
for each element of Div) do
{* Let the d-th element of D{v) be currently under consideration *)
if the cost-bit of the d th element iz 1 then
compute d' = d + wiv, v*};
set cost-bit of d'-th element of D{v*) to 1;
the back_ptr of the d'-th element points to v;
endif
endfor
endfor
endwhile
until (€ is empty);
(* Retrace the path of maximum absolute cost from ¢ up tos *)
Let the i-th element be the rightmost element of Dif) containing “17, and
J-th element be the leftmost element of DNt) containing “17.
if |j| = i then k = | else k = i endif;
retrace from the k-th element of D(f) using back_ptr up to node s for
reporting the optimal path.
end.

422 Complexity of OPTPART. Inthealgorithm OPTPART, when a vertex

v isdeleted from €, all its outgoing edges are processed. For each such edge, its
cost is added with all elements of D{v) having cosf-bit set to 1. As the graph iz
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Figz. 6. (a} A floorplan, (b} the weighted foorplan graph, (e} computation of edge weights,

acyclic, if a vertex is deleted from €, it is never reinserted in . Eventually, we
are considering all the edges in Ep, and for each edge (v, v*), its cost is added
to at most 1 values of Div*). So, the time complexity of this pass is O(n|Egp|).
The time requirement for reporting the optimal path is O(i) in the worst case.
Thus overall time complexity of this algorithm is O(n|Ey|), where |Ep| may be
O(1n%) in the worst case.

5. STAIRCASE BIPARTITIONING OF A FLOORPLAN

We now present a bipartitioning scheme for a VLSI floorplan with n rectangular
blocks using a stairease channel such that the number of blocks in each part
becomes equal to at least | 5.

5.1 Staircase Bipartitioning Problem

Consider a VL3I floorplan containing a set of rectangular blocks. Initially, we
assume that the boundary of the floorplan is rectangular. We show that the op-
timal staircase bipartitioning problem can directly be mapped to Problem P2,
In this case, corner nodes s and ¢, and all Tjunctions of the floorplan are con-
sidered as red points; the centers of the blocks are treated as blue points. The
underlying planar graph, called a floarplan graph, is an edge-weighted digraph
whose vertices correspond to the set of red points. A directed edge e;; is placed
from v; tov; if the corresponding T-junections are consecutive along the boundary
of a block, and v; appears either to the right or above v; in the floorplan. Thus,
all the edges of the floorplan graph can be embedded either horizontally or ver-
tically. The weight of each vertical edge e;; is now assigned as in Problem P2.
The weight of each horizontal edge is set to 0. An example of a floorplan and
its correzponding graph are shown in Figures 6(a) and 6(b), respectively. The
computation of edge weights is illustrated in Figure 6(c). The following lemma
now leads to a solution strategy for the staircase bipartitioning problem:

Lenma 5. Each directed path from s tot in the floorplan graph is an MMP,
and corresponds to a staircase biparfition of the floorplan and vice-versa.

Proor. Follows from the fact that no transitive edge is present in the floor-
plan graph. [
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Fig. 8. Labeling blocks in a floorplan.

The number of maximal monotone paths from = to £ in a floorplan can be ex-
ponentially large, as shown in Figure 7. In order to find an optimal staircase
bipartition, Algorithm OPTPART of Section 4.2.1 may be used directly in this
context. Thus, the time complexity would be O(n?) for a floorplan with n blocks,
as the underlying graph is planar. In the next subzection, we explore a few ad-
ditional characteristics of the floorplan graph which lead to a simple O(n) time
algorithm for this problem.

5.2 An Improved Method for Staircase Bipartitioning

In this method, the floorplan graph iz assumed to be unweighted. Its vertices
are classified into three types, namely fype-0, fype-1, or type-2, depending on
whether its outdegree is 0, 1, or 2. Among the four corners of the floorplan,
vertex ¢ is of fype-0, vertices corresponding to the bottom-right and the top-left
corners are of fype-1, and vertex s is of fype-2. The vertices corresponding to the
T-junctions are either of fype-1 or of type-2.

Definifion 3. A block B is said to be attached to a node v of the floorplan
graph if the bottom-left corner of block B coincides with the T'-junction corre-
sponding to node v in the floorplan graph.

Definition 4. Ifthe top and left boundaries of a block are fully spanned by
a sequence of consecutive edges of a staircase path P in the floorplan, the block
is said to be bounded by P.

