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Abstract

Here we deal with an interesting subset of s-variable balanced Boolean functions which satisfy strict avalanche criteria.
These functions achieve the sum-of-square indicator value {2 messure for global avalanche criteria) strictly less than 221+ gng
nonlinearity strictly greater than =1 _ aln/3 These parameters are currently best known, Moreover, these functions do not
possess any nonzero linear structure. The technique involves a well-known simple construction coupled with very good initial
functions obtained by computer search, which were not known earlier. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Strict avalanche eriteria (SAC) 15 an important
property of Boolean functions for application in §-
boxes [ 16]. However, some hmitations of strict ava-
lanche criteria have been identified in [17] and the
concept of global avalanche entena (GAC) has been
introduced. Recently the works on GAC have received
a lot of attention [12,15.4.13.14.3].

Here we provide balanced n-variable SAC func-
tions with very good GAC property in terms of sum-
of-square indicator (see Section 2 for definition). We
achieve the sum-of-square indicator value stnetly less
than 227! Also these functions possess currently best
known nonlineanty. For even n, the nonlinearity is
strictly greaterthan 2~! —2%/2 and for odd n, the non-

linearity is strictly greater than 2°—! — 2= 1/2 Thege
functions do not possess any nonzero linear structure.
To date, functons with this kind of parameters are not
known m the literature. In fact our resulls supersede
the results of [13.14.3] in this direction.

Our method needs good initial functons. For n
even, we start with a 6-vanable balanced SAC func-
tion with sum-of-square indicator value 7552 = 226+
and nonlinearity 26 = 26-1 — 26/2 4 26/2-2 ging
this we get balanced SAC functions on n-variables
(n =6 even) with sum-of-square indicator strictly less
than 22"+! and nonlinearity 2"~ —2"2 4 27/2-2 The
situation 18 even more interesting for the case of n
odd. Here we use a modification [11] of Patterson—
Wiedemann functions [7.8]. The imital function is
a 15-variable balanced SAC function with sum-of-
square indicator value 1,270,799,360 < 2%13+! and
nonlinearity 251 — 2085-12 L 6 Using this, we
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find balanced SAC functions on n vanables (n = 15
odd) with sum-of-square indicator strictly less than
22'+! and nonlinearity 2! —20—1/2 1 5. 20=13)/2
Note that the 15-variable function we use here 15 not
the same one that has been descenbed in [11.5.4]. We
once again run the expenmentof [ 11] and found func-
tions with better parameters than what is obtained in
[11.54].

The functions we propose here are suitable for ap-
plications in S-boxes. To resist differential cryplanaly-
sis [2], the SAC and GAC properties are important.
Moreover, high nonlinearity 15 required for resisting
linear eryptanalysis [6].

2. Preliminaries

In this section we introdoce a few basic concepts.
By £2; we mean the set of n-variable Boolean func-
tions. We denote the addition operator over GF(2)
by &.

Let 5, 51, 52 be binary strings of same length A. The
bitwise complemnent of 5 5 denoted by 5%, We denote
by #{5) = s2) (respectively #(5; #£ s2)), the number
of places where 51 and 52 oare equal (respectively
unequal). The Hamming distance between 51, 52 18
denoted by dix, 52). 1.6,

dis), 52) = #{(5) # ).

The Walsh distance wad(s(, 52), between 51 and 52, 15
defined as

wd(s),52) = #{5) =32) — #{5] #£32).

Note that wd(sy, 52) = & — 2d{s). 52). The Hamming
weight or sitmply the weight of 5 15 the number of ones
in 5 and is denoted by wi(s). An r-vanable Boolean
function can be viewed as a binary string of length 2%,
which is the output column of the truth table. An -
varable function f is said to be balanced if its output
column in the truth table contains equal number of (s
and 1's (i.e, wri f) = 2""1).

An n-variable Boolean function £ can be uniguely
represented by a multivariate polynomial over GF(2).
Let f{X,,.... X1) be an p-vanable function. We can
Wrile

D ax XJ.)

L i En
E---Eapn XX X,

f=ap® (@n,-x,-) @(

where the coeflicients ap, a;.a;j, ..., aiz q € {0,1}.
This representation of f 1s called the algebrue nommal
form (ANF) of f. The number of variables in the
highest order product term with nonzero coefficient is
called the algebraie degree, or simply degree of f.

Functions of degree at most one are called affine
functions. An affine function with constant term equal
to zero 15 called a lincar function. The set of all
n-vanable affine (respectively lincar) functions is
denoted by Aln) (respectively Lin)). The nonlinearity
rli f) of an n-variable function f is defined as

nl( f)= min (d{f,g)).
geAlN)

Le., nff f) s the distance of f from the set of all r-
varable affine functions.