For example, consider the floorplan in Figure 8(a). A staircase path Py =
{s,a,q, p,r,w,x, n,0,t} iz indicated by dark lines. By Definition 4, blocks K
and E are bounded by F.
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Lemma 6. Every staircase path in a floorplan must have at least one block
bounded by if.

Proor. [By contradiction] Let us assume that a staireasze path, say P, ex-
ists by which no block in the floorplan is bounded. The vertices along Py are
marked asoy, @s, ..., op (& is the number of vertices on Fp including s and () (see
Figure 8(b)). If the initial edge (starting at 2) is vertical, then the edge (o, as)
completely spans the left boundary of the block (say K in Figure 8(b)), which
iz placed at the bottom-left corner of the floor. By our assumption of contra-
diction, vertex ws must appear at any position on the top boundary of block K
excluding its top-right corner. Since the path is monotone and eannot penetrate
any block, it will again completely span the left boundary of the block whose
bottom-left corner is at ;. The progress of the path continues in this manner
until a vertex on the top boundary of the floor is reached, which is the top-left
corner of the block {say D in Figure 8(b)) placed at the top-right corner of the
floor. The next horizontal movement up to vertex ¢ will span the top boundary
of block D . Since the left boundary of block D is already assumed to be spanned
by Py, we infer that block D is bounded by Fy; otherwise, a block like E will
be bounded by Fy. This contradicts the assumption. Similarly, it can be proved
that if the initial edge of Py is horizontal, at least one block is bounded on the
floor. [

521 Block Labeling Method. We now label the blocks of the floorplan
in an appropriate manner that leads to an optimum solution of staircase
bipartitioning.

We consider a geometric embedding of the floorplan graph. Each type-2 ver-
tex has two successors, one along vertical direction (toward the top) and the
other along horizontal direction (toward the right). They are referred to as left
successor and right successor, respectively We traverse the graph in a manner
similar to depth-first traversal, starting from vertex s, until all the edges are
visited. During traversal, if a fype-2 vertex is reached, its left suceessor is ex-
plored before the right successor. As soon as { is reached during traversal, a
staircase path is identified. By Lemma 6, at least one block must be bounded
by that path. We label that block as & + 1, where X is the number of blocks
labeled so far. If more than one block qualify, we consider the latest one visited
during forward traversal. In order to explore another stairecase path in a sys-
tematic manner, we backtrack until a vertex i is reached whose one successor
is unexplored.

Opservarion 2. Letv denote the vertex where backiracking ferminates Then
(i) v is a type-2 vertex, and (ii) the block altached to v is unlabeled, and bounded
by the current staircase path. This block is the candidate that receives the label
A4+1

In order to label all the blocks, we may generate other stairease paths. How-
ever, identification of all such paths may require time exponential in the number
of blocks. On the contrary, since our goal is to label the blocks, we modify the
depth-first traversal such that each edge of the floorplan graph is visited exactly
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once. In order to prevent multiple visits of an edge, we attach a tag bit to each
edge which isinitialized to 0. When an edge is vizsited onee, its fag bit iz set to 1.
The new traversal procedure iz described below:

During the forward traversal, if ¢ is reached or all the outgoing edges of the
current vertex v are already visited, the forward traversal stops. If v # ¢
then v must be a type-I vertex. The staircase path may be constructed by
concatenating a path from v to { {explored earlier) with the currently explored
path from = to v. We start backtracking from v until the vertex u (whose right
successor is unexplored) is reached. The block attached to u is labeled and
forward traversal is resumed from i toward its right suceessor. The process

terminates when s is reached during backirack and fagbits of its two outgoing
edges are set.

Algorithm Block Labeling

Input: The floorplan graph; a list of vertices corresponding to the T-junctions.

Each vertex is attached with the following:

—Two pointers, called lefl _successor and right_successor. If a vertex is of
type-1, its right_successor = NULL. For the vertex ¢, both the pointers are
NULL.

—Two tag bits, called lefi_tag and right fag, initialized to 0.

—The block attached to that vertex.

Output: A labeling of all the blocks of the floorplan.
Additional data structures: A stack S for traversal of the floorplan graph.

begin
{* Initialize *) L «— 1: current_vertex «— g
(* Depth-first traversal *)
while not both the tag-hits of 5 is equal to 1 do
(* Proceed forward *)
if current_vertex # { and both left_fog and right_tog of current verfex
are not equal to 1 then
if (left_tag of current_vertex % 1) then (* proceed left *)
PUSHI(current_verfex) (* in stack 8 *);
next_vertex «— left_suceessor;
left tag «— 1;
else (* proceed right *)
PUSH current _verfex in stack S;
next verfex < right_sueccessor;
right tag «— 1
endif
(* Backtrack *)
while ({right_successor of current _verfex = NULL)
or (right_tag of current vertex = 1)) do
current_vertex «— POP(S); (* POP element from stack *)
endwhile
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Fig. 9. Bipartition of the benchmark example of [Cai and Wong 1990,

(* Label a block *)
if (right_tog of current vertex = 0) then
Label the block attached to the current _verfex by J;
Ao— A+ 1
endif
endwhile
end.