Propagation Charactenstic (PC) [9] and Strict Ava-
lanche Crteria (SAC) [16] are important propertics
of Boolean functions to be used in S-boxes, Let X
be an n-tuple X, ..., X and @ € {0, 1}". A function
F e £2y 15 said to satisfy SAC T
fixX)e fiXxea
15 balanced for any & such that wiia) = 1.

However, Zhang and Zheng [17] justified that SAC
and PC have some limitations in identifying certain de-
sirable cryplographic properties of a Boolean function.
Inthis direction they have proposed the idea of Global
Avalanche Characteristics (GAC), Nexl we state two
important ndicators of GAC.,

Let X € {0, 1}" be an n-tuple X, ..., X and @€
{0, 1} be an n-tuple oy, ..., 2. Let f € £2, and

Ap(@) =wd( f(X), fIX B &),

the auocorrelation value of f with respect o the
veetor @. The sum-of-square indicator

of = Z AL@).
Fel, 1"
The absolute mdicator

A= M x |K_1I.J-'{ﬁjl|.

e, 1 =0

Let us also define
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Tr={a|Ap(@) #£0} and
Q,=[alAp@ =0}
Notethat T pU @, ={0, 1}".

It is clear that A p(@) = 0iff F(X) @ (X B a)is
balanced. Also |Af(@)| = 2" iff f(X) @ f(X @ &)
is constant and @ is called a linear structure of f. I
should be noted that 0 is always a linear structure for a
Boolean function. However, existence of any nonzero
lingear structure is eryptographically undesiruble.

3. Basic consiruction and ils properties

First we consider the following well known con-
struction [107].

Construction 1. Let h € £2, and m = 2 be an even
integer. Then consider the function

ElXysm, ., X1
:b{Xn—'m ----- X.Ir—:|::l$h{XJi‘ ----- Xl}h
where B Xntm. ..., Xns1) iv a bent function.

MNext we present the main result which is to be used
Lo estimate the parameters of the constructed Boolean
functions.

Theorem 1. Let h £ £2,, be a balanced Boolean func-
tion which satisfies SAC, has the nonfinearity value
x, sum-of-square indicator value oy, = 2*"** and
absolute indicator value Ay = 2%, Consider g €
£y o as in Construction 1, where m = 2 ix even. Then
g is a balanced Boolean function which satisfies SAC,
has the nonlineariry value 2"nl{b) + 2™ x — 2xnlih),
sum-af-square indicator value o, = 22"HFE gnd
absolute indicator value A, = 2"~k Also note
that |Tg| =|Ty].

Proof. The nonlinearity and balancedness result of g
is known [11]. For the other parts we need the
following analysis. We denote

o= (ngm, oo OnglaOp, ..., @),
* = Ol w ),

a” = (0 smee--s oy ),

and

.E':{Xn—mw-ux.lr—l ). G X).
L S X1
EH:{XH‘—'JH ----- X.Ir—'::l

Mote that,

gX)@gXpa
=X ahX " aa e X e X @a’.

MNow consider two different cases.

Case 1. When @ is a zero vector, then g(X) @
g X@a) =ciX") @ X)) @ X @ &), where
A X" =B(X")E H(X") is the constant zero function
on m variables. Thus,

wd(g(X). g(X @) =2" - wd(h(X), k(X' @ a)).

Case 2. When @ 15 2 nonzero vector, then M(X"™) &
BX" @ a&") is always a balanced function since b
is bent [10,3]. Thus, g(X) @ g(X @ &) is always
balanced, which gives

wd(g(X). g(X @ &) =0.

Mow,

ITel = |{&@| ag@# 0}
= |{@'| Ani@ #£0) }|
= |T,¢|.

This is because if @ is nonzero then A, (@) = 0.
Since f satisties SAC, we have

wd(R(X).h(X' ®&)) =0 forwn@)=1.