Lemma 7. The proposed Block _Labeling algorithm labels each Block exactly
once, and the labels of all the blocks are distinet.

Proor. During the traversal, a block is labeled when its attached vertex is
reached for processing its right successor. The first part of the lemma follows
from the fact that each edge is processed only once. The unigueness of the
labeling follows from the unigqueness of the traversal sequence of edges in a
depth-first fashion.

We demonstrate our algorithm by labeling the blocks of the floorplan of
Figure 8(a). The algorithm starts at node 2, and proceeds viaa, b, ¢, d, e, and
[ up to the vertex £. Then it backtracks up to the fype-2 vertex b, and labels
block A as 1. Next, it resumes forward traversal from vertex b, and after vis-
iting i and g, reaches at d. Since the outgoing edge of d is already visited,
backtracking is continued up to the fype-2 vertex g whose one suceessor is yet
to be visited. The block B is labeled as 2. This method is continued to label all
the blocks. The final labeling is shown in Figure 8(c). The algorithm has been
implemented and tested on several benchmark floorplans. Figure 9 shows the
block labeling in a benchmark floorplan [Cai and Wong 1990].

Lemma 8. The time complexity of the proposed Block _Labeling algorithm
is Oin).
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Proor. Given the floorplan, its graph representation can be constructed in
Oin) time. Each edge of the floorplan graph is visited only twice (once in the
forward pass and once during backtrack). Since in a planar graph the number
of edges is O(n), the lemma follows. [

522 Optimal Biparfitioning. The above block labeling method can now
be used to find a stairease that partitions the floor such that the blocks in the
two partitions differ in count by at most 1.

Lemma 9. Lef o be a staircase path partitioning the set of blocks on the floor
to its left and right sides, respectively. Let 3.7 and 37" be the maximum and
minimum labels among all blocks in the i-th side of o, [ = left and right. Now,

(D) Ag = Af&‘;!, and
(ii) both the blocks having labels 35" and e are aligned with the path o (to

right
its left and right, respectively).

Proor. The first part follows from the order of processing of outgoing edges
of fype-2 vertices. The second part trivially follows from the first part of this
lemma. []

Lemma 10, Foragiven k(0 < k < n), there exisis at least one staircase path
with k blocks lo its left.

Proor. [By induction] Let us assume that a staircase path o exists which
has & blocks labeled as 1, 2, ..., &, on its left. The claim is true for & = 0, 1.
We show that there exists a stairease o' with k + 1 blocks to its left, which
are labeled as 1,2, ...,k 4+ 1 according to our labeling scheme. After labeling a
block with label &, we resume forward traversal followed by a backtrack. Let the
backtrack terminate at a type-2 vertex u whose right successor is unexplored.
The block whose bottom-left corner is u, is labeled as & + 1. Next, forward
traversal is resumed from u toward ¢, through the right successor of 1. This
defines a new staircase path o' as mentioned in Subsection 52.1. Thus, the
newly labeled block remains to the left of o' We now need to prove that the
blocks labeled 0, 1, ..., & still remain to the left side of o', Forward traversal
from i terminates as soon as we arrive at a vertex v which iz already visited.
Thus, o' is obtained from o by altering its previous path from u to v by the
current path. Thus, all the blocks that appeared on the left side of o will still
remain on the left of o' Hence the lemma follows. [

Tueorem 1. The time complexity of recognizing the staircase path, such that
the number of blocks lying on its two sides is | § | each, is O(n)

Proor. The existence of such a staircase follows from Lemma 10. We go on
labeling the blocks until a block is at least labeled as | 5|. The corresponding
staircase is the desired solution. The time complexity follows from Lemma 8. [

6. HIERARCHICAL BIPARTITIONING

The proposed bipartitioning scheme for a rectangular floorplan can easily be
tailored to handle any arbitrary orthoconvex floorplan, as described below. This
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Fig. 10, {a) An orthoconvex subfloorplan, (b) illustration of free edges and direction of edges before
preprocessing, and (e} loarplan graph of a subfloorplan after preprocessing

leads to hierarchical partitioning of a VLSI floorplan using a sequence of stair-
case channels.