Thus, wd(g(X), g(X @ @) = 2" - 0= 0, when wr(a@)
=1, and &" 1% zero. This s from Case 1. From
Case 2, we get that whenever @ is nonzero, then
wﬂ‘{g{f}, g{f F @)} =0. Hence, g also satisfies SAC,

From Case 1, we have A, =2" . A, =2" . i
2i+m—k | Sinee each element of T, comesponds to
each element of T, and each nonzern value of Ay (')
is multiplied by 2™ to get Ay (@), we have, g =
{2""}10}, L zl[lr—'.lﬂ]-—.‘_ O

Theorem 1 underlines the requirement of good
mnitial functions. One standard way of obtaming SAC
functions is the following [53]. Recapitulate that, given
a function f € £, we define

Qr=[ae{0.1}"| Ag(a) =0}
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If there exists n lincarly independent vectors in @,
then we can construct 4 nonsingular n = p malrix ﬁf
whose rows are linearly independent vectors from QJ.- ¢
Now we construct a function f'{X) = f(X By). Here
we interpret X & {0, 1}, the n-tuple X,,.. ... Xiasa
rowy vector for matnx multiplication purpose. Note that
both f', f have the same nonlinearity and algebraic
degree. Also the balancedness condition 1s preserved.
Moreover, d.j-a {a) =0 for wtia) = 1. This ensures
that ' satisfies SAC. Thus this is basically a linear
transformation method. We refer this method as LT-
method in the following discussion.

4. Choice of proper initial functions

In this sectuon we show how to use basic computer
search echnigues w find good initial functions.

4.1 The G-variable functions

We select the five-variable functions fs with the
property nl( fs) = 12, Ag = 16,0y, = 1664 < 21071
These functions are available in [1]. Then we ry the
functions of the form (1@ Xg) f5(X) @ Xo f5(AX),
for all possible 5 = 5 nonsingular binary matnx A.
We concentrate on the functions of nonlineanty 26
and gy, < 8192, Once we oblain such functions, we
use LT-method (if possible) to transform them to
SAC funcuons. Using this method, we find 6-variable
functions with desired parameters. One example is the
following function fi satisfying SAC, represented as
its truth table,

OO1111 1000001 10100110001 101010010
TOTTOO0OTT1010T00I0001 1111101140,
The parameters of this function are nfi f5) =26, A g =

3, op =T7352 < 2128 The algebraic degree of this
function is 5.

4.2, The 15-variable functions

Here we consider 15-variable balanced SAC func-
tions, In [11] construction of a balanced 15-vaniable
function with nonlineanty 16,262 has been provided.
In[3]. it was shown how a 15-vanable balanced SAC
function f|; with nonlinearity 16,262 can be obtained

using LT-method. Also the function has been analyzed
in detail [5.4] where ‘ﬂf;.s = 216 has been reported.
We have also checked that ot = 1,270,938, 368 for
the function.

MNote that the heuristic technigue proposed in [11,
Algorithm 1, p. 500] was motivated towards finding
out 15-variable balanced Boolean functions with very
good nonlineanty. We run the same algonthm o
find a function fis keeping in mind the Ag. o5
values also. In this way we find functions fi1s with
the parameters il fiz) = 16262 Ag, =208 a0y, =
1,270,799 360, ILis clear that the values A .. oy, are
better (less) than ‘)‘1".1'_;_ T provided in [11.5.4]. It s
nol possible o pmwac the truth table of the function
as it is a hit string of length 2%, Also the algebraic
normal form is oo complicated w wrte here. Note
that, As, =208 < 2771 g, = 1,270,799,360 <
223 The algebraic degree of this function is 14,

4.3, The main result

Given the discussion above we now present the
main result o provide the subset of Boolean functions
satisfying SAC with very pood autocomelation proper-
Lies.

Theorem 2. It is possible to construct balanced SAC
Junction | owith the following parameters.

(1) Foreven n = 6, it is possible to construct | € 82,
such that

B e ¥ F_F
Hﬂf}l . 2” | z.lr.-'_ 4 Zn.-'_ 2

Af= =l and oy = J2aHLED.

(2) Foroddn = 15, it is possible to construct | € £2,
such that

. = —11/2 - 2
.l'!ﬂ_f}lzzn I_zur I]._+6_2ur I.‘r].n'_1

Ap=208.2""1 0T gpd

T +0).2
af < 2 t]._'r_

Proof. The proof follows from Theorem 1 using the
initial functions mentioned in Sections 4.1 and 42, 0O
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5. Results and comparison to existing wor ks

Here we provide balanced SAC functions on n
variables with nonlinearity strictly greater than 27~ —
221 and sum-of-square indicator value strictly less
than 2%+ ! These functions do not possess any linear
structure and the absolute indicator value is less than
or equal © 2°~! which is moderate. These functions
are suitable for applications in S-boxes. The SAC and
GAC properties will be useful in resisting differential
cryplanalysis [2] and the high nonlinearity will resist
the linear eryptanalysis [6].

Mote that in [13], construction of balanced SAC
functions f with ml(f) =2""! — 2102 and of =
22415 was proposed, where & = 0 for n odd and
g =1 for n even. Since the results in [13] are better
than in [14] in this direction, here we compare our
results with [13]. Ouwr results in Theorem 2 clearly
supersede the results of [13] forodd v = 15 and even
n 2z 6. Our proof wechogues are also much simpler
than [13]. The functions of [13] posscss nonzero
linear structures. Note that Ay = 2" if the function
T opossesses any nonzero linear structure, Our results
on Ay in Theorem 2 show that our functions do not
possess any linear structure.

Mow we compare our results with those of [3]. In [3],
sum-of-square indicator for a function f is denoted as
Vi fi.In [3, Example 4,p. 519], functions f onn vari-
ables (r odd and r = 5) have been proposed with the
following parameters. The values are

"“.f} = 2Jr—| _r zl,.l?—| ]."11
NP Y- & ) S  J 32n—3

.de:z”_l, ay

(the statement V(f) = 2*=% in [3, Example 4,
p- 519] 15 a typographical ermor). For even n = 8, the
results in [3, Example 2, p. 515] give the following
parameters. The values are

nl(fy=2""'-2 Ap=2"

12

{there is nonzero lincar structure) and o ¢ value either
22+ _ 3, 233 or 2242 (the statement V(f2) =
15 a typographical error). Thuos it is clear that our
results in Theorem 2 supersede the results of [3] for
functions on both odd and even number of variables.

Thus, our results of Theorem 2 provide the cur-
rently best known parameters in this aspect. For a mone
summarized description we now provide tabular repre-
sentations (see Tables 1 and 2).

32n—2

Tahle 1
Comparison for even number of varables » = 6
Ref. i fl ag Ay
[13] an—1 _ anfl 22n+2 an
[3] an—1 _ gnf2 3+ g 9203 Geadn+2 g
(ur -1 _ /2 + f2—1 32n+(LEY an—l
Table 2

Comparison for odd mumber of vanables n =15

Ret. _ICE ag Ay
||__1|_|| 1.'|—I _ll.ll—l:l."l 23.'|+I M
(3] an—1 _ aln—1)/2 a2n+l _ 4 a2n-3 -l
Cr 21— 1 _ ala—12 +6.20h— 1532 320+(LI5 n—1.29
Tahle 3

Comparizon for #-varable halanced 5 AC functions

Results mli 1 ay Ay
Of[13] 12 32, 144 254
Example 2 [3], function 112 237 568 256
Example 2 [3], function f7 112 262, 144 256
Chr 116 1), 832 128
Tahble 4

Comparison for [5-varighle balanced SAC functions

Results mli ) ay Ay
OF [13) 16,25 2,147,483 648 32768
Example 4 [3], function § 16,256 1,744, 830 464 16,384
Chur 16, 202 1,270,799 36l 208

To demonstrate the scenano for small number of
varables we provide a tabular comparison with the
examples in [13.3] for B-varniable and 15-varable
functions (see Tables 3 and 4). All the parameters are
for balanced SAC functions. The functions desenbed
from [3] do not satisly SAC, butusing LT-method it is
possible to get SAC functions from them.

Now we consider the algebraie degree of our con-
struction. Note that for the case when n s even,
we start with an initial function of 6 varables (Sec-
tion 4.1). This function has the algebrawe degree 5.
We also wse a bent function in the Constructon 1.
If the overall construction generales a function on n-
varables, then the bent function is of 7 — 6 variables.
Note that, the maximum possible algebraie degree of
a bent function of 7 — 6 variables 1s %{n —6) [10.3].
Thus for n even, the algebraic degree of the con-
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structed function 15 maxi(s, ,',{n — 6)), ie., for large
i, the algebraic degree of our constructed function is
é{n —6). Similarly, for odd ., the algebraic degree of
our constructed function s max( 14, ,lJ{n — 15)), as the
initial 15-variable function weconsider is of degree 14
(Secton 4.2). Thus, for large n, the algebruie degree
of our constructed function 1s I;{n — 15). Similar tech-
nigue has been used in [3, Example 4, p. 519] to get
functions (onn variables, n odd) with algebraic degree
l._,{n — 5), asthe mitial function used was of 5 variables,
The algebraie degree in our construction is only 5 less
than that of [3], but the other parameters like nonlin-
carity, A p. o are much betler in our case. Note that
to get improvement for odd v, 5 < r < 13, we need
n-varihle functions with better properties than what
15 provided in [3]. Construction of such functions is an
interesting open question in this direction. It will also
be of interest o get SAC functions with nonlinearity,
A, ap values as in our case with algebriie degree as
highas (n — 1.
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