Definition 5. An isothetic polygon (a polygon whose sides are parallel to
the coordinate axes) is said to be orthoconvex if any horizontal or vertical line,
not aligned with its boundaries, intersects the polygon at exactly two points or
at no point [Rawlins and Wood 1988].

When arectangularfloorplan is split into two parts by a staircase channel, its
two components and those appearing in the subsequent levels of the hierarchy
may no longer be rectangular in shape. However, it is easy to prove that each
of them will look like an isothetic orthoconvex polygon. Further, it is often
desirable to have staircase channels in two consecutive levels of the hierarchy
with reversed orientations (i.e., if a channel in the ith level is an increazing
staircase, then that in the (i + 1ith level should be a decreasing staircase).

We now describe a preprocessing procedure to take care of the following
steps: (1) mapping a nonrectangular orthoconvex floorplan to a rectangular one,
(ii) redefining the two designated nodes s and ¢, and (iii) modifying the floorplan
graph to determine a staircase of reversed orientation.

6.1 Rectangularization of an Orthoconvex Floorplan

Let JF be a nonrectangular orthoconvex floorplan. We first find the smallest izo-
thetic rectangle R containing 7. At least four boundary edges of F will coincide
with the four sides of R. Among the other boundary edges of 7, those which
span a block completely, are called free edges.

For each free edge, we inflate the corresponding block toward the boundary
of R to make F rectangular. For an illustration of the procedure, consider the
floorplan in Figure 10(a), which iz nonrectangular and orthoconvex. This is
obtained by two successive bipartitions of the floorplan shown in Figure 4. In
Figure 10(b), the corresponding smallest enclosing rectangle R iz shown by
dotted lines, and the free edges are highlighted with dark lines. In Figure 10(¢c),
the modified rectangular floorplan is shown.

6.2 Algorithm and Complexity

Given a nonrectangular floorplan, we convert it to a rectangular floorplan as
described in the earlier subsection. We choose s and ¢ based on the orientation
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of the staircase in the previous level of the hierarchy. If the earlier one is an
increasing (respectively decreasing) staircase, then the one at this level should
preferably be of decreasing (respectively increasing) orientation. At each level,
we therefore need to change the directions of the edges in the floorplan graph
inherited from the previous level. See Figures 10(b) and 10{¢) for illustrations.
The optimal staircase channel in the modified floorplan R is then determined.
This provides a solution for the original floorplan F.

The aforesaid procedure can be recursively used for a complete hierarchical
bipartition of a floorplan.

Tueorem 2. The worst-case time complexity of the proposed scheme of hier-
archical bipartitioning of a floorplan is Olnlogn).

Proor. By Theorem 1, there exists a stairease which partitions a floorplan
with & blocks, such that each part contains at least L% | blocks. Thus, the number
of levels in the hierarchy is Of{log r). At each level, construction of all floorplan
graphs and finding staircase channels requires a total of O(n) time. Hence the
proof follows. [

7. CONCLUSION

A new problem called monotone bipartitioning of a planar point set is intro-
duced in this paper. A graph-theoretic formulation of the problem and an O(ne)
time algorithm is proposed, where n is the number of points in the set and
¢ is the number of edges in the derived graph. A related problem is to parti-
tion a VLSI floorplan using a stairease channel such that the blocks on the
two sides of the channel differ in count by at most 1. An efficient linear time
algorithm for this problem is proposed. This leads to an Oinrlogr) time algo-
rithm for hierarchical decomposition of a VLSI floorplan satisfying safe routing
order.

A more practical problem in the context of VLSI floorplan partitioning is to
divide the floor into two parts of almost equal numbers of blocks and simultane-
ously minimizing the number of erossing nets. Thus, the goal is to search for a
path y which minimizes the objective function eost{x) =8 =831 +(1—8)x= (),
where §{y ) is the difference in the number of blocks on the two sides of the cut
and f{y) iz the number of nets croszing the cut. The parameter # may be chozen
by the designer depending on the importance of the two factors participating
in the objective function. For # = 0, the problem reduces to min-cost staircase
partitioning, which is shown to be solvable in polynomial time [Majumder et al.
1988]. For ¢ = 1, it reduces to the problem discussed in this paper, which is
golvable in O{n) time. Design of an efficient algorithm for the general problem
is currently under investigation.
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